Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Crosstalk between Gut Microbiota, Intestinal Immunological Niche and Visceral Adipose Tissue as a New Model for the Pathogenesis of Metabolic and Inflammatory Diseases: The Paradigm of Type 2 Diabetes Mellitus

Author(s): Rossella Cianci*, Laura Franza, Maria Grazia Massaro, Raffaele Borriello, Antonio Tota, Maria Pallozzi, Francesco De Vito and Giovanni Gambassi

Volume 29, Issue 18, 2022

Published on: 14 February, 2022

Page: [3189 - 3201] Pages: 13

DOI: 10.2174/0929867329666220105121124

Price: $65

Abstract

Gut microbiota (GM) comprises more than one thousand microorganisms between bacterial species, viruses, fungi, and protozoa and represents the main actor of a wide net of molecular interactions, involving, among others, the endocrine system, immune responses, and metabolism. GM influences many endocrine functions, such as adrenal steroidogenesis, thyroid function, sexual hormones, IGF-1 pathway and peptides, produced in the gastrointestinal system. It is fundamental in glycaemic control and obesity, while also exerting an important function in modulating the immune system and associated inflammatory disease. The result of this crosstalk in gut mucosa is the formation of the intestinal immunological niche. Visceral adipose tissue (VAT) produces about 600 different peptides and it is involved in lipid and glucose metabolism, and some immune reactions, through several adipokines. GM and VAT interact in a bidirectional fashion: while gut dysbiosis can modify VAT adipokines and hormone secretion, VAT hyperplasia modifies GM composition. Acquired or genetic factors leading to gut dysbiosis or increasing VAT (i.e., Western diet) induce a pro-inflammatory condition, which plays a pivotal role in the development of dysmetabolic and immunologic conditions, such as diabetes mellitus. Diabetes is associated with specific patterns of GM alterations, an abundance or reduction of GM species involved in controlling mucosal barrier status, glycaemic levels and exerting a pro- or anti-inflammatory activity. All these factors could explain the higher incidence of several inflammatory conditions in Western countries; furthermore, besides the specific alterations observed in diabetes, this paradigm could represent a common pathway acting in many metabolic conditions and could pave the way to new, interesting therapeutic approaches.

Keywords: Type II diabetes mellitus, gut microbiota, adipose tissue, immunity, pathogenesis, inflammation diseases.

[1]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[2]
Schrijnders, D.; Hendriks, S.H.; Kleefstra, N.; Vissers, P.A.J.; Johnson, J.A. Sex differences in obesity related cancer incidence in relation to type 2 diabetes diagnosis (ZODIAC-49). PLOS One, 2018, 13(1), e0190870.
[3]
Aw, W.; Fukuda, S. Understanding the role of the gut ecosystem in diabetes mellitus. J. Diabetes Investig., 2018, 9(1), 5-12.
[http://dx.doi.org/10.1111/jdi.12673] [PMID: 28390093]
[4]
Haluzík, M.; Kratochvílová, H.; Haluzíková, D.; Mráz, M. Gut as an emerging organ for the treatment of diabetes: Focus on mechanism of action of bariatric and endoscopic interventions. J. Endocrinol., 2018, 237(1), R1-R17.
[http://dx.doi.org/10.1530/JOE-17-0438] [PMID: 29378901]
[5]
Vaarala, O.; Atkinson, M.A.; Neu, J. The “perfect storm” for type 1 diabetes: The complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes, 2008, 57(10), 2555-2562.
[http://dx.doi.org/10.2337/db08-0331] [PMID: 18820210]
[6]
Cammarota, G.; Ianiro, G.; Cianci, R.; Bibbò, S.; Gasbarrini, A.; Currò, D. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: Potential for therapy. Pharmacol. Ther., 2015, 149, 191-212.
[http://dx.doi.org/10.1016/j.pharmthera.2014.12.006] [PMID: 25561343]
[7]
Lopetuso, L.R.; Petito, V.; Graziani, C.; Schiavoni, E.; Paroni Sterbini, F.; Poscia, A.; Gaetani, E.; Franceschi, F.; Cammarota, G.; Sanguinetti, M.; Masucci, L.; Scaldaferri, F.; Gasbarrini, A. Gut microbiota in health, diverticular disease, irritable bowel syndrome, and inflammatory bowel diseases: Time for microbial marker of gastrointestinal disorders. Dig. Dis., 2018, 36(1), 56-65.
[http://dx.doi.org/10.1159/000477205] [PMID: 28683448]
[8]
Tilg, H.; Zmora, N.; Adolph, TE.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol., 2020 20 (1), 40-54. Epub 2019 Aug 6.
[http://dx.doi.org/10.1038/s41577-019-0198-4] [PMID: 31388093]
[9]
Targher, G.; Lonardo, A.; Byrne, C.D. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat. Rev. Endocrinol., 2018, 14(2), 99-114.
[http://dx.doi.org/10.1038/nrendo.2017.173] [PMID: 29286050]
[10]
Cianci, R.; Frosali, S. Uncomplicated diverticular disease: Innate and adaptive immunity in human gut mucosa before and after rifaximin. J. Immunol. Res., 2014, 2014, 696812.
[http://dx.doi.org/10.1155/2014/696812]
[11]
Pagliari, D.; Saviano, A.; Newton, E.E.; Serricchio, M.L.; Dal Lago, A.A.; Gasbarrini, A. Gut microbiota-immune system crosstalk and pancreatic disorders. Mediators Inflamm., 2018, 2018, 7946431.
[12]
Cox, L.M.; Weiner, H.L. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics, 2018, 15(1), 135-145.
[http://dx.doi.org/10.1007/s13311-017-0598-8] [PMID: 29340928]
[13]
Abdallah, F.; Mijouin, L.; Pichon, C. Skin immune landscape: inside and outside the organism. Mediators Inflamm., 2017, 2017, 5095293.
[14]
Budden, K.F.; Shukla, S.D.; Rehman, S.F.; Bowerman, K.L.; Keely, S., Hugenholtz, P.; Armstrong-James, D.P.H.; Adcock, I.M.; Chotirmall, S.H.; Chung, K.F.; Hansbro, P.M. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med.,2019 7(10), 907-920. Epub 2019 Apr 8.
[http://dx.doi.org/10.1016/S2213-2600(18)30510-1] [PMID: 30975495]
[15]
Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut. 2018, 67(1), 120-127.
[http://dx.doi.org/10.1136/gutjnl-2016-312580]
[16]
Cianci, R.; Franza, L.; Schinzari, G.; Rossi, E., Ianiro, G.; Tortora, G.; Gasbarrini, A.; Gambassi, G.; Cammarota, G. The interplay between immunity and microbiota at intestinal immunological niche: the case of cancer. Int. J. Mol. Sci., 2019, 20(3), 501.
[http://dx.doi.org/10.3390/ijms20030501] [PMID: 30682772]
[17]
Gori, S.; Inno, A.; Belluomini, L.; Bocus, P.; Bisoffi, Z.; Russo, A.; Arcaro, G. Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit. Rev. Oncol. Hematol.,2019 143, 139-147.
[http://dx.doi.org/10.1038/nrmicro.2018.12] [PMID: 29355853]
[18]
Pagliari, D.; Gambassi, G.; Piccirillo, C.A.; Cianci, R. The intricate link among gut “Immunological Niche,” microbiota, and xenobiotics in intestinal pathology. Mediators Inflamm., 2017, 2017, 8390595.
[http://dx.doi.org/10.1155/2017/8390595] [PMID: 31634731]
[19]
Hornef, M. Pathogens, commensal symbionts, and pathobionts: Discovery and functional effects on the host. ILAR J., 2015, 56(2), 159-162.
[http://dx.doi.org/10.1093/ilar/ilv007] [PMID: 26323625]
[20]
de Oliveira, G.L.V.; Leite, A.Z.; Higuchi, B.S.; Gonzaga, M.I.; Mariano, V.S. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology, 2017, 152(1), 1-12.
[http://dx.doi.org/10.1111/imm.12765] [PMID: 28556916]
[21]
Kåhrström, CT.; Pariente, N.; Weiss, U. Intestinal microbiota in health and disease. Nature,2016 , 535(7610), 47.
[http://dx.doi.org/10.1038/535047a] [PMID: 27383978]
[22]
Zeng, M.Y.; Inohara, N.; Nuñez, G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol., 2017, 10(1), 18-26.
[http://dx.doi.org/10.1038/mi.2016.75] [PMID: 27554295]
[23]
Al-Asmakh, M.; Zadjali, F. Use of germ-free animal models in microbiota-related research. J. Microbiol. Biotechnol., 2015, 25(10), 1583-1588.
[http://dx.doi.org/10.4014/jmb.1501.01039] [PMID: 26032361]
[24]
Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial endocrinology: The interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev., 2015, 39(4), 509-521.
[http://dx.doi.org/10.1093/femsre/fuu010] [PMID: 25701044]
[25]
Geurts, L.; Lazarevic, V.; Derrien, M.; Everard, A.; Van Roye, M.; Knauf, C.; Valet, P.; Girard, M.; Muccioli, G.G.; François, P.; de Vos, W.M.; Schrenzel, J.; Delzenne, N.M.; Cani, P.D. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: Impact on apelin regulation in adipose tissue. Front. Microbiol., 2011, 2, 149.
[http://dx.doi.org/10.3389/fmicb.2011.00149] [PMID: 21808634]
[26]
Gianchecchi, E.; Fierabracci, A. On the pathogenesis of insulin-dependent diabetes mellitus: The role of microbiota. Immunol. Res., 2017, 65(1), 242-256.
[http://dx.doi.org/10.1007/s12026-016-8832-8] [PMID: 27421719]
[27]
Pascale, A.; Marchesi, N.; Marelli, C.; Coppola, A.; Luzi, L.; Govoni, S.; Giustina, A.; Gazzaruso, C. Microbiota and metabolic diseases. Endocrine, 2018, 61(3), 357-371.
[http://dx.doi.org/10.1007/s12020-018-1605-5]
[28]
Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 diabetes and its impact on the immune system. Curr. Diabetes Rev., 2020, 16(5), 442-449.
[http://dx.doi.org/10.2174/1573399815666191024085838] [PMID: 31657690]
[29]
Prasad, M.; Chen, E.W.; Toh, S.A.; Gascoigne, N.R.J. Autoimmune responses and inflammation in type 2 diabetes. J. Leukoc. Biol., 2020, 107(5), 739-748.
[http://dx.doi.org/10.1002/JLB.3MR0220-243R]
[30]
Zefferino, R.; Di Gioia, S. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav., 2021, 11(2), e01960.
[http://dx.doi.org/10.1002/brb3.1960]
[31]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(Pt 1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[32]
Vagnerová, K.; Vodička, M.; Hermanová, P.; Ergang, P.; Šrůtková, D.; Klusoňová, P.; Balounová, K.; Hudcovic, T.; Pácha, J. Interactions between gut microbiota and acute restraint stress in peripheral structures of the hypothalamic-pituitary-adrenal axis and the intestine of male mice. Front. Immunol., 2019, 10, 2655.
[http://dx.doi.org/10.3389/fimmu.2019.02655] [PMID: 31798585]
[33]
Yurkovetskiy, L.; Burrows, M.; Khan, A.A.; Graham, L.; Volchkov, P.; Becker, L.; Antonopoulos, D.; Umesaki, Y.; Chervonsky, A.V. Gender bias in autoimmunity is influenced by microbiota. Immunity, 2013, 39(2), 400-412.
[http://dx.doi.org/10.1016/j.immuni.2013.08.013] [PMID: 23973225]
[34]
Sommer, F.; Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol., 2013, 11(4), 227-238.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[35]
Bilski, J.; Mazur-Bialy, A. Role of obesity, mesenteric adipose tissue, and adipokines in inflammatory bowel diseases. Biomolecules, 2019, 9(12), 780.
[36]
Neal, M.D.; Leaphart, C.; Levy, R.; Prince, J.; Billiar, T.R.; Watkins, S.; Li, J.; Cetin, S.; Ford, H.; Schreiber, A.; Hackam, D.J. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J. Immunol., 2006, 176(5), 3070-3079.
[http://dx.doi.org/10.4049/jimmunol.176.5.3070] [PMID: 16493066]
[37]
Amar, J.; Chabo, C.; Waget, A.; Klopp, P.; Vachoux, C.; Bermúdez-Humarán, L.G.; Smirnova, N.; Bergé, M.; Sulpice, T.; Lahtinen, S.; Ouwehand, A.; Langella, P.; Rautonen, N.; Sansonetti, P.J.; Burcelin, R. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol. Med., 2011, 3(9), 559-572.
[http://dx.doi.org/10.1002/emmm.201100159] [PMID: 21735552]
[38]
Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest., 2006, 116(11), 3015-3025.
[http://dx.doi.org/10.1172/JCI28898] [PMID: 17053832]
[39]
Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; Cazaubiel, J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 2011, 105(5), 755-764.
[http://dx.doi.org/10.1017/S0007114510004319] [PMID: 20974015]
[40]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[41]
Shimba, A.; Ikuta, K. Control of immunity by glucocorticoids in health and disease. Semin. Immunopathol., 2020, 42(6), 669-680.
[http://dx.doi.org/10.1007/s00281-020-00827-8]
[42]
Lupien-Meilleur, J.; Andrich, D.E.; Quinn, S.; Micaelli-Baret, C.; St-Amand, R.; Roy, D.; St-Pierre, D.H. Interplay between gut microbiota and gastrointestinal peptides: Potential outcomes on the regulation of glucose control. Can. J. Diabetes, 2020, 44(4), 359-367.
[http://dx.doi.org/10.1016/j.jcjd.2019.10.006] [PMID: 32057671]
[43]
Hira, T.; Ogasawara, S.; Yahagi, A.; Kamachi, M.; Li, J.; Nishimura, S.; Sakaino, M.; Yamashita, T.; Kishino, S.; Ogawa, J.; Hara, H. Novel mechanism of fatty acid sensing in enteroendocrine cells: Specific structures in oxo-fatty acids produced by gut bacteria are responsible for CCK secretion in stc-1 cells via GPR40. Mol. Nutr. Food Res., 2018, 62(19), e1800146.
[http://dx.doi.org/10.1002/mnfr.201800146] [PMID: 29938900]
[44]
Yan, J.; Charles, J.F. Gut microbiota and IGF-1. Calcif. Tissue Int., 2018, 102(4), 406-414.
[http://dx.doi.org/10.1007/s00223-018-0395-3]
[45]
Markle, J.G.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.; Macpherson, A.J.; Danska, J.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 2013, 339(6123), 1084-1088.
[http://dx.doi.org/10.1126/science.1233521] [PMID: 23328391]
[46]
Vemuri, R.; Sylvia, K.E.; Klein, S.L.; Forster, S.C.; Plebanski, M.; Eri, R.; Flanagan, K.L. The microgenderome revealed: Sex differences in bidirectional interactions between the microbiota, hormones, immunity and disease susceptibility. Semin. Immunopathol., 2019, 41(2), 265-275.
[http://dx.doi.org/10.1007/s00281-018-0716-7]
[47]
Paun, A.; Yau, C.; Danska, J.S. The influence of the microbiome on type 1 diabetes. J. Immunol. (Baltimore, MD 1950), 2017, 198(2), 590-595.
[48]
Semenkovich, C.F.; Danska, J.; Darsow, T.; Dunne, J.L.; Huttenhower, C.; Insel, R.A.; McElvaine, A.T.; Ratner, R.E.; Shuldiner, A.R.; Blaser, M.J. American diabetes association and jdrf research symposium: Diabetes and the microbiome. Diabetes, 2015, 64(12), 3967-3977.
[http://dx.doi.org/10.2337/db15-0597] [PMID: 26420863]
[49]
Jandhyala, S.M.; Madhulika, A.; Deepika, G.; Rao, G.V.; Reddy, D.N.; Subramanyam, C.; Sasikala, M.; Talukdar, R. Altered intestinal microbiota in patients with chronic pancreatitis: Implications in diabetes and metabolic abnormalities. Sci. Rep., 2017, 7(1), 43640.
[http://dx.doi.org/10.1038/srep43640] [PMID: 28255158]
[50]
Capurso, G.; Zerboni, G.; Signoretti, M.; Valente, R.; Stigliano, S.; Piciucchi, M.; Delle Fave, G. Role of the gut barrier in acute pancreatitis. J. Clin. Gastroenterol., 2012, 46(Suppl.), S46-S51.
[http://dx.doi.org/10.1097/MCG.0b013e3182652096] [PMID: 22955357]
[51]
Tan, C.; Ling, Z.; Huang, Y.; Cao, Y.; Liu, Q.; Cai, T.; Yuan, H.; Liu, C.; Li, Y.; Xu, K. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis. Pancreas, 2015, 44(6), 868-875.
[http://dx.doi.org/10.1097/MPA.0000000000000355] [PMID: 25931253]
[52]
Han, J.L.; Lin, H.L. Intestinal microbiota and type 2 diabetes: From mechanism insights to therapeutic perspective. World J. Gastroenterol., 2014, 20(47), 17737-17745.
[http://dx.doi.org/10.3748/wjg.v20.i47.17737] [PMID: 25548472]
[53]
Pekkala, S.; Munukka, E.; Kong, L.; Pöllänen, E.; Autio, R.; Roos, C.; Wiklund, P.; Fischer-Posovszky, P.; Wabitsch, M.; Alen, M.; Huovinen, P.; Cheng, S. Toll-like receptor 5 in obesity: The role of gut microbiota and adipose tissue inflammation. Obesity (Silver Spring), 2015, 23(3), 581-590.
[http://dx.doi.org/10.1002/oby.20993] [PMID: 25611816]
[54]
Stojanović, O.; Trajkovski, M. Microbiota guides insulin trafficking in beta cells. Cell Res., 2019, 29(8), 603-604.
[http://dx.doi.org/10.1038/s41422-019-0200-5] [PMID: 31267016]
[55]
Belizário, J.E.; Faintuch, J. Microbiome and gut dysbiosis. Experientia Suppl., 2018, 109(109), 459-476.
[http://dx.doi.org/10.1007/978-3-319-74932-7_13] [PMID: 30535609]
[56]
Brown, E.M.; Sadarangani, M.; Finlay, B.B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol., 2013, 14(7), 660-667.
[http://dx.doi.org/10.1038/ni.2611] [PMID: 23778793]
[57]
Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol., 2009, 9(5), 313-323.
[http://dx.doi.org/10.1038/nri2515] [PMID: 19343057]
[58]
Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science, 2012, 336(6086), 1268-1273.
[http://dx.doi.org/10.1126/science.1223490] [PMID: 22674334]
[59]
Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535(7610), 75-84.
[http://dx.doi.org/10.1038/nature18848] [PMID: 27383982]
[60]
Prince, B.T.; Mandel, M.J.; Nadeau, K.; Singh, A.M. Gut microbiome and the development of food allergy and allergic disease. Pediatr. Clin. North Am., 2015, 62(6), 1479-1492.
[http://dx.doi.org/10.1016/j.pcl.2015.07.007] [PMID: 26456445]
[61]
Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol., 2013, 13(11), 790-801.
[http://dx.doi.org/10.1038/nri3535] [PMID: 24096337]
[62]
Ubeda, C.; Djukovic, A.; Isaac, S. Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunol., 2017, 6(2), e128.
[http://dx.doi.org/10.1038/cti.2017.2] [PMID: 28243438]
[63]
van den Elsen, L.W.; Poyntz, H.C.; Weyrich, L.S.; Young, W.; Forbes-Blom, E.E. Embracing the gut microbiota: The new frontier for inflammatory and infectious diseases. Clin. Transl. Immunol., 2017, 6(1), e125.
[http://dx.doi.org/10.1038/cti.2016.91] [PMID: 28197336]
[64]
McKenney, P.T.; Pamer, E.G. From hype to hope: The gut microbiota in enteric infectious disease. Cell, 2015, 163(6), 1326-1332.
[http://dx.doi.org/10.1016/j.cell.2015.11.032] [PMID: 26638069]
[65]
Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[66]
Tanase, D.M.; Gosav, E.M.; Neculae, E.; Costea, C.F.; Ciocoiu, M.; Hurjui, L.L.; Tarniceriu, C.C.; Maranduca, M.A.; Lacatusu, C.M.; Floria, M.; Serban, I.L. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients, 2020, 12(12), 3719.
[http://dx.doi.org/10.3390/nu12123719] [PMID: 33276482]
[67]
Pollak, M. The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia, 2017, 60(9), 1662-1667.
[http://dx.doi.org/10.1007/s00125-017-4352-x] [PMID: 28770326]
[68]
Zhang, M.; Feng, R.; Yang, M.; Qian, C.; Wang, Z.; Liu, W.; Ma, J. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Res. Care, 2019, 7(1), e000717.
[http://dx.doi.org/10.1136/bmjdrc-2019-000717]
[69]
Tanaka, H.; Yoshida, S.; Minoura, H.; Negoro, K.; Shimaya, A.; Shimokawa, T.; Shibasaki, M. Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Life Sci., 2014, 94(2), 115-121.
[http://dx.doi.org/10.1016/j.lfs.2013.11.010] [PMID: 24269216]
[70]
Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology, 2017, 152(7), 1671-1678.
[http://dx.doi.org/10.1053/j.gastro.2016.12.048] [PMID: 28192102]
[71]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[72]
Tilg, H. Obesity, metabolic syndrome, and microbiota: Multiple interactions. J. Clin. Gastroenterol., 2010, 44(Suppl. 1), S16-S18.
[http://dx.doi.org/10.1097/MCG.0b013e3181dd8b64] [PMID: 20535027]
[73]
Finucane, M.M.; Sharpton, T.J.; Laurent, T.J.; Pollard, K.S. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One, 2014, 9(1), e84689.
[http://dx.doi.org/10.1371/journal.pone.0084689] [PMID: 24416266]
[74]
Kameyama, K.; Itoh, K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ., 2014, 29(4), 427-430.
[http://dx.doi.org/10.1264/jsme2.ME14054] [PMID: 25283478]
[75]
Kieler, I.N.; Osto, M.; Hugentobler, L.; Puetz, L. Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Sci. Reports, 2019, 9(1), 4822.
[http://dx.doi.org/10.1038/s41598-019-41195-0]
[76]
Ohtsu, A.; Takeuchi, Y.; Katagiri, S.; Suda, W.; Maekawa, S.; Shiba, T.; Komazaki, R.; Udagawa, S.; Sasaki, N.; Hattori, M.; Izumi, Y. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis., 2019, 25(3), 868-880.
[http://dx.doi.org/10.1111/odi.13044] [PMID: 30667148]
[77]
Eid, H.M.; Wright, M.L.; Anil Kumar, N.V.; Qawasmeh, A.; Hassan, S.T.S.; Mocan, A.; Nabavi, S.M.; Rastrelli, L.; Atanasov, A.G.; Haddad, P.S. Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Front. Pharmacol., 2017, 8, 387.
[http://dx.doi.org/10.3389/fphar.2017.00387] [PMID: 28713266]
[78]
Liu, Y.; Lou, X. Type 2 diabetes mellitus-related environmental factors and the gut microbiota: Emerging evidence and challenges. Clinics (Sao Paulo), 2020, 75, e1277.
[http://dx.doi.org/10.6061/clinics/2020/e1277]
[79]
Segata, N. Gut microbiome: Westernization and the disappearance of intestinal diversity. Curr. Biol., 2015, 25(14), R611-R613.
[http://dx.doi.org/10.1016/j.cub.2015.05.040] [PMID: 26196489]
[80]
Koh, A.; De Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 2016, 165(6), 1332-1345.
[http://dx.doi.org/10.1016/j.cell.2016.05.041] [PMID: 27259147]
[81]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y]
[82]
Raisch, J.; Dalmasso, G.; Bonnet, R.; Barnich, N.; Bonnet, M.; Bringer, M.A. How some commensal bacteria would exacerbate colorectal carcinogenesis? Med. Sci. (Paris), 2016, 32(2), 175-182.
[http://dx.doi.org/10.1051/medsci/20163202011] [PMID: 26936175]
[83]
Wexler, A.G.; Goodman, A.L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol., 2017, 2, 17026.
[http://dx.doi.org/10.1038/nmicrobiol.2017.26] [PMID: 28440278]
[84]
Xia, F.; Wen, L.P.; Ge, B.C.; Li, Y.X.; Li, F.P.; Zhou, B.J. Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World J. Diabetes, 2021, 12(8), 1146-1163.
[http://dx.doi.org/10.4239/wjd.v12.i8.1146] [PMID: 34512884]
[85]
Jiang, Z.; Sun, T.Y.; He, Y.; Gou, W.; Zuo, L.S.; Fu, Y.; Miao, Z.; Shuai, M.; Xu, F.; Xiao, C.; Liang, Y.; Wang, J.; Xu, Y.; Jing, L.P.; Ling, W.; Zhou, H.; Chen, Y.M.; Zheng, J.S. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: Results from two large human cohort studies. BMC Med., 2020, 18(1), 371.
[http://dx.doi.org/10.1186/s12916-020-01842-0]
[86]
Salgaço, M.K.; Oliveira, L.G.S.; Costa, G.N.; Bianchi, F.; Sivieri, K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl. Microbiol. Biotechnol., 2019, 103(23-24), 9229-9238.
[http://dx.doi.org/10.1007/s00253-019-10156-y]
[87]
Mokkala, K.; Houttu, N.; Vahlberg, T.; Munukka, E.; Rönnemaa, T.; Laitinen, K. Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol., 2017, 54(12), 1147-1149.
[http://dx.doi.org/10.1007/s00592-017-1056-0] [PMID: 28980079]
[88]
Geurts, L.; Neyrinck, A.M.; Delzenne, N.M.; Knauf, C.; Cani, P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes, 2014, 5(1), 3-17.
[http://dx.doi.org/10.3920/BM2012.0065] [PMID: 23886976]
[89]
Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered gut microbiota in type 2 diabetes: Just a Coincidence? Curr. Diab. Rep., 2018, 18(10), 98.
[http://dx.doi.org/10.1007/s11892-018-1057-6] [PMID: 30215149]
[90]
Taira, R.; Yamaguchi, S.; Shimizu, K.; Nakamura, K.; Ayabe, T.; Taira, T. Bacterial cell wall components regulate adipokine secretion from visceral adipocytes. J. Clin. Biochem. Nutr., 2015, 56(2), 149-154.
[http://dx.doi.org/10.3164/jcbn.14-74] [PMID: 25759521]
[91]
Gaspar, R.C.; Pauli, J.R.; Shulman, G.I. An update on brown adipose tissue biology: A discussion of recent findings. Am. J. Physiol. Endocrinol. Metab., 2021, 320(3), E488-e495.
[http://dx.doi.org/10.1152/ajpendo.00310.2020]
[92]
Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev., 2010, 11(1), 11-18.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00623.x] [PMID: 19656312]
[93]
González, N.; Moreno-Villegas, Z.; González-Bris, A.; Egido, J.; Lorenzo, Ó. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc. Diabetol., 2017, 16(1), 44.
[http://dx.doi.org/10.1186/s12933-017-0528-4]
[94]
Le Jemtel, T.H.; Samson, R.; Milligan, G.; Jaiswal, A.; Oparil, S. Visceral adipose tissue accumulation and residual cardiovascular risk. Curr. Hypertens. Rep., 2018, 20(9), 77.
[http://dx.doi.org/10.1007/s11906-018-0880-0] [PMID: 29992362]
[95]
Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol., 2017, 13(11), 633-643.
[http://dx.doi.org/10.1038/nrendo.2017.90] [PMID: 28799554]
[96]
Yadav, A.; Kataria, M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. Clin. Chim. Acta, 2013, 417(80), 84.
[97]
Bienertova-Vasku, J.; Vinciguerra, M. Adipokines as biomarkers in health and disease. Dis. Markers, 2018, 2018, 5696815.
[98]
Alvarez-Guaita, A.; Patel, S.; Lim, K.; Haider, A.; Dong, L.; Conway, O.J.; Ma, M.K.L.; Chiarugi, D.; Saudek, V.; O’Rahilly, S.; Savage, D.B. Phenotypic characterization of Adig null mice suggests roles for adipogenin in the regulation of fat mass accrual and leptin secretion. Cell Rep., 2021, 34(10), 108810.
[http://dx.doi.org/10.1016/j.celrep.2021.108810] [PMID: 33691105]
[99]
Grases-Pintó, B.; Abril-Gil, M.; Castell, M.; Rodríguez-Lagunas, M.J.; Burleigh, S.; Fåk Hållenius, F.; Prykhodko, O.; Pérez-Cano, F.J.; Franch, À. Influence of leptin and adiponectin supplementation on intraepithelial lymphocyte and microbiota composition in suckling rats. Front. Immunol., 2019, 10, 2369.
[http://dx.doi.org/10.3389/fimmu.2019.02369] [PMID: 31708912]
[100]
Batra, A.; Okur, B.; Glauben, R.; Erben, U.; Ihbe, J.; Stroh, T.; Fedke, I.; Chang, H.D.; Zeitz, M.; Siegmund, B. Leptin: A critical regulator of CD4+ T-cell polarization in vitro and in vivo. Endocrinology, 2010, 151(1), 56-62.
[http://dx.doi.org/10.1210/en.2009-0565] [PMID: 19966187]
[101]
Fantuzzi, G.; Faggioni, R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol., 2000, 68(4), 437-446.
[PMID: 11037963]
[102]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[103]
Fantuzzi, G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine, 2013, 64(1), 1-10.
[http://dx.doi.org/10.1016/j.cyto.2013.06.317] [PMID: 23850004]
[104]
Suriano, F.; Van Hul, M.; Cani, P.D. Gut microbiota and regulation of myokine-adipokine function. Curr. Opin. Pharmacol., 2020, 52, 9-17.
[http://dx.doi.org/10.1016/j.coph.2020.03.006] [PMID: 32388413]
[105]
Patterson, E.; Ryan, P.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Gut microbiota, obesity and diabetes. Postgrad. Med. J., 2016, 92(1087), 286-300.
[http://dx.doi.org/10.1136/postgradmedj-2015-133285] [PMID: 26912499]
[106]
Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10), 577-591.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[107]
Hu, J.; Kyrou, I.; Tan, B.K.; Dimitriadis, G.K.; Ramanjaneya, M.; Tripathi, G.; Patel, V.; James, S.; Kawan, M.; Chen, J.; Randeva, H.S. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via gpr43 in brown adipocytes. Endocrinology, 2016, 157(5), 1881-1894.
[http://dx.doi.org/10.1210/en.2015-1944] [PMID: 26990063]
[108]
Heiss, C.N.; Olofsson, L.E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun., 2018, 10(3), 163-171.
[http://dx.doi.org/10.1159/000481519] [PMID: 29131106]
[109]
Saad, M.J.; Santos, A.; Prada, P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda), 2016, 31(4), 283-293.
[http://dx.doi.org/10.1152/physiol.00041.2015] [PMID: 27252163]
[110]
Balakumar, M.; Prabhu, D.; Sathishkumar, C.; Prabu, P.; Rokana, N.; Kumar, R.; Raghavan, S.; Soundarajan, A.; Grover, S.; Batish, V.K.; Mohan, V.; Balasubramanyam, M. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur. J. Nutr., 2018, 57(1), 279-295.
[http://dx.doi.org/10.1007/s00394-016-1317-7] [PMID: 27757592]
[111]
Guadagnini, D.; Rocha, G.Z.; Santos, A.; Assalin, H.B.; Hirabara, S.M.; Curi, R.; Oliveira, A.G.; Prada, P.O.; Saad, M.J.A. Microbiota determines insulin sensitivity in TLR2-KO mice. Life Sci., 2019, 234, 116793.
[http://dx.doi.org/10.1016/j.lfs.2019.116793] [PMID: 31465735]
[112]
Caesar, R. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Can. J. Diabetes, 2019, 43(3), 224-231.
[http://dx.doi.org/10.1016/j.jcjd.2019.01.007] [PMID: 30929665]
[113]
Zhang, C.; Ma, S.; Wu, J.; Luo, L.; Qiao, S.; Li, R.; Xu, W.; Wang, N.; Zhao, B.; Wang, X.; Zhang, Y.; Wang, X. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacol. Res., 2020, 159, 104985.
[http://dx.doi.org/10.1016/j.phrs.2020.104985] [PMID: 32504839]
[114]
Vallianou, N.G.; Stratigou, T.; Tsagarakis, S. Metformin and gut microbiota: Their interactions and their impact on diabetes. Hormones (Athens), 2019, 18(2), 141-144.
[http://dx.doi.org/10.1007/s42000-019-00093-w] [PMID: 30719628]
[115]
He, C.; Shan, Y.; Song, W. Targeting gut microbiota as a possible therapy for diabetes. Nutr. Res., 2015, 35(5), 361-367.
[http://dx.doi.org/10.1016/j.nutres.2015.03.002] [PMID: 25818484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy