Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

The Chance of COVID-19 Infection after Vaccination

Author(s): Ghazaleh Khalili-Tanha, Majid Khazaei, Saman Soleimanpour, Gordon A Ferns and Amir Avan*

Volume 22, Issue 3, 2022

Published on: 07 February, 2022

Article ID: e050122199980 Pages: 6

DOI: 10.2174/1871526522666220105113829

Price: $65

Abstract

The outbreak of COVID-19 that was first reported in Wuhan, China, has constituted a new emerging epidemic that has spread around the world. There are some reports illustrating the patients getting re-infected after recovering from COVID-19. Here, we provide an overview of the biphasic cycle of COVID-19, genetic diversity, immune response, and a chance of reinfection after recovering from COVID-19. The new generation of COVID-19 is a highly contagious and pathogenic infection that can lead to acute respiratory distress syndrome. Whilst most patients suffer from a mild form of the disease, there is a rising concern that patients who recover from COVID-19 may be at risk of reinfection. The proportion of the infected population is increasing worldwide; meanwhile, the rate and concern of reinfection by the recovered population are still high. Moreover, there is little evidence on the chance of COVID-19 infection even after vaccination, which is around one percent or less. Although the hypothesis of zero reinfections after vaccination has not been clinically proven, further studies should be performed on the recovered class in clusters to study the progression of the exposure with the re-exposed subpopulations to estimate the possibilities of reinfection and, thereby, advocate the use of these antibodies for vaccine creation.

Keywords: COVID-19, reinfection, recovered patients, biphasic cycle, genetic diversity, immune response, new epidemic.

[1]
Jiang S, Shi Z, Shu Y, et al. A distinct name is needed for the new coronavirus. Lancet 2020; 395(10228): 949.
[http://dx.doi.org/10.1016/S0140-6736(20)30419-0] [PMID: 32087125]
[2]
Hui DSI. I Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020; 91: 264-6.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[3]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[4]
Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5(1): 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[5]
Surveillances V. The novel coronavirus pneumonia emergency response epidemiology team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)-China, 2020. China CDC Weekly 2020; 2(8): 113-22.
[http://dx.doi.org/10.46234/ccdcw2020.032] [PMID: 34594836]
[6]
World Health Organization. WHO coronavirus disease (COVID-19) dashboard. 2020. Available from: https://covid19.who.int/
[7]
World Health Organization. WHO Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. Available from: https://reliefweb.int/report/china/report-who-china-joint-mission-coronavirus-disease-2019-covid-19
[8]
Lan L, Xu D, Ye G, Xia C, Wang S, Li Y. Positive RT-PCR test results in patients recovered from COVID-19. JAMA 2020; 323(15): 1502-3.
[9]
Pan F, Ye T, Sun P, Gui S, Liang B, Li L. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology 2020; 200370.
[10]
Tillett RL, Sevinsky JR, Hartley PD, et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis 2021; 21(1): 52-8.
[http://dx.doi.org/10.1016/S1473-3099(20)30764-7] [PMID: 33058797]
[11]
To KK-W, Hung IF-N, Ip JD, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis 2020; ciaa1275.
[PMID: 32840608]
[12]
Van Elslande J, Vermeersch P, Vandervoort K, Wawina-Bokalanga T, Vanmechelen B, Wollants E. Symptomatic SARS-CoV-2 reinfection by a phylogenetically distinct strain. Clin Infect Dis 2021; 73(2): 354-6.
[PMID: 32887979]
[13]
Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, et al. COVID-19 reinfection by a phylogenetically distinct SARS-CoV-2 variant, first confirmed event in South America. 2020. Available at: http://dx.doi.org/10.2139/ssrm.3686174
[14]
Phan T. Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol 2020; 81: 104260.
[http://dx.doi.org/10.1016/j.meegid.2020.104260] [PMID: 32092483]
[15]
Guo J, Yu Z, Das M, Huang L. Nano codelivery of oxaliplatin and folinic acid achieves synergistic chemo-immunotherapy with 5-fluorouracil for colorectal cancer and liver metastasis. ACS Nano 2020; 14(4): 5075-89.
[http://dx.doi.org/10.1021/acsnano.0c01676] [PMID: 32283007]
[16]
Lescure F-X, Bouadma L, Nguyen D, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect Dis 2020; 20(6): 697-706.
[http://dx.doi.org/10.1016/S1473-3099(20)30200-0] [PMID: 32224310]
[17]
Chan PK, To KF, Lo AW, et al. Persistent infection of SARS coronavirus in colonic cells in vitro. J Med Virol 2004; 74(1): 1-7.
[http://dx.doi.org/10.1002/jmv.20138] [PMID: 15258961]
[18]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[19]
Skowronski DM, Astell C, Brunham RC, et al. Severe acute respiratory syndrome (SARS): a year in review. Annu Rev Med 2005; 56: 357-81.
[http://dx.doi.org/10.1146/annurev.med.56.091103.134135] [PMID: 15660517]
[20]
Palacios GF, Jabado OJ, Briese T, Renwick N, Lipkin WI. Severe acute respiratory syndrome coronavirus persistence in Vero cells. Chinease Med J 2005; 118(6): 457-9.
[21]
Schindell BG, Webb AL, Kindrachuk J. Persistence and sexual transmission of filoviruses. Viruses 2018; 10(12): 683.
[http://dx.doi.org/10.3390/v10120683] [PMID: 30513823]
[22]
Lin W-HW, Kouyos RD, Adams RJ, Grenfell BT, Griffin DE. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc Natl Acad Sci USA 2012; 109(37): 14989-94.
[http://dx.doi.org/10.1073/pnas.1211138109] [PMID: 22872860]
[23]
Paz-Bailey G, Rosenberg ES, Doyle K, et al. Persistence of Zika virus in body fluids. N Engl J Med 2017; 379(13): 1234-43.
[http://dx.doi.org/10.1056/NEJMoa1613108] [PMID: 28195756]
[24]
Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020; 172(9): 577-82.
[http://dx.doi.org/10.7326/M20-0504] [PMID: 32150748]
[25]
Phan T. Novel coronavirus: from discovery to clinical diagnostics. Infect Genet Evol 2020; 79: 104211.
[http://dx.doi.org/10.1016/j.meegid.2020.104211] [PMID: 32007627]
[26]
Keck JG, Makino S, Soe LH, Fleming JO, Stohlman SA, Lai MM. RNA recombination of coronavirus Coronaviruses. Springer 1987; pp. 99-107.
[27]
Lee J-S, Kim SY, Kim TS, et al. Evidence of severe acute respiratory syndrome coronavirus 2 reinfection after recovery from mild coronavirus disease 2019. Clin Infect Dis 2020; ciaa1421.
[PMID: 33219681]
[28]
To KK-W, Hung IF-N, Ip JD, Chu AW-H, Chan W-M, Tam AR. Coronavirus disease 2019 (COVID-19) re-infection by a phylogenetically distinct severe acute respiratory syndrome coronavirus 2 strain confirmed by whole genome sequencing. Clin Infect Dis 2021; 73(9): e2946-51.
[http://dx.doi.org/10.1093/cid/ciaa1275]
[29]
Selhorst P, Van Ierssel S, Michiels J, et al. Symptomatic SARS-CoV-2 re-infection of a health care worker in a Belgian nosocomial outbreak despite primary neutralizing antibody response. Clin Infect Dis 2021; 73(9): e2985-91.
[30]
Agoti CN, Mwihuri AG, Sande CJ, et al. Genetic relatedness of infecting and reinfecting respiratory syncytial virus strains identified in a birth cohort from rural Kenya. J Infect Dis 2012; 206(10): 1532-41.
[http://dx.doi.org/10.1093/infdis/jis570] [PMID: 22966119]
[31]
Kim D-W, Kim Y-J, Park SH, et al. Variations in spike glycoprotein gene of MERS-CoV, South Korea, 2015. Emerg Infect Dis 2016; 22(1): 100-4.
[http://dx.doi.org/10.3201/eid2201.151055] [PMID: 26691200]
[32]
Assiri AM, Midgley CM, Abedi GR, et al. Epidemiology of a novel recombinant Middle East respiratory syndrome coronavirus in humans in Saudi Arabia. J Infect Dis 2016; 214(5): 712-21.
[http://dx.doi.org/10.1093/infdis/jiw236] [PMID: 27302191]
[33]
Sohrab SS, Azhar EI. Genetic diversity of MERS-CoV spike protein gene in Saudi Arabia. J Infect Public Health 2020; 13(5): 709-17.
[PMID: 31831395]
[34]
Chu DKW, Hui KPY, Perera RAPM, et al. MERS coronaviruses from camels in Africa exhibit region-dependent genetic diversity. Proc Natl Acad Sci USA 2018; 115(12): 3144-9.
[http://dx.doi.org/10.1073/pnas.1718769115] [PMID: 29507189]
[35]
Rosendahl HS, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol 2014; 5: 171.
[http://dx.doi.org/10.3389/fimmu.2014.00171] [PMID: 24795718]
[36]
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122(8): 2731-40.
[http://dx.doi.org/10.1172/JCI60331] [PMID: 22850883]
[37]
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID19). medRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.18.20024364]
[38]
Wan Y, Shang J, Sun S, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 2020; 94(5): e02015-9.
[http://dx.doi.org/10.1128/JVI.02015-19] [PMID: 31826992]
[39]
Yip MS, Leung NHL, Cheung CY, et al. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol J 2014; 11(1): 82.
[http://dx.doi.org/10.1186/1743-422X-11-82] [PMID: 24885320]
[40]
Martins IJ. Increased risk for obesity and diabetes with neurodegeneration in developing countries. J Mol Gen Med 2013; 51: 001.
[41]
Martins IJ. Sirtuin 1, a diagnostic protein marker and its relevance to chronic disease and therapeutic drug interventions. EC Pharmacol Toxicol 2018; 6(4): 209-15.
[42]
Bartoli-Leonard F, Wilkinson FL, Schiro A, Serracino IF, Alexander MY, Weston R. Loss of SIRT1 in diabetes accelerates DNA damage-induced vascular calcification. Cardiovasc Res 2021; 117(3): 836-49.
[http://dx.doi.org/10.1093/cvr/cvaa134] [PMID: 32402066]
[43]
Pyun DH, Kim TJ, Park SY, et al. Patchouli alcohol ameliorates skeletal muscle insulin resistance and NAFLD via AMPK/SIRT1-mediated suppression of inflammation. Mol Cell Endocrinol 2021; 538: 111464.
[http://dx.doi.org/10.1016/j.mce.2021.111464] [PMID: 34601002]
[44]
Wang L, Zheng D, Liu L, et al. Relationship between SIRT1 gene and adolescent depressive disorder with nonsuicidal self-injury behavior: based on gene methylation and mRNA expression. Medicine 2021; 100(31): e26747.
[http://dx.doi.org/10.1097/MD.0000000000026747] [PMID: 34397817]
[45]
Martins IJ. Biotherapy and the immune system in ageing science. Acta Scientific Nutritional Health 2018; 2(4): 29-31.
[46]
Sequeira J, Boily G, Bazinet S, et al. sirt1-null mice develop an autoimmune-like condition. Exp Cell Res 2008; 314(16): 3069-74.
[http://dx.doi.org/10.1016/j.yexcr.2008.07.011] [PMID: 18687325]
[47]
Bordoni V, Tartaglia E, Sacchi A, et al. The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients. Int J Infect Dis 2021; 105: 49-53.
[http://dx.doi.org/10.1016/j.ijid.2021.02.019] [PMID: 33578018]
[48]
Horrigan LA, Kelly JP, Connor TJ. Immunomodulatory effects of caffeine: friend or foe? Pharmacol Ther 2006; 111(3): 877-92.
[http://dx.doi.org/10.1016/j.pharmthera.2006.02.002] [PMID: 16540173]
[49]
Martins IJ. Caffeine with links to NAFLD and accelerated brain aging. In: Baez RV, Ed. Non-Alcoholic Fatty Liver Disease: Molecular Bases, Prevention and Treatment. USA: In-Tech 2017; pp. 155-79.
[50]
Martins IJ. Food intake and caffeine determine amyloid beta metabolism with relevance to mitophagy in brain aging and chronic disease. Eur J Food Sci Technol 2016; 4(5): 11-7.
[51]
Hacisuleyman E, Hale C, Saito Y, et al. Vaccine breakthrough infections with SARS-CoV-2 variants. N Engl J Med 2021; 384(23): 2212-8.
[http://dx.doi.org/10.1056/NEJMoa2105000] [PMID: 33882219]
[52]
Lange B, Gerigk M, Tenenbaum T. Breakthrough infections in BNT162b2-vaccinated health care workers. N Engl J Med 2021; 385(12): 1145-6.
[http://dx.doi.org/10.1056/NEJMc2108076] [PMID: 34407332]
[53]
Keehner J, Horton LE, Pfeffer MA, et al. SARS-CoV-2 infection after vaccination in health care workers in California. N Engl J Med 2021; 384(18): 1774-5.
[http://dx.doi.org/10.1056/NEJMc2101927] [PMID: 33755376]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy