[1]
Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem., 2020, 63(15), 7923-7956.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01245] [PMID: 32208685]
[http://dx.doi.org/10.1021/acs.jmedchem.9b01245] [PMID: 32208685]
[2]
Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol., 2003, 57, 677-701.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090720] [PMID: 14527295]
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090720] [PMID: 14527295]
[3]
Chatterjee, S.; Maiti, P.; Dey, R.; Kundu, A.; Dey, R. Biofilms on indwelling urologic devices: Microbes and antimicrobial management prospect. Ann. Med. Health Sci. Res., 2014, 4(1), 100-104.
[http://dx.doi.org/10.4103/2141-9248.126612] [PMID: 24669340]
[http://dx.doi.org/10.4103/2141-9248.126612] [PMID: 24669340]
[4]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284(5418), 1318-1322.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[5]
Poddighe, D.; Vangelista, L. Staphylococcus aureus infection and persistence in chronic rhinosinusitis: Focus on leukocidin ED. Toxins (Basel), 2020, 12(11), 678.
[http://dx.doi.org/10.3390/toxins12110678] [PMID: 33126405]
[http://dx.doi.org/10.3390/toxins12110678] [PMID: 33126405]
[6]
Ramakrishnan, Y.; Shields, R.C.; Elbadawey, M.R.; Wilson, J.A. Biofilms in chronic rhinosinusitis: What is new and where next? J. Laryngol. Otol., 2015, 129(8), 744-751.
[http://dx.doi.org/10.1017/S0022215115001620] [PMID: 26120023]
[http://dx.doi.org/10.1017/S0022215115001620] [PMID: 26120023]
[7]
Parrino, B.; Schillaci, D.; Carnevale, I.; Giovannetti, E.; Diana, P.; Cirrincione, G.; Cascioferro, S. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur. J. Med. Chem., 2019, 161, 154-178.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.036] [PMID: 30347328]
[http://dx.doi.org/10.1016/j.ejmech.2018.10.036] [PMID: 30347328]
[8]
Parrino, B.; Carbone, D.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Deng, D.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cusimano, M.G.; Schillaci, D.; Cirrincione, G.; Diana, P. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur. J. Med. Chem., 2021, 209, 112892.
[http://dx.doi.org/10.1016/j.ejmech.2020.112892] [PMID: 33035921]
[http://dx.doi.org/10.1016/j.ejmech.2020.112892] [PMID: 33035921]
[9]
Cascioferro, S.; Parrino, B.; Petri, G.L.; Cusimano, M.G.; Schillaci, D.; Di Sarno, V.; Musella, S.; Giovannetti, E.; Cirrincione, G.; Diana, P. 2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors. Eur. J. Med. Chem., 2019, 167, 200-210.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.007] [PMID: 30772604]
[http://dx.doi.org/10.1016/j.ejmech.2019.02.007] [PMID: 30772604]
[10]
Cascioferro, S.; Parrino, B.; Carbone, D.; Pecoraro, C.; Diana, P. Novel strategies in the war against antibiotic resistance. Future Med. Chem., 2021, 13(6), 529-531.
[http://dx.doi.org/10.4155/fmc-2021-0009] [PMID: 33467930]
[http://dx.doi.org/10.4155/fmc-2021-0009] [PMID: 33467930]
[11]
Parrino, B.; Carbone, D.; Cirrincione, G.; Diana, P.; Cascioferro, S. Inhibitors of antibiotic resistance mechanisms: Clinical applications and future perspectives. Future Med. Chem., 2020, 12(5), 357-359.
[http://dx.doi.org/10.4155/fmc-2019-0326] [PMID: 32027174]
[http://dx.doi.org/10.4155/fmc-2019-0326] [PMID: 32027174]
[12]
Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev., 2012, 25(3), 450-470.
[http://dx.doi.org/10.1128/CMR.05041-11] [PMID: 22763634]
[http://dx.doi.org/10.1128/CMR.05041-11] [PMID: 22763634]
[13]
Žiemytė, M.; Carda-Diéguez, M.; Rodríguez-Díaz, J.C.; Ventero, M.P.; Mira, A.; Ferrer, M.D. Real-time monitoring of Pseudomonas aeruginosa biofilm growth dynamics and persister cells’ eradication. Emerg. Microbes Infect., 2021, 10(1), 2062-2075.
[http://dx.doi.org/10.1080/22221751.2021.1994355] [PMID: 34663186]
[http://dx.doi.org/10.1080/22221751.2021.1994355] [PMID: 34663186]
[14]
Miyaue, S.; Suzuki, E.; Komiyama, Y.; Kondo, Y.; Morikawa, M.; Maeda, S. Bacterial memory of persisters: Bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony-biofilm culture. Front. Microbiol., 2018, 9, 1396.
[http://dx.doi.org/10.3389/fmicb.2018.01396] [PMID: 29997606]
[http://dx.doi.org/10.3389/fmicb.2018.01396] [PMID: 29997606]
[15]
Verderosa, A.D.; Totsika, M.; Fairfull-Smith, K.E. Bacterial biofilm eradication agents: A current review. Front Chem., 2019, 7, 824.
[http://dx.doi.org/10.3389/fchem.2019.00824] [PMID: 31850313]
[http://dx.doi.org/10.3389/fchem.2019.00824] [PMID: 31850313]
[16]
Wood, T.K.; Knabel, S.J.; Kwan, B.W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol., 2013, 79(23), 7116-7121.
[http://dx.doi.org/10.1128/AEM.02636-13] [PMID: 24038684]
[http://dx.doi.org/10.1128/AEM.02636-13] [PMID: 24038684]
[17]
Bechinger, B.; Gorr, S-U. Antimicrobial peptides: Mechanisms of action and resistance. J. Dent. Res., 2017, 96(3), 254-260.
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[http://dx.doi.org/10.1177/0022034516679973] [PMID: 27872334]
[18]
Yendewa, G.A.; Griffiss, J.M.; Jacobs, M.R.; Fulton, S.A.; O’Riordan, M.A.; Gray, W.A.; Proskin, H.M.; Winkle, P.; Salata, R.A. A two-part phase 1 study to establish and compare the safety and local tolerability of two nasal formulations of XF-73 for decolonisation of Staphylococcus aureus: A previously investigated 0.5mg/g viscosified gel formulation versus a modified formulation. J. Glob. Antimicrob. Resist., 2020, 21, 171-180.
[http://dx.doi.org/10.1016/j.jgar.2019.09.017] [PMID: 31600598]
[http://dx.doi.org/10.1016/j.jgar.2019.09.017] [PMID: 31600598]
[19]
Yuan, M.; Chua, S.L.; Liu, Y.; Drautz-Moses, D.I.; Yam, J.K.H.; Aung, T.T.; Beuerman, R.W.; Salido, M.M.S.; Schuster, S.C.; Tan, C-H.; Givskov, M.; Yang, L.; Nielsen, T.E. Repurposing the anticancer drug cisplatin with the aim of developing novel Pseudomonas aeruginosa infection control agents. Beilstein J. Org. Chem., 2018, 14, 3059-3069.
[http://dx.doi.org/10.3762/bjoc.14.284] [PMID: 30591828]
[http://dx.doi.org/10.3762/bjoc.14.284] [PMID: 30591828]