Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Optimization of Microwave-assisted Extraction of Carotenoids from Citrus clementina Peels

Author(s): Ahcene Kadi, Hafid Boudries, Mostapha Bachir-bey, Mohand Teffane*, Abdeslem Taibi and Lila Boulekbache-Makhlouf

Volume 18, Issue 6, 2022

Published on: 11 April, 2022

Article ID: e301221199690 Pages: 11

DOI: 10.2174/1573407218666211230152122

Price: $65

Abstract

Background: Citrus fruits, especially clementines, are among the most consumed fruits in the world. Clementine consists of pulp (endocarp) and peel (epicarp) which are rich in carotenoids. After using fruit pulp, peels are usually discarded as waste; the valorization of the latter in the recovery of its beneficial components, mainly carotenoids, may seem to be important.

Objective: The main objective of this study is to determine the optimal conditions allowing the extraction of a high carotenoids yield from clementine peels.

Methods: The microwave-assisted extraction method (MAE) was applied for extraction of total carotenoids from Citrus clementina peels, and the response surface methodology (RSM) was used to investigate the influence of extraction parameters, including hexane concentration, microwave power, irradiation time, and solvent to solid ratio, on the extraction yield, then the results were modeled using a second order regression. Total carotenoids yield of clementine peel extract obtained under optimal microwave-assisted extraction conditions was compared to extracts performed using two conventional extraction methods (maceration and Soxhlet).

Results: The optimal conditions for microwave-assisted extraction were 68 % of hexane concentration using 561 W of microwave power during 7.64 min of irradiation time, 43 ml/g of solvent-tosolid ratio using two successive extractions. Under optimized conditions of microwave-assisted extraction, the recovery of carotenoid content was 186.55 μg/g dry matter (DM), which was higher than that obtained by the two conventional methods, maceration extraction (ME; 160.53 μg/g DM) and Soxhlet extraction (SE; 162.68 μg/g DM).

Conclusion: From this study, it can be concluded that microwave-assisted extraction is an efficient method for carotenoid recovery and considering its high yield in reduced time, it could be recommended for extraction of these bioactive compounds from clementine peels.

Keywords: Clementine peels, carotenoids, optimization, microwave-assisted extraction, response surface methodology, box- Benhken design.

Graphical Abstract

[1]
Rahman, M.M.; Nito, N. Phylogenetic relationships in the kumquat (Fortunella) as revealed by isozyme analysis. Sci. Hortic. (Amsterdam), 1994, 57(1-2), 17-28.
[http://dx.doi.org/10.1016/0304-4238(94)90031-0]
[2]
Faostat 2019. Available from: http://www.fao.org/faostat/en/#data/QC Accessed on March 16, 2021
[3]
Iglesias, D.J.; Cercós, M.; Colmenero-Flores, J.M.; Naranjo, M.A.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; Tadeo, F.R.; Talon, M. Physiology of citrus fruiting. Braz. J. Plant Physiol., 2007, 19(4), 333-362.
[http://dx.doi.org/10.1590/S1677-04202007000400006]
[4]
Kato, M.; Ikoma, Y.; Matsumoto, H.; Sugiura, M.; Hyodo, H.; Yano, M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol., 2004, 134(2), 824-837.
[http://dx.doi.org/10.1104/pp.103.031104] [PMID: 14739348]
[5]
Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem., 2008, 106(1), 277-284.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.086]
[6]
Landrum, J.T. Carotenoids: Physical, chemical, and biological functions and properties; CRC Press: USA, 2009.
[http://dx.doi.org/10.1201/9781420052312]
[7]
Rodriguez-Amaya, D.B. Food Carotenoids: chemistry, biology and technology, 1st ed; John Wiley & Sons: USA, 2016.
[8]
Wrolstad, R.E.; Culver, C.A. Alternatives to those artificial FD&C food colorants. Annu. Rev. Food Sci. Technol., 2012, 3(1), 59-77.
[http://dx.doi.org/10.1146/annurev-food-022811-101118] [PMID: 22385164]
[9]
Saini, R.K.; Keum, Y.S. Carotenoid extraction methods: A review of recent developments. Food Chem., 2018, 240, 90-103.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.099] [PMID: 28946359]
[10]
Pasquet, V.; Chérouvrier, J.R.; Farhat, F.; Thiéry, V.; Piot, J.M. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem., 2011, 46(1), 59-67.
[http://dx.doi.org/10.1016/j.procbio.2010.07.009]
[11]
Liyanapathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem., 2005, 93(1), 47-56.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.050]
[12]
Aleza, P.; Juárez, J.; Hernández, M.; Pina, J.A.; Ollitrault, P.; Navarro, L. Recovery and characterization of a Citrus clementina Hort. ex Tan. ‘Clemenules’ haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biol., 2009, 9(1), 110.
[http://dx.doi.org/10.1186/1471-2229-9-110] [PMID: 19698121]
[13]
Hiranvarachat, B. Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of carotenoids from carrot peels. J. Food Eng., 2014, 126, 17-26.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.10.024]
[14]
Yan, F.; Fan, K.; He, J.; Gao, M. Ultrasonic-assisted solvent extraction of carotenoids from rapeseed meal: Optimization using response surface methodology: Extraction of carotenoids. J. Food Qual., 2015, 38(6), 377-386.
[http://dx.doi.org/10.1111/jfq.12154]
[15]
Hiranvarachat, B.; Devahastin, S.; Chiewchan, N.; Raghavan, G.S.V. Structural modification by different pretreatment methods to enhance microwave-assisted extraction of b-carotene from carrots. J. Food Eng., 2013, 115(2), 190-197.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.10.012]
[16]
Machmudah, S.; Goto, M. Methods for Extraction and Analysis of Carotenoids. In: Natural Products; Ramawat, K.G.; Mérillon, J-M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 3367-3411.
[http://dx.doi.org/10.1007/978-3-642-22144-6_145]
[17]
de Sa, M.C.; Rodriguez-Amaya, D.B. Optimization of HPLC quantification of carotenoids in cooked green vegetables-Comparison of analytical and calculated data. J. Food Compos. Anal., 2004, 17(1), 37-51.
[http://dx.doi.org/10.1016/S0889-1575(03)00100-5]
[18]
Amorim-Carrilho, K.T.; Cepeda, A.; Fente, C.; Regal, P. Review of methods for analysis of carotenoids. TrAC. Trends Analyt. Chem., 2014, 56, 49-73.
[http://dx.doi.org/10.1016/j.trac.2013.12.011]
[19]
Benmeziane, A.; Boulekbache-Makhlouf, L.; Mapelli-Brahm, P.; Khaled Khodja, N.; Remini, H.; Madani, K.; Meléndez-Martínez, A.J. Extraction of carotenoids from cantaloupe waste and determination of its mineral composition. Food Res. Int., 2018, 111, 391-398.
[http://dx.doi.org/10.1016/j.foodres.2018.05.044] [PMID: 30007701]
[20]
Strati, I.F.; Oreopoulou, V. Process optimisation for recovery of carotenoids from tomato waste. Food Chem., 2011, 129(3), 747-752.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.015] [PMID: 25212294]
[21]
Chen, W.; Wang, W.P.; Zhang, H.S.; Huang, Q. Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydr. Polym., 2012, 87(1), 614-619.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.029] [PMID: 34663012]
[22]
Atkinson, A.C.; Donev, A.N. Optimum Experimental Designs, 1st ed; Clarendon Press, 1992.
[23]
Luengo, E.; Condón-Abanto, S.; Condón, S.; Álvarez, I.; Raso, J. Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Separ. Purif. Tech., 2014, 136, 130-136.
[http://dx.doi.org/10.1016/j.seppur.2014.09.008]
[24]
Herrero, M.; Martín-Álvarez, P.J.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem., 2005, 93(3), 417-423.
[http://dx.doi.org/10.1016/j.foodchem.2004.09.037]
[25]
Csiktusnádi Kiss, G.A.; Forgács, E.; Cserháti, T.; Mota, T.; Morais, H.; Ramos, A. Optimisation of the microwave-assisted extraction of pigments from paprika (Capsicum annuum L.) powders. J. Chromatogr. A, 2000, 889(1-2), 41-49.
[http://dx.doi.org/10.1016/S0021-9673(00)00440-4] [PMID: 10985534]
[26]
Machmudah, S.; Kawahito, Y.; Sasaki, M.; Goto, M. Process optimization and extraction rate analysis of carotenoids extraction from rosehip fruit using supercritical CO2. J. Supercrit. Fluids, 2008, 44(3), 308-314.
[http://dx.doi.org/10.1016/j.supflu.2008.02.003]
[27]
Chen, J.; Shi, J.; Xue, S.J.; Ma, Y. Comparison of lycopene stability in water- and oil-based food model systems under thermal- and light-irradiation treatments. Lebensm. Wiss. Technol., 2009, 42(3), 740-747.
[http://dx.doi.org/10.1016/j.lwt.2008.10.002]
[28]
Tsiaka, T.; Zoumpoulakis, P.; Sinanoglou, V.J.; Makris, C.; Heropoulos, G.A.; Calokerinos, A.C. Response surface methodology toward the optimization of high-energy carotenoid extraction from Aristeus antennatus shrimp. Anal. Chim. Acta, 2015, 877, 100-110.
[http://dx.doi.org/10.1016/j.aca.2015.03.051] [PMID: 26002215]
[29]
Lemmens, L.; Colle, I.; Van Buggenhout, S.; Palmero, P.; Van Loey, A.; Hendrickx, M. Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: A review. Trends Food Sci. Technol., 2014, 38(2), 125-135.
[http://dx.doi.org/10.1016/j.tifs.2014.05.005]
[30]
Fratianni, A.; Cinquanta, L.; Panfili, G. Degradation of carotenoids in orange juice during microwave heating. Food Sci. Technol., 2010, 43(6), 867-871.
[http://dx.doi.org/10.1016/j.lwt.2010.01.011]
[31]
Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem., 2010, 122(4), 1193-1198.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.114]
[32]
Subagio, A.; Morita, N.; Sawada, S. Carotenoids and their fatty-acid esters in banana peel. J. Nutr. Sci. Vitaminol. (Tokyo), 1996, 42(6), 553-566.
[http://dx.doi.org/10.3177/jnsv.42.553] [PMID: 9089481]
[33]
Borel, P. Fruit and vegetable matrics: Thier effects on caroteniod bioavailablity. Cah. Nutr. Diét., 2018, 53(2), 114-122.
[http://dx.doi.org/10.1016/j.cnd.2018.02.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy