Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Thymol and its Derivatives for Management of Phytopathogenic fungi of Maize

Author(s): Jyoti Gaba*, Sunita Sharma, Harleen Kaur and Pardeep Kaur

Volume 18, Issue 7, 2022

Published on: 24 February, 2022

Article ID: e301221199683 Pages: 9

DOI: 10.2174/1573407218666211230142546

Price: $65

Abstract

Background: Thymol is a bioactive compound having many pharmacological activities.

Objective: The present study was carried out to evaluate the fungi toxic effects of thymol and derivatives against phytopathogenic fungi of maize.

Methods: Thymol was derivatized to get formylated thymol, Mannich bases, and imine derivatives. All the synthesized thymol derivatives were characterized by their physical and spectral properties. Synthesized thymol derivatives were screened for their in vitro antifungal effects using poisoned food technique against three maize pathogenic fungi, namely Fusarium moniliforme, Rhizoctonia solani and Dreschlera maydis.

Results: Thymol and formylated thymol showed promising results for control of D. maydis with ED50 values less than standard carbendazim and comparable to standard mancozeb. These two compounds were further evaluated for control of D. maydis causative maydis leaf blight disease on maize plants grown in the field during the Kharif season (June to October) 2018.

Conclusion: Thymol exhibited significant control of maydis leaf blight disease of maize and emerged as a potential alternative to synthetic fungicides used in cereal crops.

Keywords: Thymol, formylated thymol, maydis leaf blight, Drechslera maydis, antifungal, maize.

Graphical Abstract

[1]
ICAR-Indian Institute of maize research. Available from:https://iimr.icar.gov.in/world-maze-scenario/
[2]
Aslam, M.; Zamir, M.S.I.; Yaseen, M.; Mubeen, M.; Shoaib, A. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercet. Agron. Mold., 2013, 46(2), 99-114.
[3]
Karanja, J.; Derera, J.; Gubba, A.; Mugo, S.; Wangai, A. Response of selected maize inbred germplasm to maize lethal necrosis disease and its causative viruses (sugarcane mosaic virus and maize chlorotic mottle virus) in Kenya. Open Agric. J., 2018, 12(1), 215-226.
[http://dx.doi.org/10.2174/1874331501812010215]
[4]
Alori, E.T.; Babalola, O.O.; Prigent-Combaret, C. Impacts of microbial inoculants on the growth and yield of maize plant. Open Agric. J., 2018, 13(1), 1-8.
[http://dx.doi.org/10.2174/1874331501913010001]
[5]
Pandey, G.; Sharma, N.; Sahu, P.P.; Prasad, M. Chromatin-based epigenetic regulation of plant abiotic stress response. Curr. Genomics, 2016, 17(6), 490-498.
[http://dx.doi.org/10.2174/1389202917666160520103914] [PMID: 28217005]
[6]
Gong, F.; Hu, X.; Wang, W. Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? Front. Plant Sci., 2015, 6, 418-422.
[http://dx.doi.org/10.3389/fpls.2015.00418] [PMID: 26097486]
[7]
Pratt, R.; Gordon, S.; Lipps, P.; Asea, G.; Bigirwa, G.; Pixley, K. Use of IPM in the control of multiple diseases in maize: Strategies for selection of host resistance. Afr. Crop Sci. J., 2003, 11(3), 189-198.
[8]
Goyal, A.; Sharma, S.; Gaba, J. Microwave assisted synthesis of some novel pyrazoline derivatives as potential antifungal agents. Indian J. Chem. Sect. B, 2017, 56B(3), 334-340.
[9]
Pascual, C.B.; Toda, T.; Raymondo, A.D.; Hyakumachi, M. Characterization by conventional techniques and PCR of Rhizoctonia solani isolates causing banded leaf sheath blight in maize. Plant Pathol., 2000, 49(1), 108-118.
[http://dx.doi.org/10.1046/j.1365-3059.2000.00429.x]
[10]
Bacon, C.W.; Yates, I.E.; Hinton, D.M.; Meredith, F. Biological control of Fusarium moniliforme in maize. Environ. Health Perspect., 2001, 109(Suppl. 2), 325-332.
[PMID: 11359703]
[11]
Pašková, V.; Hilscherová, K.; Bláha, L. Teratogenicity and embryotoxicity in aquatic organisms after pesticide exposure and the role of oxidative stress. Rev. Environ. Contam. Toxicol., 2011, 211, 25-61.
[http://dx.doi.org/10.1007/978-1-4419-8011-3_2] [PMID: 21287390]
[12]
Patel, S.; Sangeeta, S. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public. Environ. Sci. Pollut. Res. Int., 2019, 26(1), 91-100.
[http://dx.doi.org/10.1007/s11356-018-3642-2] [PMID: 30411285]
[13]
Sinan, K.I.; Dall’Acqua, S.; Ferrarese, I.; Mollica, A.; Stefanucci, A.; Glamočlija, J.; Sokovic, M.; Nenadić, M.; Aktumsek, A.; Zengin, G. LC-MS based analysis and biological properties of Pseudocedrela kotschyi (Schweinf.) harms extracts: A valuable source of antioxidant, antifungal, and antibacterial compounds. Antioxidants, 2021, 10(10), 1570-1590.
[http://dx.doi.org/10.3390/antiox10101570] [PMID: 34679706]
[14]
Garcês, A.; Pires, I.; Rodrigues, P. Teratological effects of pesticides in vertebrates: A review. J. Environ. Sci. Health B, 2020, 55(1), 75-89.
[http://dx.doi.org/10.1080/03601234.2019.1660562] [PMID: 31516070]
[15]
Mueller, O.; Kahmann, R.; Aguilar, G.; Trejo-Aguilar, B.; Wu, A.; de Vries, R.P. The secretome of the maize pathogen Ustilago maydis. Fungal Genet. Biol., 2008, 45(Suppl. 1), S63-S70.
[http://dx.doi.org/10.1016/j.fgb.2008.03.012] [PMID: 18456523]
[16]
Gaba, J.; Sharma, S.; Kaur, P.; Joshi, S. Synthesis and biological evaluation of thymol functionalized oxadiazole thiol, triazole thione and β-lactam derivatives. Lett. Org. Chem., 2021, 18(6), 453-464.
[http://dx.doi.org/10.2174/1570178617999200807213410]
[17]
Kaur, H.; Mohan, C. Management of post flowering stalk rot of maize (Zea mays) caused by Fusarium moniliforme with native biocontrol agents. Indian J. Agric. Sci., 2013, 83(11), 1165-1172.
[18]
Oribhabor, B.J.; Ikeogu, G.C. Acute toxicity of the pesticides, dichlorvos and lindane against the African air-breathing catfish, Heterobranchus longifilis, Valenciennes, 1840 (Siluriformes: Clariidae). Recent Pat. Biotechnol., 2016, 10(3), 272-278.
[http://dx.doi.org/10.2174/1872208310666160725200722] [PMID: 28236669]
[19]
Uggini, G.K.; Patel, P.V.; Balakrishnan, S. Embryotoxic and teratogenic effects of pesticides in chick embryos: A comparative study using two commercial formulations. Environ. Toxicol., 2012, 27(3), 166-174.
[http://dx.doi.org/10.1002/tox.20627] [PMID: 20607816]
[20]
Alavanja, M.C.R.; Ross, M.K.; Bonner, M.R. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA Cancer J. Clin., 2013, 63(2), 120-142.
[http://dx.doi.org/10.3322/caac.21170] [PMID: 23322675]
[21]
Rakitsky, V.N.; Koblyakov, V.A.; Turusov, V.S. Nongenotoxic (epigenetic) carcinogens: pesticides as an example. A critical review. Teratog. Carcinog. Mutagen., 2000, 20(4), 229-240.
[http://dx.doi.org/10.1002/1520-6866(2000)20:4<229::AID-TCM5>3.0.CO;2-M] [PMID: 10910473]
[22]
Alavanja, M.C.; Ward, M.H.; Reynolds, P. Carcinogenicity of agricultural pesticides in adults and children. J. Agromed., 2007, 12(1), 39-56.
[http://dx.doi.org/10.1300/J096v12n01_05] [PMID: 18032335]
[23]
Dhouib, I.B.; Annabi, A.; Jallouli, M.; Marzouki, S.; Gharbi, N.; Elfazaa, S.; Lasram, M.M. Carbamates pesticides induced immunotoxicity and carcinogenicity in human: A review. J. Appl. Biomed., 2016, 14(2), 85-90.
[http://dx.doi.org/10.1016/j.jab.2016.01.001]
[24]
Anand, G.; Sharma, R.; Shankarganesh, K. Evaluation of bio-efficacy and compatibility of emamectin benzoate with neem based biopesticide against fruit borers of brinjal and okra. Indian J. Agric. Sci., 2014, 84(6), 746-753.
[25]
Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat. Prod., 2012, 75(6), 1231-1242.
[http://dx.doi.org/10.1021/np300024u] [PMID: 22616957]
[26]
Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem., 2009, 17(12), 4022-4034.
[http://dx.doi.org/10.1016/j.bmc.2009.01.046] [PMID: 19216080]
[27]
Dubey, N.K.; Shukla, R.; Kumar, A.; Singh, P.; Prakash, B. Prospects of botanical pesticides in sustainable agriculture. Curr. Sci., 2010, 98(4), 479-480.
[28]
Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev., 2011, 10(2), 197-204.
[http://dx.doi.org/10.1007/s11101-010-9170-4]
[29]
Zabka, M.; Pavela, R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 2013, 93(6), 1051-1056.
[http://dx.doi.org/10.1016/j.chemosphere.2013.05.076] [PMID: 23800587]
[30]
Zacchino, S.A.; Butassi, E.; Liberto, M.D.; Raimondi, M.; Postigo, A.; Sortino, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, 2017, 37, 27-48.
[http://dx.doi.org/10.1016/j.phymed.2017.10.018] [PMID: 29174958]
[31]
Lambert, C.; Bisson, J.; Waffo-Téguo, P.; Papastamoulis, Y.; Richard, T.; Corio-Costet, M.F.; Mérillon, J.M.; Cluzet, S. Phenolics and their antifungal role in grapevine wood decay: Focus on the Botryosphaeriaceae family. J. Agric. Food Chem., 2012, 60(48), 11859-11868.
[http://dx.doi.org/10.1021/jf303290g] [PMID: 23145924]
[32]
Ahn, Y.J.; Lee, H.S.; Oh, H.S.; Kim, H.T.; Lee, Y.H. Antifungal activity and mode of action of Galla rhois-derived phenolics against phytopathogenic fungi. Pestic. Biochem. Physiol., 2005, 81(2), 105-112.
[http://dx.doi.org/10.1016/j.pestbp.2004.10.003]
[33]
Salas, M.P.; Céliz, G.; Geronazzo, H.; Daz, M.; Resnik, S.L. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem., 2011, 124(4), 1411-1415.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.100]
[34]
Jin, Y.S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19), 126589-126601.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.048] [PMID: 31427220]
[35]
Orhan, D.D.; Ozçelik, B.; Ozgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 165(6), 496-504.
[http://dx.doi.org/10.1016/j.micres.2009.09.002] [PMID: 19840899]
[36]
Yang, G.Z.; Zhu, J.K.; Yin, X.D.; Yan, Y.F.; Wang, Y.L.; Shang, X.F.; Liu, Y.Q.; Zhao, Z.M.; Peng, J.W.; Liu, H. Design, synthesis, and antifungal evaluation of novel quinoline derivatives inspired from natural quinine alkaloids. J. Agric. Food Chem., 2019, 67(41), 11340-11353.
[http://dx.doi.org/10.1021/acs.jafc.9b04224] [PMID: 31532201]
[37]
Chapagain, B.P.; Wiesman, Z.; Tsror, L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind. Crops Prod., 2007, 26(2), 109-115.
[http://dx.doi.org/10.1016/j.indcrop.2007.02.005]
[38]
Rao, A.; Zhang, Y.; Muend, S.; Rao, R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob. Agents Chemother., 2010, 54(12), 5062-5069.
[http://dx.doi.org/10.1128/AAC.01050-10] [PMID: 20921304]
[39]
Kusumoto, N.; Zhao, T.; Swedjemark, G.; Ashitani, T.; Takahashi, K.; Borg-Karlson, A.K. Antifungal properties of terpenoids in Picea abies against Heterobasidion parviporum. For. Pathol., 2014, 44(5), 353-361.
[http://dx.doi.org/10.1111/efp.12106]
[40]
Poliana, B.F.B.; Fabiana, C.; Fernando, Z.; Lucas, U.R.C.; Eduardo, J.P.; Ivanor, N.P.; Jesui, V.V. Antioxidant capacity and identification of bioactive compounds by GC-MS of essential oils from spices, herbs and citrus. Curr. Bioact. Compd., 2017, 13(2), 137-143.
[http://dx.doi.org/10.2174/1573407212666160614080846]
[41]
Nunez, L.; D’aquino, M.; Chirife, J. Antifungal properties of clove oil (Eugenia caryophylata) in sugar solution. Braz. J. Microbiol., 2001, 32, 123-126.
[http://dx.doi.org/10.1590/S1517-83822001000200010]
[42]
Xie, Y.; Yang, Z.; Cao, D.; Rong, F.; Ding, H.; Zhang, D. Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (clove). Ind. Crops Prod., 2015, 77, 780-786.
[http://dx.doi.org/10.1016/j.indcrop.2015.09.044]
[43]
Rana, I.S.; Rana, A.S.; Rajak, R.C. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz. J. Microbiol., 2011, 42(4), 1269-1277.
[http://dx.doi.org/10.1590/S1517-83822011000400004] [PMID: 24031751]
[44]
Sukatta, U.; Haruthaithanasan, V.; Chantarapanont, W.; Dilokkunanant, U.; Suppakul, P. Antifungal activity of clove and cinnamon oil and their synergistic against postharvest decay fungi of grape in vitro. Agric. Nat. Resour. (Bangk.), 2008, 42(5), 169-174.
[45]
Soylu, S.; Yigitbas, H.; Soylu, E.M.; Kurt, S. Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. J. Appl. Microbiol., 2007, 103(4), 1021-1030.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03310.x] [PMID: 17897206]
[46]
Bedoya-Serna, C.M.; Dacanal, G.C.; Fernandes, A.M.; Pinho, S.C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: In vitro study and application in Minas Padrão cheese. Braz. J. Microbiol., 2018, 49(4), 929-935.
[http://dx.doi.org/10.1016/j.bjm.2018.05.004] [PMID: 30145265]
[47]
Chami, F.; Chami, N.; Bennis, S.; Bouchikhi, T.; Remmal, A. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother. Res., 2005, 19(5), 405-408.
[http://dx.doi.org/10.1002/ptr.1528] [PMID: 16106385]
[48]
Velluti, A.; Sanchis, V.; Ramos, A.J.; Egido, J.; Marín, S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol., 2003, 89(2-3), 145-154.
[http://dx.doi.org/10.1016/S0168-1605(03)00116-8] [PMID: 14623380]
[49]
Halamova, K.; Kokoska, L.; Flesar, J.; Sklenickova, O.; Svobodova, B.; Marsik, P. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels. J. Food Prot., 2010, 73(12), 2291-2295.
[http://dx.doi.org/10.4315/0362-028X-73.12.2291] [PMID: 21219751]
[50]
Kedia, A.; Prakash, B.; Mishra, P.K.; Dubey, N.K. Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. Int. J. Food Microbiol., 2014, 168-169, 1-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.10.008] [PMID: 24211773]
[51]
Kamble, V.A.; Patil, S.D. Spice-derived essential oils: Effective antifungal and possible therapeutic agents. J. Herbs Spices Med. Plants, 2008, 14(3-4), 129-143.
[http://dx.doi.org/10.1080/10496470802598677]
[52]
Mnif, S.; Aifa, S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers., 2015, 12(5), 733-742.
[http://dx.doi.org/10.1002/cbdv.201400305] [PMID: 26010662]
[53]
Rasooli, I.; Abyaneh, M.R. Inhibitory effects of thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control, 2004, 15(6), 479-483.
[http://dx.doi.org/10.1016/j.foodcont.2003.07.002]
[54]
Khan, R.; Zakir, M.; Afaq, S.H.; Latif, A.; Khan, A.U. Activity of solvent extracts of Prosopis spicigera, Zingiber officinale and Trachyspermum ammi against multidrug resistant bacterial and fungal strains. J. Infect. Dev. Ctries., 2010, 4(5), 292-300.
[http://dx.doi.org/10.3855/jidc.621] [PMID: 20539061]
[55]
Behtoei, H.; Amini, J.; Javadi, T.; Sadeghi, A. Composition and in vitro antifungal activity of Bunium persicum, Carum copticum and Cinnamomum zeylanicum essential oils. J. Med. Plants Res., 2012, 6(37), 5069-5076.
[http://dx.doi.org/10.5897/JMPR12.106]
[56]
Kavoosi, G.; Tafsiry, A.; Ebdam, A.A.; Rowshan, V. Evaluation of antioxidant and antimicrobial activities of essential oils from Carum copticum seed and Ferula assafoetida latex. J. Food Sci., 2013, 78(2), T356-T361.
[http://dx.doi.org/10.1111/1750-3841.12020] [PMID: 23320824]
[57]
Zomorodian, K.; Moein, M.R.; Rahimi, M.J.; Pakshir, K.; Ghasemi, Y.; Sharbatfar, S. Possible application and chemical compositions of Carum copticum essential oils against food borne and nosocomial pathogens. Middle East J. Sci. Res., 2011, 9(2), 239-245.
[58]
Hassan, W.; Gul, S.; Rehman, S.; Noreen, H.; Shah, Z.; Mohammadzai, I.; Zaman, B. Chemical composition, essential oil characterization and antimicrobial activity of Carum copticum. Vitam. Miner., 2016, 5(139), 2376.
[59]
Singh, G.; Maurya, S.; Catalan, C.; De Lampasona, M.P. Chemical constituents, antifungal and antioxidative effects of ajwain essential oil and its acetone extract. J. Agric. Food Chem., 2004, 52(11), 3292-3296.
[http://dx.doi.org/10.1021/jf035211c] [PMID: 15161185]
[60]
Gaba, J.; Sharma, S.; Joshi, S.; Gill, P.S. Gas chromatography- mass spectrometric analysis of essential oil, nutritional and phytochemical composition of ajwain seeds (Trachyspermum ammi. L.). J. Essent. Oil-Bear. Plants, 2018, 21(4), 1128-1137.
[http://dx.doi.org/10.1080/0972060X.2018.1509735]
[61]
Kazemi Oskuee, R.; Behravan, J.; Ramezani, M. Chemical composition, antimicrobial activity and antiviral activity of essential oil of Carum copticum from Iran. Avicenna J. Phytomed., 2011, 1(2), 83-90.
[62]
Khajeh, M.; Yamini, Y.; Sefidkon, F.; Bahramifar, N. Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chem., 2004, 86(4), 587-591.
[http://dx.doi.org/10.1016/j.foodchem.2003.09.041]
[63]
Alavinezhad, A.; Boskabady, M.H. Antiinflammatory, antioxidant, and immunological effects of Carum copticum L. and some of its constituents. Phytother. Res., 2014, 28(12), 1739-1748.
[http://dx.doi.org/10.1002/ptr.5200] [PMID: 25044318]
[64]
Goudarzi, G.R.; Saharkhiz, M.J.; Sattari, M.; Zomorodian, K. Antibacterial activity and chemical composition of Ajowan (Carum copticum Benth. & Hook) essential oil. J. Agric. Sci. Technol., 2010, 13(2), 203-208.
[65]
Shen, A.Y.; Huang, M.H.; Liao, L.F.; Wang, T.S. Thymol analogues with antioxidant and L-type calcium current inhibitory activity. Drug Dev. Res., 2005, 64, 195-202.
[http://dx.doi.org/10.1002/ddr.10436]
[66]
Miller, P.R. Southern corn leaf blight: Susceptible and resistant mitochondria. Plant Dis. Rep., 1970, 54, 1099-1136.
[67]
Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Der. Pharma Chem., 2017, 9(13), 141-147.
[68]
Saini, M.S.; Kumar, A.; Dwivedi, J.; Singh, R. A review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res., 2013, 4(3), 66-77.
[69]
Venepally, V.; Reddy Jala, R.C. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules. Eur. J. Med. Chem., 2017, 141, 113-137.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.069] [PMID: 29031060]
[70]
Bala, S.; Kamboj, S.; Kumar, A. Heterocyclic 1, 3, 4-oxadiazole compounds with diverse biological activities: A comprehensive review. J. Pharm. Res., 2010, 3(12), 2993-2997.
[71]
de Souza, M.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds. J. Sulfur Chem., 2005, 26(4-5), 429-449.
[http://dx.doi.org/10.1080/17415990500322792]
[72]
Masurier, N.; Moreau, E.; Lartigue, C.; Gaumet, V.; Chezal, J.M.; Heitz, A.; Teulade, J.C.; Chavignon, O. New opportunities with the Duff reaction. J. Org. Chem., 2008, 73(15), 5989-5992.
[http://dx.doi.org/10.1021/jo800700b] [PMID: 18597528]
[73]
Braga, P.C.; Sasso, M.D.; Culici, M.; Alfieri, M. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia, 2007, 78(6), 396-400.
[http://dx.doi.org/10.1016/j.fitote.2007.02.022] [PMID: 17590533]
[74]
Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci., 2005, 5(6), 497-526.
[http://dx.doi.org/10.1002/elsc.200520098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy