Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Cones of Coniferous Taxa as a Potential Source of Bioactive Polyphenols

Author(s): Tamás Hofmann*, Levente Albert, Balázs Bocz, Dániel Bocz and Eszter Visi-Rajczi

Volume 18, Issue 6, 2022

Published on: 02 March, 2022

Article ID: e301221199686 Pages: 10

DOI: 10.2174/1573407218666211230144911

Price: $65

Abstract

Background: Coniferous cones are a by-product of forestry and wood logging, used for many possible purposes, e.g., the extraction of polyphenols. Objective: The aim of the present article was the comparison of the antioxidant polyphenol content of the differently matured cones of 17 selected conifers, either common in Hungary or yet uninvestigated.

Methods: Total polyphenol content, ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl assays were used to determine the antioxidant contents. A scoring system was implemented using the three assay results to evaluate and compare the overall antioxidant power of the samples.

Result and Conclusion: Highest antioxidant contents were found in green cones, followed by mature and opened cones. Taxa with the highest scores were Tsuga canadensis, Cryptomeria japonica, Chamaecyparis lawsoniana, Thuja orientalis, Metasequoia glyptostroboides and Picea abies. For the samples with the highest overall antioxidant power the high-performance liquid chromatographic/ tandem mass spectrometric polyphenol profiling was carried out (green cones of T. canadensis and P. abies) and 83 compounds have been tentatively identified and described. Results contribute to the future bioactivity testing and evaluation of the cone extracts of T. canadensis and P. abies.

Keywords: Coniferous species, cones, antioxidants, liquid chromatography, mass spectrometry, DPPH.

Graphical Abstract

[1]
Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark. Ind. Crops Prod., 2016, 80, 50-58.
[http://dx.doi.org/10.1016/j.indcrop.2015.10.051]
[2]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[3]
Watson, R.R.; Preedy, V.R.; Zibadi, S. Polyphenols: Prevention and treatment of human disease; Academic Press: London, England, 2018.
[4]
Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control, 2014, 46, 412-429.
[http://dx.doi.org/10.1016/j.foodcont.2014.05.047]
[5]
Kobus-Cisowska, J.; Flaczyk, E.; Rudzińska, M.; Kmiecik, D. Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci., 2014, 97(2), 174-180.
[http://dx.doi.org/10.1016/j.meatsci.2014.01.011] [PMID: 24583325]
[6]
Popa, V.I.; Dumitru, M.; Volf, I.; Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod., 2008, 27, 144-149.
[http://dx.doi.org/10.1016/j.indcrop.2007.07.019]
[7]
Fahimirad, S.; Ajalloueian, F.; Ghorbanpour, M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol. Environ. Saf., 2019, 168, 260-278.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.017] [PMID: 30388544]
[8]
Rolim, W.R.; Pelegrino, M.T.; Lima, B.A.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Rodigues, T.; Brocchi, M.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci., 2019, 463, 66-74.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.203]
[9]
Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Anačkov, G.T.; Balog, K.J.; Francišković, M.M.; Mimica-Dukić, N.M. Juniperus sibirica Burgsdorf. as a novel source of antioxidant and anti-inflammatory agents. Food Chem., 2011, 124, 850-856.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.006]
[10]
Kemerli-Kalbaran, T.; Ozdemir, M. Multi-response optimization of oil extraction from pine nut (Pinus pinea L.) by response surface methodology: Extraction efficiency, physicochemical properties and antioxidant activity. Lebensm. Wiss. Technol., 2019, 103, 34-43.
[http://dx.doi.org/10.1016/j.lwt.2018.12.067]
[11]
Aniszewska, M.; Bereza, B. Analysis of water absorption process in the cones of common pine (Pinus sylvestris L.). Ann. Wars. Univ. Life Sci, 2014, 63, 105-112.
[12]
Gendek, A.; Aniszewska, M.; Malaťák, J.; Velebil, J. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenergy, 2018, 117, 173-179.
[http://dx.doi.org/10.1016/j.biombioe.2018.07.025]
[13]
Süntar, I.; Tumen, I.; Ustün, O.; Keleş, H.; Akkol, E.K. Appraisal on the wound healing and anti-inflammatory activities of the essential oils obtained from the cones and needles of Pinus species by in vivo and in vitro experimental models. J. Ethnopharmacol., 2012, 139(2), 533-540.
[http://dx.doi.org/10.1016/j.jep.2011.11.045] [PMID: 22155393]
[14]
Djouahri, A.; Saka, B.; Boudarene, L.; Benseradj, F.; Aberrane, S.; Aitmoussa, S.; Chelghoum, C.; Lamari, L.; Sabaou, N.; Baaliouamer, A. In vitro synergistic/antagonistic antibacterial and anti-inflammatory effect of various extracts/essential oil from cones of Tetraclinis articulata (Vahl) Masters with antibiotic and anti-inflammatory agents. Ind. Crops Prod., 2014, 56, 60-66.
[http://dx.doi.org/10.1016/j.indcrop.2014.02.035]
[15]
Nagata, K.; Sakagami, H.; Harada, H.; Nonoyama, M.; Ishihama, A.; Konno, K. Inhibition of influenza virus infection by pine cone antitumor substances. Antiviral Res., 1990, 13(1), 11-21.
[http://dx.doi.org/10.1016/0166-3542(90)90041-5] [PMID: 2334167]
[16]
Nagasawa, H.; Sakamoto, S.; Sawaki, K. Inhibitory effect of lignin-related pine cone extract on cell proliferating enzyme activity of spontaneous mammary tumours in mice. Anticancer Res., 1992, 12(2), 501-503.
[PMID: 1580567]
[17]
Bajpai, V.K.; Sharma, A.; Kang, S.C.; Baek, K.H. Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac. J. Trop. Med., 2014, 7(1), 9-15.
[http://dx.doi.org/10.1016/S1995-7645(13)60183-2] [PMID: 24418075]
[18]
Tümen, İ.; Akkol, E.K.; Taştan, H.; Süntar, I.; Kurtca, M. Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait). J. Ethnopharmacol., 2018, 211, 235-246.
[http://dx.doi.org/10.1016/j.jep.2017.09.009] [PMID: 28917972]
[19]
Wang, L.; Li, X.; Wang, H. Physicochemical properties, bioaccessibility and antioxidant activity of the polyphenols from pine cones of Pinus koraiensis. Int. J. Biol. Macromol., 2019, 126, 385-391.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.145] [PMID: 30576738]
[20]
Kartal, E.; Ozturk, S. Pine cone as an alternative dietary fiber source and its effects on cake and cookie quality. GIDA/J. Food, 2016, 41(5), 291-297.
[http://dx.doi.org/10.15237/gida.GD16016]
[21]
Hussain, S.; Ghouri, A.S.; Ahmad, A. Pine cone extract as natural coagulant for purification of turbid water. Heliyon, 2019, 5(3), e01420.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01420] [PMID: 30976693]
[22]
Kupeta, A.J.K.; Naidoo, E.B.; Ofomaja, A.E. Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass. J. Clean. Prod., 2018, 179, 191-209.
[http://dx.doi.org/10.1016/j.jclepro.2018.01.034]
[23]
Mtshatsheni, K.N.G.; Ofomaja, A.E.; Naidoo, E.B. Synthesis and optimization of reaction variables in the preparation of pine-magnetite composite for removal of methylene blue dye. S. Afr. J. Chem. Eng., 2019, 29, 33-41.
[http://dx.doi.org/10.1016/j.sajce.2019.05.002]
[24]
Hofmann, T.; Visi-Rajczi, E.; Albert, L. Antioxidant properties assessment of the cones of conifers through the combined evaluation of multiple antioxidant assays. Ind. Crops Prod., 2020, 145, 111935.
[http://dx.doi.org/10.1016/j.indcrop.2019.111935]
[25]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 161, 144-158.
[26]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[27]
Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113, 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[28]
Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med., 2000, 29(11), 1106-1114.
[http://dx.doi.org/10.1016/S0891-5849(00)00394-4] [PMID: 11121717]
[29]
Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Knežević, N.P.; Simin, N.Ð.; Svirčev, Ð.E.; Mimica-Dukić, N.M. Phytochemical composition and antioxidant, anti-inflammatory and antimicrobial activities of Juniperus macrocarpa Sibth. et Sm. J. Funct. Foods, 2014, 7, 257-268.
[http://dx.doi.org/10.1016/j.jff.2014.02.003]
[30]
Bajpai, V.K.; Yoon, J.I.; Chul Kang, S. Antioxidant and antidermatophytic activities of essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu. Food Chem. Toxicol., 2009, 47(6), 1355-1361.
[http://dx.doi.org/10.1016/j.fct.2009.03.011] [PMID: 19303043]
[31]
Bajpai, V.K.; Baek, K-H.; Kang, S.C. Antioxidant and free radical scavenging activities of taxoquinone, a diterpenoid isolated from Metasequoia glyptostroboides. S. Afr. J. Bot., 2017, 111, 93-98.
[http://dx.doi.org/10.1016/j.sajb.2017.03.004]
[32]
Bajpai, V.K.; Rahman, A.; Kang, S.C. Chemical composition and anti-fungal properties of the essential oil and crude extracts of Metasequoia glyptostroboides Miki ex Hu. Ind. Crops Prod., 2007, 26, 28-35.
[http://dx.doi.org/10.1016/j.indcrop.2006.12.012]
[33]
Yoon, J.I.; Bajpai, V.K.; Kang, S.C. Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food Chem. Toxicol., 2011, 49(1), 109-114.
[http://dx.doi.org/10.1016/j.fct.2010.10.004] [PMID: 20934478]
[34]
Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 2007, 12(7), 1496-1547.
[http://dx.doi.org/10.3390/12071496] [PMID: 17909504]
[35]
Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem., 2011, 129, 139-148.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.045]
[36]
Smith, E.C.J.; Williamson, E.M.; Wareham, N.; Kaatz, G.W.; Gibbons, S. Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry, 2007, 68(2), 210-217.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.001] [PMID: 17109904]
[37]
Kilinc, M.; Canbolat, S.; Merdan, N.; Dayioglu, H.; Akin, F. Investigation of the color, fastness and antimicrobial properties of wool fabrics dyed with the natural dye extracted from the cone of Chamaecyparis lawsoniana. Procedia Soc. Behav. Sci., 2015, 195, 2152-2159.
[http://dx.doi.org/10.1016/j.sbspro.2015.06.281]
[38]
Horiba, H.; Nakagawa, T.; Zhu, Q.; Ashour, A.; Watanabe, A.; Shimizu, K. Biological activities of extracts from different Parts of Cryptomeria japonica. Nat. Prod. Commun., 2016, 11(9), 1337-1342.
[http://dx.doi.org/10.1177/1934578X1601100939] [PMID: 30807038]
[39]
Yogesh, K.; Ali, J. Antioxidant potential of thuja (Thuja occidentalis) cones and peach (Prunus persia) seeds in raw chicken ground meat during refrigerated (4 ± 1 °C) storage. J. Food Sci. Technol., 2014, 51(8), 1547-1553.
[http://dx.doi.org/10.1007/s13197-012-0672-5] [PMID: 25114346]
[40]
Meloni, M.; Perini, D.; Binelli, G. The distribution of genetic variation in Norway spruce (Picea abies Karst.) populations in the Western Alps. J. Biogeogr., 2007, 34, 929-938.
[http://dx.doi.org/10.1111/j.1365-2699.2006.01668.x]
[41]
Lamedica, S.; Lingua, E.; Popa, I.; Motta, R. Spatial structure in four Norway spruce stands with different management history in the Alps and Carpathians. Silva Fenn., 2011, 45, 865-873.
[http://dx.doi.org/10.14214/sf.75]
[42]
Clark, J.T.; Fei, S.; Liang, L.; Rieske, R.K. Mapping eastern hemlock: Comparing classification techniques to evaluate susceptibility of a fragmented and valued resource to an exotic invader, the hemlock woolly adelgid. For. Ecol. Manage., 2012, 266, 216-222.
[http://dx.doi.org/10.1016/j.foreco.2011.11.030]
[43]
Mellou, F.; Lazari, D.; Skaltsa, H.; Tselepis, A.D.; Kolisis, F.N.; Stamatis, H. Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. J. Biotechnol., 2005, 116(3), 295-304.
[http://dx.doi.org/10.1016/j.jbiotec.2004.12.002] [PMID: 15707690]
[44]
García-Villalba, R.; Espín, J.C.; Tomás-Barberán, F.A.; Rocha-Guzmán, N.E. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J. Food Compos. Anal., 2017, 63, 38-46.
[http://dx.doi.org/10.1016/j.jfca.2017.07.034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy