Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Antioxidant, Antimicrobial, and Molecular Docking Studies of Novel Chalcones and Schiff Bases Bearing 1, 4-naphthoquinone Moiety

Author(s): Nadia Ali Ahmed Elkanzi*, Hajer Hrichi and Rania B. Bakr

Volume 19, Issue 7, 2022

Published on: 01 February, 2022

Page: [654 - 673] Pages: 20

DOI: 10.2174/1570180819666211228091055

Price: $65

Abstract

Background: The 1,4-naphthoquinone ring has attracted prominent interest in the field of medicinal chemistry due to its potent pharmacological activities such as antioxidant, antibacterial, antifungal, and anticancer.

Objectives: Herein, a series of new Schiff bases (4-6) and chalcones (8a-c & 9a-d) bearing 1,4- naphthoquinone moiety were synthesized in good yields and were subjected to in-vitro antimicrobial, antioxidant, and molecular docking testing.

Methods: A facile protocol has been described in this study for the synthesis of new derivatives (4-7, 8ac, and 9a-d) bearing 1,4-naphthoquinone moiety. The chemical structures of all the synthesized compounds were identified by 1H-NMR, 13C-NMR, MS, and elemental analyses. Moreover, these derivatives were assessed for their in-vitro antimicrobial activity against gram-positive, gram-negative bacteria, and fungal strains. Further studies were conducted to test their antioxidant activity using DPPH (2,2-diphenyl- 1-picrylhydrazyl) scavenging assay. Molecular docking studies were realized to identify the most likely interactions of the novel compounds within the protein receptor.

Results: The antimicrobial results showed that most of the compounds displayed good efficacy against both bacterial and fungal strains. The antioxidant study revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active sites.

Conclusion: Based on the obtained results, it was found that compounds 8b, 9b, and 9c displayed the highest activity against both bacterial and fungal strains. The obtained findings from the DPPH radical scavenging method revealed that compounds 9d and 9a exhibited the strongest scavenging potential. The molecular docking studies proved that the most active antimicrobial compounds 8b, 9b and 9c displayed the highest energy binding scores within the glucosamine-6-phosphate synthase (GlcN-6-P) active site.

Keywords: Heterocycles, 1, 4-naphthoquinone, antimicrobial, antioxidant, molecular docking, GLN- 6-P.

« Previous
Graphical Abstract

[1]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[2]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[3]
Broughton, H.B.; Watson, I.A. Selection of heterocycles for drug design. J. Mol. Graph. Model., 2004, 23(1), 51-58.
[http://dx.doi.org/10.1016/j.jmgm.2004.03.016] [PMID: 15331053]
[4]
ElKanzi, N.A.A.; Ghoneim, A.A.; Hrichi, H. Synthesis and antimicrobial evaluation of novel pyrazole, imidazole and pyrimidine deriva-tives possessing imidazo[4,5-B]indol moiety. Chem. J. Maldova, 2014, 14, 105-116.
[http://dx.doi.org/10.19261/cjm.2019.638]
[5]
Ibis, C.; Tuyun, A.F.; Ozsoy-Gunes, Z.; Bahar, H.; Stasevych, M.V.; Musyanovych, R.Y.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis and biological evaluation of novel nitrogen- and sulfur-containing hetero-1,4-naphthoquinones as potent antifungal and antibac-terial agents. Eur. J. Med. Chem., 2011, 46(12), 5861-5867.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.048] [PMID: 22019185]
[6]
Beemelmanns, C.; Guo, H.; Rischer, M.; Poulsen, M. Natural products from microbes associated with insects. Beilstein J. Org. Chem., 2016, 12, 314-327.
[http://dx.doi.org/10.3762/bjoc.12.34] [PMID: 26977191]
[7]
Cipriani, F.A.; Figueiredo, M.R.; Soares, G.L.G.; Kaplan, M.A.C. Chemical implications in the systematics and phylogeny of Bignoniaceae. Quim. Nova, 2012, 35, 2125-2131.
[http://dx.doi.org/10.1590/S0100-40422012001100005]
[8]
Errante, G.; La Motta, G.; Lagana, C.; Wittebolle, V.; Sarciron, M.É.; Barret, R. Synthesis and evaluation of antifungal activity of naphtho-quinone derivatives. Eur. J. Med. Chem., 2006, 41(6), 773-778.
[http://dx.doi.org/10.1016/j.ejmech.2006.02.003] [PMID: 16563569]
[9]
Liu, H.; Yan, C.; Li, C.; You, T.; She, Z. Naphthoquinone derivatives with anti-inflammatory activity from mangrove-derived endophytic fungus Talaromyces sp. SK-S009. Molecules, 2020, 25(3), 576.
[http://dx.doi.org/10.3390/molecules25030576] [PMID: 32013142]
[10]
Opitz, W.; Pelster, B.; Fruchtmann, R.; Krupka, U.; Gauss, W.; Kiehne, H.; Oediger, H. 1,4-Naphthoquinone derivatives having anti-inflammatory action. U.S. Patent 4628062A 1986.
[11]
Ravichandiran, P.; Sheet, S.; Premnath, D.; Kim, A.R.; Yoo, D.J. 1,4-Naphthoquinone Analogues: Potent antibacterial agents and mode of action evaluation. Molecules, 2019, 24(7), 1437.
[http://dx.doi.org/10.3390/molecules24071437] [PMID: 30979056]
[12]
Wellington, K.W.; Kolesnikova, N.I. A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity. Bioorg. Med. Chem., 2012, 20(14), 4472-4481.
[http://dx.doi.org/10.1016/j.bmc.2012.05.028] [PMID: 22682920]
[13]
Ghosh, S.K.; Ganta, A.; Spanjaard, R.A. Discovery and cellular stress pathway analysis of 1,4-naphthoquinone derivatives with novel, highly potent broad-spectrum anticancer activity. J. Biomed. Sci., 2018, 25(1), 12.
[http://dx.doi.org/10.1186/s12929-018-0408-6] [PMID: 29422060]
[14]
Matsumoto, K.; Choshi, T.; Hourai, M.; Zamami, Y.; Sasaki, K.; Abe, T.; Ishikura, M.; Hatae, N.; Iwamura, T.; Tohyama, S.; Nobuhiro, J.; Hibino, S. Synthesis and antimalarial activity of calothrixins A and B, and their N-alkyl derivatives. Bioorg. Med. Chem. Lett., 2012, 22(14), 4762-4764.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.064] [PMID: 22727670]
[15]
Berghot, M.A.; Kandeel, E.M.; Abdel-Rahman, A.H.; Abdel-Motaal, M. Synthesis, antioxidant and cytotoxic activities of novel naphtho-quinone derivatives from 2,3-dihydro-2,3-epoxy-1,4- naphthoquinone. Med. Chem., 2014, 4, 381-388.
[16]
Deniz, N.G.; Ibis, C.; Gokmen, Z.; Stasevych, M.; Novikov, V.; Komarovska-Porokhnyavets, O.; Ozyurek, M.; Guclu, K.; Karakas, D.; Ulukaya, E. Design, synthesis, biological evaluation, and antioxidant and cytotoxic activity of heteroatom-substituted 1,4-naphtho- and benzoquinones. Chem. Pharm. Bull. (Tokyo), 2015, 63(12), 1029-1039.
[http://dx.doi.org/10.1248/cpb.c15-00607] [PMID: 26633024]
[17]
Zhou, B.; Xing, C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. (Los Angeles), 2015, 5(8), 388-404.
[http://dx.doi.org/10.4172/2161-0444.1000291] [PMID: 26798565]
[18]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[19]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[20]
Yang, H.M.; Shin, H.R.; Cho, S.H.; Bang, S.C.; Song, G.Y.; Ju, J.H.; Kim, M.K.; Lee, S.H.; Ryu, J.C.; Kim, Y.; Jung, S.H. Structural re-quirement of chalcones for the inhibitory activity of interleukin-5. Bioorg. Med. Chem., 2007, 15(1), 104-111.
[http://dx.doi.org/10.1016/j.bmc.2006.10.007] [PMID: 17064909]
[21]
Panchal, A.D.; Prashant, D.; Patel, K.M. Synthesis and biological evaluation of chalcone derivatives. Int. J. Pharm. Sci. Drug Res., 2011, 3(4), 331-337.
[22]
Alcaráz, L.E.; Blanco, S.E.; Puig, O.N.; Tomás, F.; Ferretti, F.H. Antibacterial activity of flavonoids against methicillin-resistant Staphylo-coccus aureus strains. J. Theor. Biol., 2000, 205(2), 231-240.
[http://dx.doi.org/10.1006/jtbi.2000.2062] [PMID: 10873434]
[23]
Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem., 2019, 91103133
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[24]
Liu, M.; Wilairat, P.; Go, M.L. Antimalarial alkoxylated and hydroxylated chalcones [corrected]: structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[http://dx.doi.org/10.1021/jm0101747] [PMID: 11728189]
[25]
Lee, Y.H.; Jeon, S.H.; Kim, S.H.; Kim, C.; Lee, S.J.; Koh, D.; Lim, Y.; Ha, K.; Shin, S.Y. A new synthetic chalcone derivative, 2-hydroxy-3;5,5;-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-B pathway in BV2 microglial cells. Exp. Mol. Med., 2012, 44(6), 369-377.
[http://dx.doi.org/10.3858/emm.2012.44.6.042] [PMID: 22382990]
[26]
Haraguchi, H.; Inoue, J.; Tamura, Y.; Mizutani, K. Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother. Res., 2002, 16(6), 539-544.
[http://dx.doi.org/10.1002/ptr.972] [PMID: 12237811]
[27]
Pesaran Seiied Bonakdar, A.; Vafaei, F.; Farokhpour, M.; Nasr Esfahani, M.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16(2), 565-568.
[PMID: 28979310]
[28]
Caamal-Fuentes, E.E.; Peraza-Sánchez, S.R.; Torres-Tapia, L.W.; Moo-Puc, R.E. Isolation and identification of cytotoxic compounds from Aeschynomene fascicularis, a mayan medicinal plant. Molecules, 2015, 20(8), 13563-13574.
[http://dx.doi.org/10.3390/molecules200813563] [PMID: 26213910]
[29]
Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem., 2005, 12(4), 481-499.
[http://dx.doi.org/10.2174/0929867053363153] [PMID: 15720256]
[30]
Holla, B.S.; Rao, B.S.; Shridhara, K.; Akberali, P.M. Studies on arylfuran derivatives. Part XI. Synthesis, characterisation and biological studies on some Mannich bases carrying 2,4-dichlorophenylfurfural moiety. Farmaco, 2000, 55(5), 338-344.
[PMID: 10983278]
[31]
Chandramouli, C.; Shivanand, M.R.; Nayanbhai, T.B.; Bheemachari, B.; Udupi, R.H. Synthesis and biological screening of certain new triazole schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res., 2012, 4, 1151-1159.
[32]
Matar, S.A.; Talib, W.H.; Mustafa, M.S.; Mubarak, M.S.; AlDamen, M.A. Synthesis, characterization, and antimicrobial activity of Schiff bases derived from benzaldehydes and 3,3;-diaminodipropylamine. Arab. J. Chem., 2015, 8, 850-857.
[http://dx.doi.org/10.1016/j.arabjc.2012.12.039]
[33]
Uddin, N.; Rashid, F.; Ali, S.; Tirmizi, S.A.; Ahmad, I.; Zaib, S.; Zubair, M.; Diaconescu, P.L.; Tahir, M.N.; Iqbal, J.; Haider, A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn., 2020, 38(11), 3246-3259.
[http://dx.doi.org/10.1080/07391102.2019.1654924] [PMID: 31411114]
[34]
Sivakumar, K.K.; Rajasekaran, A. Synthesis, in-vitro antimicrobial and antitubercular screening of Schiff bases of 3-amino-1-phenyl-4- [2-(4-phenyl-1,3-thiazol-2-yl) hydrazin-1-ylidene]-4,5-dihydro-1H-pyrazol-5-one. J. Pharm. Bioallied Sci., 2013, 5(2), 126-135.
[http://dx.doi.org/10.4103/0975-7406.111828] [PMID: 23833518]
[35]
Alafeefy, A.M.; Bakht, M.A.; Ganaie, M.A.; Ansarie, M.N.; El-Sayed, N.N.; Awaad, A.S. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff’s bases as fenamate isosteres. Bioorg. Med. Chem. Lett., 2015, 25(2), 179-183.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.088] [PMID: 25522819]
[36]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014202784
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[37]
Elkanzi, N.A.A.; Hrichi, H. Design and evaluation of antimicrobial activity of new pyrazole, 1,2,4-triazole, and 1,3,4-thiadiazol derivatives bearing 1,4-dihydroquinoxaline moiety. Russ. J. Bioorganic Chem., 2020, 46, 715-725.
[http://dx.doi.org/10.1134/S1068162020050076]
[38]
Elkanzi, N.A.A.; Hrichi, H. Green synthesis, characterization and biological evaluation of new pyrazino pyrido quinolone derivatives un-der catalyst free conditions. J. Appl. Chem., 2019, 8, 26-37.
[39]
Elkanzi, N.A.A.; Hrichi, H.; Bakr, B.; Hendawy, O. Alruwaili, May.M.; Alruwaili, Enas D.; Almamtrfi, Rahaf. W.; Alsharary, Hadeel. Kh. Synthesis, in vitro evaluation and molecular docking of new pyrazole derivatives bearing 1,5,10,10a-tetrahydrobenzo [g]quinoline-3-carbonitrile moiety as potent antibacterial agents. J. Iran. Chem. Soc., 2020, 18, 977-991.
[http://dx.doi.org/10.1007/s13738-020-02086-8]
[40]
Gomaa, M.M. Oxonium heterocyclic quinone in the synthesis of some cyanine dyes and their antimicrobial activity. Eur. J. Chem., 2014, 5, 463-468.
[http://dx.doi.org/10.5155/eurjchem.5.3.463-468.973]
[41]
Soleiman, H.A.; Koraiem, A.I.; Mohmoud, N.Y. Synthesis of 3-substituted benzpyrid-4-imino-2-oxime derivatives. J. Chin. Chem. Soc. (Taipei), 2005, 52, 119-124.
[http://dx.doi.org/10.1002/jccs.200500018]
[42]
Gomaa, M.M.; El-Deen, N.S.; ElKanzi, N.A.A. Benzo[g]quinoline heterocyclic derivative as a typical precursor in the synthesis of new class of cyanine-like dyes. Eur. J. Chem., 2012, 3, 461-466.
[http://dx.doi.org/10.5155/eurjchem.3.4.461-467.699]
[43]
Komykhov, S.A.; Ostras, K.S.; Kostanyan, A.R.; Desenko, S.M.; Orlov, V.D.; Meier, H. The reaction of amino-imidazoles, -pyrazoles and -triazoles with unsaturated nitriles. J. Heterocycl. Chem., 2005, 42(6), 1111-1116.
[http://dx.doi.org/10.1002/jhet.5570420612]
[44]
Panteleon, V.; Kostakis, I.K.; Marakos, P.; Pouli, N.; Andreadou, I. Synthesis and free radical scavenging activity of some new spiropyra-nocoumarins. Bioorg. Med. Chem. Lett., 2008, 18(21), 5781-5784.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.065] [PMID: 18835711]
[45]
Isupov, M.N.; Obmolova, G.; Butterworth, S.; Badet-Denisot, M.A.; Badet, B.; Polikarpov, I.; Littlechild, J.A.; Teplyakov, A. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure, 1996, 4(7), 801-810.
[http://dx.doi.org/10.1016/S0969-2126(96)00087-1] [PMID: 8805567]
[46]
Erlenmeyer, H.; Ueberwasser, H. About XVI devices and structures. Zur Kenntnis des 4-Oxy-benzthiazols. Helv. Chim. Acta, 1942, 25, 515-521.
[http://dx.doi.org/10.1002/hlca.19420250306]
[47]
Osman, H.; Arshad, A.; Lam, C.K.; Bagley, M.C. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl couma-rin derivatives. Chem. Cent. J., 2012, 6(1), 32.
[http://dx.doi.org/10.1186/1752-153X-6-32] [PMID: 22510146]
[48]
Kumagai, Y.; Shinkai, Y.; Miura, T.; Cho, A.K. The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 221-247.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134517] [PMID: 21942631]
[49]
Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism.Book Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2019, pp. 1-28.
[http://dx.doi.org/10.5772/intechopen.85270]
[50]
Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP decolorization assay of antioxidant capacity reaction path-ways. Int. J. Mol. Sci., 2020, 21(3), 1131.
[http://dx.doi.org/10.3390/ijms21031131] [PMID: 32046308]
[51]
Uddin, S.N.; Ali, M.E.; Yesmin, M.N. Antioxidant and antibacterial activities of Senna tora Roxb. Am. J. Plant Physiol., 2008, 3, 96-100.
[http://dx.doi.org/10.3923/ajpp.2008.96.100]
[52]
Sharma, O.P.; Bhata, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113, 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[53]
Abdel-Rehim, S.S.; Ibrahim, M.A.M.; Khaled, K.F. 4-Aminoantipyrine as an inhibitor of mild steel corrosion in HCl solution. J. Appl. Electrochem., 1999, 29, 593-59.
[http://dx.doi.org/10.1023/A:1003450818083]
[54]
Bakr, R.B.; Elkanzi, N.A.A. Preparation of some novel thiazolidinones, imidazolinones, and azetidinone bearing pyridine and pyrimidine moieties with antimicrobial activity. J. Heterocycl. Chem., 2020, 57, 2977-2989.
[http://dx.doi.org/10.1002/jhet.4009]
[55]
Vijesh, A.; Isloor, A.M.; Telkar, S.; Arulmoli, T.; Fun, H.K. Molecular docking studies of some new imidazole derivatives for antimicro-bial properties. Arab. J. Chem., 2013, 6, 197-204.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.007]
[56]
Elkanzi, N.A.A.; Bakr, R.B. Microwave assisted, antimicrobial activity and molecular modeling of some synthesized newly pyrimidine derivatives using 1, 4- diazabicyclo[2.2.2]octane as a catalyst. Lett. Drug Des. Discov., 2020, 17, 1538-1551.
[http://dx.doi.org/10.2174/1570180817999200802033351]
[57]
Hussain, H.; Krohn, K.; Ahmad, V.U.; Miana, G.A.; Greend, I.R. Lapachol: An overview. ARKIVOC, 2007, 145-171.
[http://dx.doi.org/10.3998/ark.5550190.0008.204]
[58]
Janeczko, M.; Demchuk, O.M.; Strzelecka, D. Kubiski, K.; Masyk, M. New family of antimicrobial agents derived from 1,4-naphthoquinone. Eur. J. Med. Chem., 2016, 124, 1019-1025.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.034] [PMID: 27783973]
[59]
Katritzky, A.; Huang, L.; Sakhuja, R. Efficient syntheses of naphthoquinone-dipeptides. Synthesis, 2010, (12), 2011-2016.
[http://dx.doi.org/10.1055/s-0029-1220012]
[60]
Sánchez-Calvo, J.M.; Barbero, G.R.; Guerrero-Vásquez, G. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: A structure–activity relationship study. Med. Chem. Res., 2016, 25, 1274-1285.
[http://dx.doi.org/10.1007/s00044-016-1550-x]
[61]
Kurban, S.; Gulsah Deniz, N.; Sayil, C.; Ozyurek, M.; Guclu, K.; Stasevych, M.; Zvarych, V.; Komarovska-Porokhnyavet, O.; Novikov, V. Synthesis, antimicrobial properties, and inhibition of catalase activity of 1,4-naphtho- and benzoquinone derivatives containing N-, S-, O-substituted. Heteroatom Chem., 2019, 20191658417
[http://dx.doi.org/10.1155/2019/1658417]
[62]
Estolano-Cobián, A.; Noriega-Iribe, E.; Díaz-Rubio, L. Antioxidant, antiproliferative, and acetylcholinesterase inhibition activity of amino alcohol derivatives from 1,4-naphthoquinone. Med. Chem. Res., 2020, 29, 1986-1999.
[http://dx.doi.org/10.1007/s00044-020-02617-1]
[63]
Bhumika, Y.; Mishra, A. Synthesis, characterization and antioxidant evaluation of 2-(2-substituted) naphthalene-1,4-dione derivatives. J. Pharm. Res., 2016, 10, 655-659.
[64]
Kumar, V.; Kumar, S.; Hassan, M.; Wu, H.; Thimmulappa, R.K.; Kumar, A.; Sharma, S.K.; Parmar, V.S.; Biswal, S.; Malhotra, S.V. Novel chalcone derivatives as potent Nrf2 activators in mice and human lung epithelial cells. J. Med. Chem., 2011, 54(12), 4147-4159.
[http://dx.doi.org/10.1021/jm2002348] [PMID: 21539383]
[65]
Kozlowski, D.; Trouillas, P.; Calliste, C.; Marsal, P.; Lazzaroni, R.; Duroux, J.L. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J. Phys. Chem. A, 2007, 111(6), 1138-1145.
[http://dx.doi.org/10.1021/jp066496+] [PMID: 17253666]
[66]
Silpi, B.; Priyanka, S.; Monali, R. Multidrug resistant and extensively drug resistantbacteria: A Study. J. Pathogens, 2016, 2016.
[http://dx.doi.org/10.1155/2016/4065603]
[67]
Magiorakos, A-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, exten-sively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired re-sistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy