Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Repurposing FDA-approved Drugs Targeting SARS-CoV2 3CLpro: A Study by Applying Virtual Screening, Molecular Dynamics, MM-PBSA Calculations and Covalent Docking

Author(s): Igor José dos Santos Nascimento*, Thiago Mendonça de Aquino and Edeildo Ferreira da Silva-Júnior*

Volume 19, Issue 7, 2022

Published on: 01 February, 2022

Page: [637 - 653] Pages: 17

DOI: 10.2174/1570180819666220106110133

Price: $65

Abstract

Background: Since the end of 2019, the etiologic agent SAR-CoV-2 responsible for one of the most significant epidemics in history has caused severe global economic, social, and health damages. The drug repurposing approach and application of Structure-based Drug Discovery (SBDD) using in silico techniques are increasingly frequent, leading to the identification of several molecules that may represent promising potential.

Methods: In this context, here we use in silico methods of virtual screening (VS), pharmacophore modeling (PM), and fragment-based drug design (FBDD), in addition to molecular dynamics (MD), molecular mechanics/Poisson-Boltzmann surface area (MM -PBSA) calculations, and covalent docking (CD) for the identification of potential treatments against SARS-CoV-2. We initially validated the docking protocol followed by VS in 1,613 FDA-approved drugs obtained from the ZINC database. Thus, we identified 15 top hits, of which three of them were selected for further simulations. In parallel, for the compounds with a fit score value ≤ of 30, we performed the FBDD protocol, where we designed 12 compounds.

Results: By applying a PM protocol in the ZINC database, we identified three promising drug candidates. Then, the 9 top hits were evaluated in simulations of MD, MM-PBSA, and CD. Subsequently, MD showed that all identified hits showed stability at the active site without significant changes in the protein's structural integrity, as evidenced by the RMSD, RMSF, Rg, SASA graphics. They also showed interactions with the catalytic dyad (His41 and Cys145) and other essential residues for activity (Glu166 and Gln189) and high affinity for MM-PBSA, with possible covalent inhibition mechanism.

Conclusion: Finally, our protocol helped identify potential compounds wherein ZINC896717 (Zafirlukast), ZINC1546066 (Erlotinib), and ZINC1554274 (Rilpivirine) were more promising and could be explored in vitro, in vivo, and clinical trials to prove their potential as antiviral agents.

Keywords: SARS-CoV-2, structure-based drug discovery, virtual screening, molecular modeling, drug repurposing; molecular dynamics.

Graphical Abstract

[1]
Goodarzi, P.; Mahdavi, F.; Mirzaei, R.; Hasanvand, H.; Sholeh, M.; Zamani, F.; Sohrabi, M.; Tabibzadeh, A.; Jeda, A.S.; Niya, M.H.K.; Keyvani, H.; Karampoor, S. Coronavirus disease 2019 (COVID-19): Immunological approaches and emerging pharmacologic treatments. Int. Immunopharmacol., 2020, 88: 106885.
[http://dx.doi.org/10.1016/j.intimp.2020.106885] [PMID: 32795893]
[2]
Heimfarth, L.; Serafini, M.R.; Martins-Filho, P.R.; Quintans, J.S.S.; Quintans-Júnior, L.J. Drug repurposing and cytokine management in response to COVID-19: a review. Int. Immunopharmacol., 2020, 88: 106947.
[http://dx.doi.org/10.1016/j.intimp.2020.106947] [PMID: 32919216]
[3]
WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard Available from: https://covid19.who.int/(accessed November 1, 2020).
[4]
Del Turco, S.; Vianello, A.; Ragusa, R.; Caselli, C.; Basta, G. COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb. Res., 2020, 196, 143-151.
[http://dx.doi.org/10.1016/j.thromres.2020.08.039] [PMID: 32871306]
[5]
Shi, Y.; Zhang, X.; Mu, K.; Peng, C.; Zhu, Z.; Wang, X.; Yang, Y.; Xu, Z.; Zhu, W. D3Targets-2019-nCoV: a webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1239-1248.
[http://dx.doi.org/10.1016/j.apsb.2020.04.006] [PMID: 32318328]
[6]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: a strategy for discovering inhibitors against emerg-ing viral infections. Curr. Med. Chem., 2020, 27.
[http://dx.doi.org/10.2174/0929867327666200812215852] [PMID: 32787752]
[7]
Zhuo, L-S.; Wang, M-S.; Yang, J-F.; Xu, H-C.; Huang, W.; Shang, L-Q.; Yang, G.F. Insights into SARS-CoV-2: Medicinal chemistry ap-proaches to combat its structural and functional biology. Top. Curr. Chem. (Cham), 2021, 379(3), 23.
[http://dx.doi.org/10.1007/s41061-021-00335-9] [PMID: 33886017]
[8]
José dos Santos Nascimento, I.; Mendonça de Aquino, T.; Fernando da Silva Santos-Júnior, P.; Xavier de Araújo-Júnior, J.; Ferreira da Silva-Júnior, E. Molecular modeling applied to design of cysteine protease inhibitors - a powerful tool for the identification of hit com-pounds against neglected tropical diseases. Front. Comput. Chem., 2020, 5, 63-110.
[http://dx.doi.org/10.2174/9789811457791120050004]
[9]
Rognan, D. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacol. Ther., 2017, 175, 47-66.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.034] [PMID: 28223231]
[10]
van Montfort, R.L.M.; Workman, P. Structure-based drug design: aiming for a perfect fit. Essays Biochem., 2017, 61(5), 431-437.
[http://dx.doi.org/10.1042/EBC20170052] [PMID: 29118091]
[11]
Gao, S.; Huang, T.; Song, L.; Xu, S.; Cheng, Y.; Cherukupalli, S.; Kang, D.; Zhao, T.; Sun, L.; Zhang, J.; Zhan, P.; Liu, X. Medicinal chem-istry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharm. Sin. B, 2021.
[http://dx.doi.org/10.1016/j.apsb.2021.08.027] [PMID: 34485029]
[12]
Paul, A.; Sarkar, A.; Saha, S.; Maji, A.; Janah, P.; Kumar Maity, T. Synthetic and computational efforts towards the development of pep-tidomimetics and small-molecule SARS-CoV 3CLpro inhibitors. Bioorg. Med. Chem., 2021, 46: 116301.
[http://dx.doi.org/10.1016/j.bmc.2021.116301] [PMID: 34332853]
[13]
Mongia, A.; Saha, S.K.; Chouzenoux, E.; Majumdar, A. A computational approach to aid clinicians in selecting anti-viral drugs for COVID-19 trials. Sci. Rep., 2021, 11(1), 9047.
[http://dx.doi.org/10.1038/s41598-021-88153-3] [PMID: 33907209]
[14]
Njogu, P.M.; Guantai, E.M.; Pavadai, E.; Chibale, K. Computer-aided drug discovery approaches against the tropical infectious diseases malaria, tuberculosis, trypanosomiasis, and leishmaniasis. ACS Infect. Dis., 2016, 2(1), 8-31.
[http://dx.doi.org/10.1021/acsinfecdis.5b00093] [PMID: 27622945]
[15]
Surabhi, S.; Singh, B. Computer aided drug design: an overview. J. Drug Deliv. Ther., 2018, 8, 504-509.
[http://dx.doi.org/10.22270/jddt.v8i5.1894]
[16]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[17]
Wang, Z-Z.; Shi, X-X.; Huang, G-Y.; Hao, G-F.; Yang, G-F. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol. Sci., 2021, 42(7), 551-565.
[http://dx.doi.org/10.1016/j.tips.2021.04.001] [PMID: 33958239]
[18]
Hao, G-F.; Wang, F.; Li, H.; Zhu, X-L.; Yang, W-C.; Huang, L-S.; Wu, J.W.; Berry, E.A.; Yang, G.F. Computational discovery of picomo-lar Q(o) site inhibitors of cytochrome bc1 complex. J. Am. Chem. Soc., 2012, 134(27), 11168-11176.
[http://dx.doi.org/10.1021/ja3001908] [PMID: 22690928]
[19]
Hao, G-F.; Jiang, W.; Ye, Y-N.; Wu, F-X.; Zhu, X-L.; Guo, F-B.; Yang, G.F. ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Res., 2016, 44(W1): W550-6.
[http://dx.doi.org/10.1093/nar/gkw393] [PMID: 27150808]
[20]
Kumar, B.K.; Sekhar, K.V.G.C.; Kunjiappan, S.; Jamalis, J.; Balaña-Fouce, R. Druggable targets of SARS-CoV-2 and treatment opportuni-ties for COVID-19. Bioorg. Chem., 2020, 104: 104269.
[http://dx.doi.org/10.1016/j.bioorg.2020.104269]
[21]
Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Kotfis, K.; Ghavami, S.; Łos, M.J. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist. Updat., 2020, 53: 100719.
[http://dx.doi.org/10.1016/j.drup.2020.100719] [PMID: 32717568]
[22]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Mar-tinez, A. COVID-19: drug targets and potential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[23]
Vallamkondu, J.; John, A.; Wani, W.Y.; Ramadevi, S.P.; Jella, K.K.; Reddy, P.H.; Kandimalla, R. SARS-CoV-2 pathophysiology and as-sessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10): 165889.
[http://dx.doi.org/10.1016/j.bbadis.2020.165889] [PMID: 32603829]
[24]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17): 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[25]
Pfizer Initiates Phase 1 Study of Novel Oral Antiviral Therapeutic Agent Against SARS-CoV-2 | pfpfizeruscom. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-initiates-phase-1-study-novel-oral-antiviral (accessed May 4, 2021).
[26]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.; Brice, M.D.; Rodgers, J.R. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem., 1977, 80(2), 319-324.
[http://dx.doi.org/10.1111/j.1432-1033.1977.tb11885.x] [PMID: 923582]
[27]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[28]
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 2011, 25(1), 13-19.
[http://dx.doi.org/10.1007/s10822-010-9395-8] [PMID: 21053052]
[29]
Fearon, D.; Owen, C.D.; Douangamath, A. Crystal Structure of SARS-CoV-2 main protease in complex with SF013 (Mpro-x2193) 2020.
[http://dx.doi.org/10.2210/pdb5rhd/pdb]
[30]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91, 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[31]
Csizmadia, P. MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. Proc. 3rd Int. Electron. Conf. Synth. Org. Chem., 1999, p. 1775.
[http://dx.doi.org/10.3390/ecsoc-3-01775]
[32]
Oda, A.; Okayasu, M.; Kamiyama, Y.; Yoshida, T.; Takahashi, O.; Matsuzaki, H. Evaluation of docking accuracy and investigations of roles of parameters and each term in scoring functions for protein–ligand docking using arguslab software. Bull. Chem. Soc. Jpn., 2007, 80, 1920-1925.
[http://dx.doi.org/10.1246/bcsj.80.1920]
[33]
Zhang, T.; Wu, Q.; Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol., 2020, 30(7), 1346-1351.
[http://dx.doi.org/10.1016/j.cub.2020.03.022] [PMID: 32197085]
[34]
McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res., 2004, 32(Web Server issue), W20-5.
[http://dx.doi.org/10.1093/nar/gkh435] [PMID: 15215342]
[35]
Lountos, G.T.; Needle, D.; Waugh, D.S. Crystal structure of catalytically inactive MERS-CoV 3CL Protease (C148A) in spacegroup C2. 2014.
[http://dx.doi.org/10.2210/pdb4WME/pdb]
[36]
Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G.F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13190-13195.
[http://dx.doi.org/10.1073/pnas.1835675100] [PMID: 14585926]
[37]
Wang, Q.; He, J.; Wu, D.; Wang, J.; Yan, J.; Li, H. Interaction of -cyperone with human serum albumin: Determination of the binding site by using Discovery Studio and via spectroscopic methods. J. Lumin., 2015, 164, 81-85.
[http://dx.doi.org/10.1016/j.jlumin.2015.03.025]
[38]
Goddard, T.D.; Huang, C.C.; Ferrin, T.E. Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure, 2005, 13(3), 473-482.
[http://dx.doi.org/10.1016/j.str.2005.01.006] [PMID: 15766548]
[39]
Manoharan, P.; Ghoshal, N. Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads. J. Biomol. Struct. Dyn., 2018, 36(7), 1878-1892.
[http://dx.doi.org/10.1080/07391102.2017.1337590] [PMID: 28617091]
[40]
Lee, C.C.; Wang, A.H.J.; Kuo, C.J.; Liang, P.H. Complex Structure of SARS-CoV-2 3CL Protease with TG-0203770. 7C8R, 2020.
[http://dx.doi.org/10.2210/pdb7C8R/pdb]
[41]
Sunseri, J.; Koes, D.R. Pharmit: interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1): W442-8.
[http://dx.doi.org/10.1093/nar/gkw287] [PMID: 27095195]
[42]
Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem., 2011, 32(11), 2359-2368.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[43]
Roque Marques, K.M.; do Desterro, M.R.; de Arruda, S.M.; de Araújo Neto, L.N.; do Carmo Alves de Lima, M.; de Almeida, S.M.V.; da Silva, E.C.D.; de Aquino, T.M.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. de M Silva, M.; de A Dantas, M.D.; Santos, J.C.C.; Figueire-do, I.M.; Bazin, M.A.; Marchand, P.; da Silva, T.G.; Mendonça Junior, F.J.B. 5-nitro-thiophene-thiosemicarbazone derivatives present an-titumor activity mediated by apoptosis and DNA intercalation. Curr. Top. Med. Chem., 2019, 19(13), 1075-1091.
[http://dx.doi.org/10.2174/1568026619666190621120304] [PMID: 31223089]
[44]
Silva-Junior, E.F.; Barcellos Franca, P.H.; Quintans-Junior, L.J.; Mendonca-Junior, F.J.B.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Dynamic simulation, docking and DFT studies applied to a set of anti-acetylcholinesterase inhibitors in the enzyme β-secretase (BACE-1): an important therapeutic target in alzheimer’s disease. Curr. Computeraided Drug Des., 2017, 13(4), 266-274.
[http://dx.doi.org/10.2174/1573409913666170406150905] [PMID: 28382866]
[45]
Braga, T.C.; Silva, T.F.; Maciel, T.M.S.; da Silva, E.C.D.; da Silva-Júnior, E.F.; Modolo, L.V. Ionic liquid-assisted synthesis of dihydropy-rimidin(thi)one Biginelli adducts and investigation of their mechanism of urease inhibition. New J. Chem., 2019, 43, 15187-15200.
[http://dx.doi.org/10.1039/C9NJ03556G]
[46]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[47]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[48]
Sarma, H.; Mattaparthi, V.S.K. Structure-based virtual screening of high-affinity ATP-competitive inhibitors against human lemur tyrosine kinase-3 (LMTK3) domain: a novel therapeutic target for breast cancer. Interdiscip. Sci., 2019, 11(3), 527-541.
[http://dx.doi.org/10.1007/s12539-018-0302-7] [PMID: 30066129]
[49]
Wang, F.; Wu, F-X.; Li, C-Z.; Jia, C-Y.; Su, S-W.; Hao, G-F.; Yang, G.F. ACID: a free tool for drug repurposing using consensus inverse docking strategy. J. Cheminform., 2019, 11(1), 73.
[http://dx.doi.org/10.1186/s13321-019-0394-z] [PMID: 33430982]
[50]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[51]
Passos, G.F.S.; Gomes, M.G.M.; Aquino, T.M.; Araújo-Júnior, J.X.; Souza, S.J.M.; Cavalcante, J.P.M.; Santos, E.C.D.; Bassi, Ê.J.; Silva-Júnior, E.F.D. Computer-aided design, synthesis, and antiviral evaluation of novel acrylamides as potential inhibitors of E3-E2-E1 glyco-proteins complex from chikungunya virus. Pharmaceuticals (Basel), 2020, 13(7), 141.
[http://dx.doi.org/10.3390/ph13070141] [PMID: 32629969]
[52]
Marques, R.A.; Gomes, A.O.C.V.; de Brito, M.V.; Dos Santos, A.L.P.; da Silva, G.S.; de Lima, L.B.; Nunes, F.M.; de Mattos, M.C.; de Oliveira, F.C.E.; do Ó Pessoa, C.; de Moraes, M.O.; de Fátima, Â.; Franco, L.L.; Silva, M.M.; Dantas, M.D.A.; Santos, J.C.C.; Figueiredo, I.M.; da Silva-Júnior, E.F.; de Aquino, T.M.; de Araújo-Júnior, J.X.; de Oliveira, M.C.F.; Leslie Gunatilaka, A.A. Annonalide and deriva-tives: semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA. J. Photochem. Photobiol. B, 2018, 179, 156-166.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.01.016] [PMID: 29413989]
[53]
Santana, C.C.; Silva-Júnior, E.F.; Santos, J.C.N.; Rodrigues, É.E.D.S.; da Silva, I.M.; Araújo-Júnior, J.X.; do Nascimento, T.G.; Oliveira Barbosa, L.A.; Dornelas, C.B.; Figueiredo, I.M.; Santos, J.C.C.; Grillo, L.A.M. Evaluation of guanylhydrazone derivatives as inhibitors of Candida rugosa digestive lipase: biological, biophysical, theoretical studies and biotechnological application. Bioorg. Chem., 2019, 87, 169-180.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.030] [PMID: 30889500]
[54]
Lozano Untiveros, K.; da Silva, E.G.; de Abreu, F.C.; da Silva-Júnior, E.F.; de Araújo-Junior, J.X.; Mendoça de Aquino, T.; Armas, S.M.; de Moura, R.O.; Mendonça-Junior, F.J.B.; Serafim, V.L.; Chumbimuni-Torres, K. An electrochemical biosensor based on Hairpin-DNA modified gold electrode for detection of DNA damage by a hybrid cancer drug intercalation. Biosens. Bioelectron., 2019, 133, 160-168.
[http://dx.doi.org/10.1016/j.bios.2019.02.071] [PMID: 30933710]
[55]
Zhang, L. Lin, D.; Kusov, Y.; Nian, Y.; Ma, Q.; Wang, J.; von Brunn, A.; Leyssen, P.; Lanko, K.; Neyts, J.; de Wilde, A.; Snijder, E.J.; Liu, H.; Hilgenfeld, R. α-ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, syn-thesis, and activity assessment. J. Med. Chem., 2020, 63(9), 4562-4578.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01828] [PMID: 32045235]
[56]
Ramajayam, R.; Tan, K.P.; Liu, H.G.; Liang, P.H. Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like prote-ase inhibitors. Bioorg. Med. Chem., 2010, 18(22), 7849-7854.
[http://dx.doi.org/10.1016/j.bmc.2010.09.050] [PMID: 20947359]
[57]
Yoshizawa, S.; Hattori, Y.; Kobayashi, K.; Akaji, K. Evaluation of an octahydroisochromene scaffold used as a novel SARS 3CL protease inhibitor. Bioorg. Med. Chem., 2020, 28: 115273.
[http://dx.doi.org/10.1016/j.bmc.2019.115273]
[58]
Desai, P.V.; Patny, A.; Sabnis, Y.; Tekwani, B.; Gut, J.; Rosenthal, P.; Srivastava, A.; Avery, M. Identification of novel parasitic cysteine protease inhibitors using virtual screening. 1. The ChemBridge database. J. Med. Chem., 2004, 47(26), 6609-6615.
[http://dx.doi.org/10.1021/jm0493717] [PMID: 15588096]
[59]
Freitas, R.F.; Oprea, T.I.; Montanari, C.A. 2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over ca-thepsin L. Bioorg. Med. Chem., 2008, 16(2), 838-853.
[http://dx.doi.org/10.1016/j.bmc.2007.10.048] [PMID: 17996450]
[60]
Jiménez-Alberto, A.; Ribas-Aparicio, R.M.; Aparicio-Ozores, G.; Castelán-Vega, J.A. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Comput. Biol. Chem., 2020, 88: 107325.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107325] [PMID: 32623357]
[61]
da Silva-Junior, E.F.; Barcellos Franca, P.H.; Ribeiro, F.F.; Bezerra Mendonca-Junior, F.J.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Molecular docking studies applied to a dataset of cruzain inhibitors. Curr. Computeraided Drug Des., 2018, 14(1), 68-78.
[http://dx.doi.org/10.2174/1573409913666170519112758] [PMID: 28523999]
[62]
Romeiro, N.C.; Aguirre, G.; Hernández, P.; González, M.; Cerecetto, H.; Aldana, I.; Pérez-Silanes, S.; Monge, A.; Barreiro, E.J.; Lima, L.M. Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates. Bioorg. Med. Chem., 2009, 17(2), 641-652.
[http://dx.doi.org/10.1016/j.bmc.2008.11.065] [PMID: 19110434]
[63]
Vijayakumar, B.G.; Ramesh, D.; Joji, A.; Jayachandra Prakasan, J.; Kannan, T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol., 2020, 886: 173448.
[http://dx.doi.org/10.1016/j.ejphar.2020.173448] [PMID: 32768503]
[64]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discov-ery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[65]
Kumar, R.; Garg, P.; Bharatam, P.V. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors. J. Biomol. Struct. Dyn., 2015, 33(5), 1082-1093.
[http://dx.doi.org/10.1080/07391102.2014.929535] [PMID: 24875451]
[66]
Harigua-Souiai, E.; Cortes-Ciriano, I.; Desdouits, N.; Malliavin, T.E.; Guizani, I.; Nilges, M.; Blondel, A.; Bouvier, G. Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis. BMC Bioinformatics, 2015, 16, 93.
[http://dx.doi.org/10.1186/s12859-015-0518-z] [PMID: 25888251]
[67]
Xiong, H-L.; Cao, J-L.; Shen, C-G.; Ma, J.; Qiao, X-Y.; Shi, T-S. Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.05.135996]
[68]
Kato, F.; Matsuyama, S.; Kawase, M.; Hishiki, T.; Katoh, H.; Takeda, M. Antiviral activities of mycophenolic acid and IMD-0354 against SARS-CoV-2. Microbiol. Immunol., 2020, 64(9), 635-639.
[http://dx.doi.org/10.1111/1348-0421.12828] [PMID: 32579258]
[69]
Yamamoto, N.; Matsuyama, S.; Hoshino, T.; Yamamoto, N. Nelfinavir inhibits replication of severe acute respiratory syndrome corona-virus 2 in vitro. BioRxiv, 2020. Available from: https://doi.org/https://doi.org/10.1101/2020.04.06.026476
[70]
Weston, S.; Coleman, C.M.; Haupt, R.; Logue, J.; Matthews, K.; Li, Y.; Reyes, H.M.; Weiss, S.R.; Frieman, M.B. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 In Vitro and SARS-CoV in vivo. J. Virol., 2020, 94(21), e01218-e01220.
[http://dx.doi.org/10.1128/JVI.01218-20] [PMID: 32817221]
[71]
Arachchillage, D.J.; Remmington, C.; Rosenberg, A.; Xu, T.; Passariello, M.; Hall, D.; Laffan, M.; Patel, B.V. Anticoagulation with ar-gatroban in patients with acute antithrombin deficiency in severe COVID-19. Br. J. Haematol., 2020, 190(5), e286-e288.
[http://dx.doi.org/10.1111/bjh.16927] [PMID: 32516429]
[72]
Viecca, M.; Radovanovic, D.; Forleo, G.B.; Santus, P. Enhanced platelet inhibition treatment improves hypoxemia in patients with severe Covid-19 and hypercoagulability. A case control, proof of concept study. Pharmacol. Res., 2020, 158: 104950.
[http://dx.doi.org/10.1016/j.phrs.2020.104950] [PMID: 32450344]
[73]
Mamidala, E.; Davella, R.; Gurrapu, S.; Shivakrishna, P In silico identification of clinically approved medicines against the main protease of SARS-CoV-2, causative agent of covid-19. arXiv preprint arXiv:2004.12055, 2020.
[74]
Arun, K.G.; Sharanya, C.S.; Abhithaj, J.; Francis, D.; Sadasivan, C. Drug repurposing against SARS-CoV-2 using E-pharmacophore based virtual screening, molecular docking and molecular dynamics with main protease as the target. J. Biomol. Struct. Dyn., 2020, 39(13), 4647-4658.
[http://dx.doi.org/10.1080/07391102.2020.1779819] [PMID: 32571168]
[75]
Wang, Q.; Zhao, Y.; Chen, X.; Hong, A. Virtual screening of approved clinic drugs with main protease (3CLpro) reveals potential inhibitory effects on SARS-CoV-2. J. Biomol. Struct. Dyn., 2020, 0, 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1817786] [PMID: 32909528]
[76]
Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main prote-ase using molecular docking study. J. Biomol. Struct. Dyn., 2021, 39(9), 3347-3357.
[http://dx.doi.org/10.1080/07391102.2020.1763201]
[77]
Reiner, Ž.; Hatamipour, M.; Banach, M.; Pirro, M.; Al-Rasadi, K.; Jamialahmadi, T.; Radenkovic, D.; Montecucco, F.; Sahebkar, A. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch. Med. Sci., 2020, 16(3), 490-496.
[http://dx.doi.org/10.5114/aoms.2020.94655] [PMID: 32399094]
[78]
Pfizer unveils its oral SARS-CoV-2 inhibitor. Available from: https://cen.acs.org/acs-news/acs-meeting-news/Pfizer-unveils-oral-SARS-CoV/99/i13(accessed May 4, 2021).
[79]
Fayyazi, N.; Esmaeili, S.; Taheri, S.; Ribeiro, F.F.; Scotti, M.T.; Scotti, L.; Ghasemi, J.B.; Saghaei, L.; Fassihi, A. Pharmacophore modeling, synthesis, scaffold hopping and biological β- hematin inhibition interaction studies for anti-malaria compounds. Curr. Top. Med. Chem., 2019, 19(30), 2743-2765.
[http://dx.doi.org/10.2174/1568026619666191116160326] [PMID: 31738136]
[80]
Erlanson, D.A. Many small steps towards a COVID-19 drug. Nat. Commun., 2020, 11(1), 5048.
[http://dx.doi.org/10.1038/s41467-020-18710-3] [PMID: 33028832]
[81]
Choudhury, C. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease. J. Biomol. Struct. Dyn., 2020, 0, 1-14.
[http://dx.doi.org/10.1080/07391102.2020.1771424] [PMID: 32452282]
[82]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[83]
Ghosh, J.; Lawless, M.S.; Waldman, M.; Gombar, V.; Fraczkiewicz, R. Modeling ADMET. In: In silico methods for predicting drug toxici-ty. Methods in Molecular biology; Benfexate, E., Ed.; Humana Press: Newyork, 2016; Vol. 1425, pp. 63-83.
[http://dx.doi.org/10.1007/978-1-4939-3609-0_4]
[84]
Sharma, S.; Srivastav, S.; Singh, G.; Singh, S.; Malik, R.; Alam, M.M. In silico strategies for probing novel DPP-IV inhibitors as anti-diabetic agents. J. Biomol. Struct. Dyn., 2021, 39(6), 2118-2132.
[http://dx.doi.org/10.1080/07391102.2020.1751714] [PMID: 32248758]
[85]
Alazmi, M.; Motwalli, O. In silico virtual screening, characterization, docking and molecular dynamics studies of crucial SARS-CoV-2 proteins. J. Biomol. Struct. Dyn., 2021, 39(17), 6761-6771.
[http://dx.doi.org/10.1080/07391102.2020.1803965] [PMID: 32762537]
[86]
Wu, J.; Li, W.; Zheng, Z.; Lu, X.; Zhang, H.; Ma, Y. Design, synthesis, biological evaluation, common feature pharmacophore model and molecular dynamics simulation studies of ethyl 4-(phenoxymethyl)-2-phenylthiazole-5-carboxylate as Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhi. J. Biomol. Struct. Dyn., 2021, 39(4), 1174-1188.
[http://dx.doi.org/10.1080/07391102.2020.1726817] [PMID: 32036779]
[87]
Zhao, H.; Dong, J.; Lafleur, K.; Nevado, C.; Caflisch, A. Discovery of a novel chemotype of tyrosine kinase inhibitors by fragment-based docking and molecular dynamics. ACS Med. Chem. Lett., 2012, 3(10), 834-838.
[http://dx.doi.org/10.1021/ml3001984] [PMID: 24900387]
[88]
Idris, M.O.; Yekeen, A.A.; Alakanse, O.S.; Durojaye, O.A. Computer-aided screening for potential TMPRSS2 inhibitors: a combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn., 2021, 39(15), 5638-5656.
[http://dx.doi.org/10.1080/07391102.2020.1792346] [PMID: 32672528]
[89]
Kumar, A.; Liang, B.; Aarthy, M.; Singh, S.K.; Garg, N.; Mysorekar, I.U.; Giri, R. Hydroxychloroquine inhibits zika virus NS2B-NS3 protease. ACS Omega, 2018, 3(12), 18132-18141.
[http://dx.doi.org/10.1021/acsomega.8b01002] [PMID: 30613818]
[90]
Gorham, R.D., Jr; Rodriguez, W.; Morikis, D. Molecular analysis of the interaction between staphylococcal virulence factor Sbi-IV and complement C3d. Biophys. J., 2014, 106(5), 1164-1173.
[http://dx.doi.org/10.1016/j.bpj.2014.01.033] [PMID: 24606940]
[91]
Zhang, D.; Lazim, R. Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solu-tion. Sci. Rep., 2017, 7, 44651.
[http://dx.doi.org/10.1038/srep44651] [PMID: 28300210]
[92]
Philoppes, J.N.; Khedr, M.A.; Hassan, M.H.A.; Kamel, G.; Lamie, P.F. New pyrazolopyrimidine derivatives with anticancer activity: De-sign, synthesis, PIM-1 inhibition, molecular docking study and molecular dynamics. Bioorg. Chem., 2020, 100: 103944.
[http://dx.doi.org/10.1016/j.bioorg.2020.103944] [PMID: 32450389]
[93]
Khan, S.; Khan, F.I.; Mohammad, T.; Khan, P.; Hasan, G.M.; Lobb, K.A.; Islam, A.; Ahmad, F.; Imtaiyaz Hassan, M. Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: a combined spectroscopic and molecular dynamic sim-ulation studies. Int. J. Biol. Macromol., 2018, 111, 548-560.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.160] [PMID: 29329815]
[94]
Marques, D.N.; Siqueira, A.S.; Gonçalves, E.C.; Barros, N.L.F.; de Souza, C.R.B. Homology modeling and molecular dynamics simula-tions of a cassava translationally controlled tumor protein (MeTCTP). Plant Gene, 2019, 19: 100185.
[http://dx.doi.org/10.1016/j.plgene.2019.100185]
[95]
Dai, W.; Zhang, B.; Jiang, X-M.; Su, H.; Li, J.; Zhao, Y. Structure-Based design, synthesis and biological evaluation of peptidomimetic aldehydes as a novel series of antiviral drug candidates targeting the SARS-CoV-2 main protease. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.25.996348]
[96]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368, 409-412.
[http://dx.doi.org/10.1126/science.abb3405]
[97]
Anuradha, P.S.; Patel, S.; Patle, R.; Parameswaran, P.; Jain, A.; Shard, A. Design, computational studies, synthesis and biological evalua-tion of thiazole-based molecules as anticancer agents. Eur. J. Pharm. Sci., 2019, 134, 20-30.
[http://dx.doi.org/10.1016/j.ejps.2019.04.005] [PMID: 30965082]
[98]
Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model., 2020, 60(6), 3277-3286.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[99]
Kumar, N.; Srivastava, R.; Prakash, A.; Lynn, A.M. Structure-based virtual screening, molecular dynamics simulation and MM-PBSA toward identifying the inhibitors for two-component regulatory system protein NarL of Mycobacterium tuberculosis. J. Biomol. Struct. Dyn., 2020, 38(11), 3396-3410.
[http://dx.doi.org/10.1080/07391102.2019.1657499] [PMID: 31422761]
[100]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[101]
Kumaran, D.; Andi, B.; Kreitler, D.F.; Soares, A.S.; Shi, W.; Jakoncic, J.; Fuchs, M.R.; Keereetaweep, J.; Shanklin, J.; McSweeney, S. Crystal structure of SARS-CoV-2 main protease (3CLpro/Mpro) in complex with covalent inhibitor boceprevir at 1.35 a resolution. 2020.
[102]
Katritch, V.; Byrd, C.M.; Tseitin, V.; Dai, D.; Raush, E.; Totrov, M.; Abagyan, R.; Jordan, R.; Hruby, D.E. Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches. J. Comput. Aided Mol. Des., 2007, 21(10-11), 549-558.
[http://dx.doi.org/10.1007/s10822-007-9138-7] [PMID: 17960327]
[103]
Zhang, S.; Shi, Y.; Jin, H.; Liu, Z.; Zhang, L.; Zhang, L. Covalent complexes of proteasome model with peptide aldehyde inhibitors MG132 and MG101: docking and molecular dynamics study. J. Mol. Model., 2009, 15(12), 1481-1490.
[http://dx.doi.org/10.1007/s00894-009-0515-0] [PMID: 19440739]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy