Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

A Mini-review on Nanostructured g-C3N4 Photocatalysts for Solar Fuel Production

Author(s): Maxwell Selase Akple* and Gabriel Kwame Sipi Takyi

Volume 12, Issue 2, 2022

Published on: 14 February, 2022

Article ID: e301221199679 Pages: 12

DOI: 10.2174/2210681212666211230125315

Price: $65

conference banner
Abstract

Graphitic carbon nitride (g-C3N4) is an important photocatalytic material that is receiving a lot of research attention globally due to its favourable thermal and chemical stability as well as electronic band structure. However, the photocatalytic performance of the bulk g-C3N4 is limited by fast recombination of electron-hole pair and poor visible light-harvesting ability. Thus, different strategies, such as heterostructuring, nanotuning, doping, etc., have been adopted to overcome the aforementioned challenges to enhance the photocatalytic performance of g-C3N4. In recent times, various nanostructured g-C3N4 photocatalytic materials with various tuned morphologies have been designed and fabricated in literature for different photocatalytic activities. This mini-review summarized the progress development of nanostructured g-C3N4 photocatalysts with various tuned morphologies for solar fuel generation. This article briefly highlights the research status of various g-C3N4 with tuned morphologies and enhanced solar fuel generation abilities. Finally, a conclusion and future research were also suggested, opening up new areas on g- C3N4 photocatalysis.

Keywords: g-C3N4, morphologies, solar fuel generation, photocatalysis, nanostructures, recombination.

Graphical Abstract

[1]
Nguyen, C.C.; Vu, N.N.; Do, T.O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their appli-cations. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(36), 18345-18359.
[http://dx.doi.org/10.1039/C5TA04326C]
[2]
Yin, S.; Han, J.; Zhou, T.; Xu, R. Recent progress in g-C3N4 based low cost photocatalytic system: Activity enhancement and emerging applications. Catal. Sci. Technol., 2015, 5(12), 5048-5061.
[http://dx.doi.org/10.1039/C5CY00938C]
[3]
Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 2485-2534.
[http://dx.doi.org/10.1039/C4TA04461D]
[4]
Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. Chem. Rev., 2010, 110(11), 6446-6473.
[http://dx.doi.org/10.1021/cr1002326] [PMID: 21062097]
[5]
Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl., 2013, 52(29), 7372-7408.
[http://dx.doi.org/10.1002/anie.201207199] [PMID: 23765842]
[6]
Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semicon-ductor powders. Nature, 1979, 277, 637-638.
[http://dx.doi.org/10.1038/277637a0]
[7]
Corma, A.; Garcia, H. Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. J. Catal., 2013, 308, 168-175.
[http://dx.doi.org/10.1016/j.jcat.2013.06.008]
[8]
Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO(2) reduction using non-titanium metal oxides and sulfides. ChemSusChem, 2013, 6(4), 562-577.
[http://dx.doi.org/10.1002/cssc.201200670] [PMID: 23468280]
[9]
Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics, 2012, 6(8), 511-518.
[http://dx.doi.org/10.1038/nphoton.2012.175]
[10]
Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev., 2014, 114(19), 9987-10043.
[http://dx.doi.org/10.1021/cr500008u] [PMID: 25098384]
[11]
Kudo, A. Photocatalyst materials for water splitting. Catal. Surv. Asia, 2003, 7(1), 31-38.
[http://dx.doi.org/10.1023/A:1023480507710]
[12]
Osterloh, F.E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater., 2007, 20(1), 35-54.
[http://dx.doi.org/10.1021/cm7024203]
[13]
Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett., 2010, 1(18), 2655-2661.
[http://dx.doi.org/10.1021/jz1007966]
[14]
Rani, S.; Bao, N.; Roy, S.C. Solar spectrum photocatalytic conversion of CO2 and water vapor into hydrocarbons using TiO2 nanoparticle membranes. Appl. Surf. Sci., 2014, 289, 203-208.
[http://dx.doi.org/10.1016/j.apsusc.2013.10.135]
[15]
Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110(11), 6503-6570.
[http://dx.doi.org/10.1021/cr1001645] [PMID: 21062099]
[16]
Patnaik, S.; Martha, S.; Parida, K.M. An overview of the structural, textural and morphological modulations of g-C3N4 towards photocata-lytic hydrogen production. RSC Advances, 2016, 6, 46929-46951.
[http://dx.doi.org/10.1039/C5RA26702A]
[17]
Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer semiconductors for artificial photosyn-thesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc., 2009, 131(5), 1680-1681.
[http://dx.doi.org/10.1021/ja809307s] [PMID: 19191697]
[18]
Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multi-purpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. Engl., 2012, 51(1), 68-89.
[http://dx.doi.org/10.1002/anie.201101182] [PMID: 22109976]
[19]
Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater., 2015, 27(13), 2150-2176.
[http://dx.doi.org/10.1002/adma.201500033] [PMID: 25704586]
[20]
Cao, S.; Yu, J. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett., 2014, 5(12), 2101-2107.
[http://dx.doi.org/10.1021/jz500546b] [PMID: 26270499]
[21]
Yan, S.C.; Li, Z.S.; Zou, Z.G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradia-tion. Langmuir, 2010, 26(6), 3894-3901.
[http://dx.doi.org/10.1021/la904023j] [PMID: 20175583]
[22]
Dong, G.; Zhao, K.; Zhang, L. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. (Camb.), 2012, 48(49), 6178-6180.
[http://dx.doi.org/10.1039/c2cc32181e] [PMID: 22588283]
[23]
Akple, M.S.; Low, J.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.; Zhang, J. Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci., 2015, 358, 196-203.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.250]
[24]
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1), 76-80.
[http://dx.doi.org/10.1038/nmat2317] [PMID: 18997776]
[25]
Chai, B.; Peng, T.; Mao, J.; Li, K.; Zan, L. Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hy-drogen production under visible light irradiation. Phys. Chem. Chem. Phys., 2012, 14(48), 16745-16752.
[http://dx.doi.org/10.1039/c2cp42484c] [PMID: 23138223]
[26]
Yu, J.; Wang, S.; Cheng, B.; Lin, Z.; Huang, F. Noble metal-free Ni (OH)2–g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catal. Sci. Technol., 2013, 3(7), 1782-1789.
[http://dx.doi.org/10.1039/c3cy20878h]
[27]
Yu, J.; Wang, K.; Xiao, W.; Cheng, B. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photo-catalysts. Phys. Chem. Chem. Phys., 2014, 16(23), 11492-11501.
[http://dx.doi.org/10.1039/c4cp00133h] [PMID: 24801641]
[28]
Li, X.; Masters, A.F.; Maschmeyer, T. Photocatalytic hydrogen evolution from silica‐templated polymeric graphitic carbon nitride–is the surface area important? ChemCatChem, 2015, 7(1), 121-126.
[http://dx.doi.org/10.1002/cctc.201402567]
[29]
Li, X.H.; Zhang, J.; Chen, X.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. Condensed graphitic carbon nitride nanorods by nanocon-finement: Promotion of crystallinity on photocatalytic conversion. Chem. Mater., 2011, 23(19), 4344-4348.
[http://dx.doi.org/10.1021/cm201688v]
[30]
Wang, Y.; Wang, F.; Zuo, Y.; Zhang, X.; Cui, L.F. Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine. Mater. Lett., 2014, 136, 271-273.
[http://dx.doi.org/10.1016/j.matlet.2014.08.078]
[31]
Li, H.J.; Sun, B.W.; Sui, L.; Qian, D.J.; Chen, M. Preparation of water-dispersible porous g-C3N4 with improved photocatalytic activity by chemical oxidation. Phys. Chem. Chem. Phys., 2015, 17(5), 3309-3315.
[http://dx.doi.org/10.1039/C4CP05020G] [PMID: 25523639]
[32]
Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photo-redox catalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11814-11818.
[http://dx.doi.org/10.1002/anie.201206534] [PMID: 23081850]
[33]
Jun, Y.S.; Hong, W.H.; Antonietti, M.; Thomas, A. Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv. Mater., 2009, 21(42), 4270-4274.
[http://dx.doi.org/10.1002/adma.200803500]
[34]
Zhang, J.; Guo, F.; Wang, X. An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater., 2013, 23(23), 3008-3014.
[http://dx.doi.org/10.1002/adfm.201203287]
[35]
Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc., 2010, 132(18), 6294-6295.
[http://dx.doi.org/10.1021/ja101749y] [PMID: 20397632]
[36]
Liu, G.; Niu, P.; Sun, C.; Smith, S.C.; Chen, Z.; Lu, G.Q.; Cheng, H-M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc., 2010, 132(33), 11642-11648.
[http://dx.doi.org/10.1021/ja103798k] [PMID: 20681594]
[37]
Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal‐containing carbon nitride compounds: A new functional organic–metal hybrid material. Adv. Mater., 2009, 21(16), 1609-1612.
[http://dx.doi.org/10.1002/adma.200802627]
[38]
Hong, J.; Xia, X.; Wang, Y.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem., 2012, 22(30), 15006-15012.
[http://dx.doi.org/10.1039/c2jm32053c]
[39]
Martín-Ramos, P.; Martín-Gil, J.; Dante, R.; Vaquero, F.; Navarro, R.; Fierro, J. A simple approach to synthesize g-C3N4 with high visible light photoactivity for hydrogen production. Int. J. Hydrogen Energy, 2015, 40(23), 7273-7281.
[http://dx.doi.org/10.1016/j.ijhydene.2015.04.063]
[40]
Wang, Y.; Xu, Y.; Wang, Y.; Qin, H.; Li, X.; Zuo, Y.; Kang, S.; Cui, L. Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O. Catal. Commun., 2016, 74, 75-79.
[http://dx.doi.org/10.1016/j.catcom.2015.10.029]
[41]
Ge, L.; Han, C.; Liu, J.; Li, Y. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl. Catal., A,, 2011, 409, 215-222.
[42]
Hong, J.; Wang, Y.; Wang, Y.; Zhang, W.; Xu, R. Noble-metal-free NiS/C3 N4 for efficient photocatalytic hydrogen evolution from water. ChemSusChem, 2013, 6(12), 2263-2268.
[http://dx.doi.org/10.1002/cssc.201300647] [PMID: 24124100]
[43]
Zhang, S.; Li, J.; Wang, X.; Huang, Y.; Zeng, M.; Xu, J. In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis. ACS Appl. Mater. Interfaces, 2014, 6(24), 22116-22125.
[http://dx.doi.org/10.1021/am505528c] [PMID: 25427293]
[44]
Yu, J.; Wang, S.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decom-position of formaldehyde in air. Phys. Chem. Chem. Phys., 2013, 15(39), 16883-16890.
[http://dx.doi.org/10.1039/c3cp53131g] [PMID: 23999576]
[45]
Li, Q.; Zhang, N.; Yang, Y.; Wang, G.; Ng, D.H. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir, 2014, 30(29), 8965-8972.
[http://dx.doi.org/10.1021/la502033t] [PMID: 25017627]
[46]
Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl. Mater. Interfaces, 2013, 5(20), 10317-10324.
[http://dx.doi.org/10.1021/am403327g] [PMID: 24053540]
[47]
Dong, F.; Zhao, Z.; Xiong, T.; Ni, Z.; Zhang, W.; Sun, Y.; Ho, W-K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces, 2013, 5(21), 11392-11401.
[http://dx.doi.org/10.1021/am403653a] [PMID: 24144400]
[48]
Wang, X.J.; Yang, W.Y.; Li, F.T.; Xue, Y.B.; Liu, R.H.; Hao, Y.J. In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 hetero-junctions with enhanced visible-light photocatalytic properties. Ind. Eng. Chem. Res., 2013, 52(48), 17140-17150.
[http://dx.doi.org/10.1021/ie402820v]
[49]
Xu, M.; Han, L.; Dong, S. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces, 2013, 5(23), 12533-12540.
[http://dx.doi.org/10.1021/am4038307] [PMID: 24206347]
[50]
Talapaneni, S.N.; Mane, G.P.; Mano, A.; Anand, C.; Dhawale, D.S.; Mori, T.; Vinu, A. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores, band gaps and nitrogen content from a single aminoguanidine precursor. ChemSusChem, 2012, 5(4), 700-708.
[http://dx.doi.org/10.1002/cssc.201100626] [PMID: 22389323]
[51]
Huang, Z.; Li, F.; Chen, B.; Yuan, G. Porous and low-defected graphitic carbon nitride nanotubes for efficient hydrogen evolution under visible light irradiation. RSC Advances, 2015, 5(124), 102700-102706.
[http://dx.doi.org/10.1039/C5RA23419K]
[52]
Zheng, D.; Huang, C.; Wang, X. Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis. Nanoscale, 2015, 7(2), 465-470.
[http://dx.doi.org/10.1039/C4NR06011C] [PMID: 25437443]
[53]
Yang, J.H.; Kim, G.; Domen, K.; Choy, J.H. Tailoring the mesoporous texture of graphitic carbon nitride. J. Nanosci. Nanotechnol., 2013, 13(11), 7487-7492.
[http://dx.doi.org/10.1166/jnn.2013.7908] [PMID: 24245279]
[54]
Yang, X.; Chen, Z.; Xu, J.; Tang, H.; Chen, K.; Jiang, Y. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Appl. Mater. Interfaces, 2015, 7(28), 15285-15293.
[http://dx.doi.org/10.1021/acsami.5b02649] [PMID: 26118320]
[55]
Ye, S.; Wang, R.; Wu, M.Z.; Yuan, Y.P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl. Surf. Sci., 2015, 358, 15-27.
[http://dx.doi.org/10.1016/j.apsusc.2015.08.173]
[56]
Gong, Y.; Li, M.; Wang, Y. Carbon nitride in energy conversion and storage: recent advances and future prospects. ChemSusChem, 2015, 8(6), 931-946.
[http://dx.doi.org/10.1002/cssc.201403287] [PMID: 25688746]
[57]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci., 2012, 5(5), 6717-6731.
[http://dx.doi.org/10.1039/c2ee03479d]
[58]
Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J.D.; Fu, X.; Antonietti, M.; Wang, X. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. Int. Ed. Engl., 2010, 49(2), 441-444.
[http://dx.doi.org/10.1002/anie.200903886] [PMID: 19950150]
[59]
Dong, X.; Cheng, F. Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(47), 23642-23652.
[http://dx.doi.org/10.1039/C5TA07374J]
[60]
Sun, H.; Wang, S. Research advances in the synthesis of nanocarbon-based photocatalysts and their applications for photocatalytic con-version of carbon dioxide to hydrocarbon fuels. Energy Fuels, 2013, 28(1), 22-36.
[http://dx.doi.org/10.1021/ef401426x]
[61]
Fu, J.; Tian, Y.; Chang, B.; Xi, F.; Dong, X. BiOBr–carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mecha-nism. J. Mater. Chem., 2012, 22(39), 21159-21166.
[http://dx.doi.org/10.1039/c2jm34778d]
[62]
Tian, Y.; Chang, B.; Lu, J.; Fu, J.; Xi, F.; Dong, X. Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with en-hanced visible light photocatalytic activities. ACS Appl. Mater. Interfaces, 2013, 5(15), 7079-7085.
[http://dx.doi.org/10.1021/am4013819] [PMID: 23841689]
[63]
Peng, W.C.; Li, X.Y. Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catal. Commun., 2014, 49, 63-67.
[http://dx.doi.org/10.1016/j.catcom.2014.02.008]
[64]
Tian, J.; Liu, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu(2+). Anal. Chem., 2013, 85(11), 5595-5599.
[http://dx.doi.org/10.1021/ac400924j] [PMID: 23650957]
[65]
Tragl, S.; Gibson, K.; Glaser, J.; Duppel, V.; Simon, A.; Meyer, H.J. Template assisted formation of micro-and nanotubular carbon nitride materials. Solid State Commun., 2007, 141(9), 529-534.
[http://dx.doi.org/10.1016/j.ssc.2006.10.008]
[66]
Zheng, Y.; Lin, L.; Ye, X.; Guo, F.; Wang, X. Helical graphitic carbon nitrides with photocatalytic and optical activities. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11926-11930.
[http://dx.doi.org/10.1002/anie.201407319] [PMID: 25220601]
[67]
Liang, Q.; Li, Z.; Huang, Z.H.; Kang, F.; Yang, Q.H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater., 2015, 25(44), 6885-6892.
[http://dx.doi.org/10.1002/adfm.201503221]
[68]
Zheng, D.; Pang, C.; Liu, Y.; Wang, X. Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem. Commun. (Camb.), 2015, 51(47), 9706-9709.
[http://dx.doi.org/10.1039/C5CC03143E] [PMID: 25980518]
[69]
Vinu, A.; Srinivasu, P.; Sawant, D.P.; Mori, T.; Ariga, K.; Chang, J.S.; Jhung, S.H.; Balasubramanian, V.V.; Hwang, Y.K. Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume. Chem. Mater., 2007, 19(17), 4367-4372.
[http://dx.doi.org/10.1021/cm070657k]
[70]
Liu, S.; Tian, J.; Wang, L.; Luo, Y.; Sun, X. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Advances, 2012, 2(2), 411-413.
[http://dx.doi.org/10.1039/C1RA00709B]
[71]
Tang, Y.; Su, Y.; Yang, N.; Zhang, L.; Lv, Y. Carbon nitride quantum dots: A novel chemiluminescence system for selective detection of free chlorine in water. Anal. Chem., 2014, 86(9), 4528-4535.
[http://dx.doi.org/10.1021/ac5005162] [PMID: 24655009]
[72]
Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem., 2012, 22(41), 21832-21837.
[http://dx.doi.org/10.1039/c2jm35501a]
[73]
Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev., 2015, 44(1), 362-381.
[http://dx.doi.org/10.1039/C4CS00269E] [PMID: 25316556]
[74]
Li, H.; Shao, F.Q.; Huang, H.; Feng, J.J.; Wang, A.J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens. Actuators B Chem., 2016, 226, 506-511.
[http://dx.doi.org/10.1016/j.snb.2015.12.018]
[75]
Cao, X.; Ma, J.; Lin, Y.; Yao, B.; Li, F.; Weng, W.; Lin, X. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 875-880.
[http://dx.doi.org/10.1016/j.saa.2015.07.034] [PMID: 26184472]
[76]
Abdolmohammad-Zadeh, H.; Rahimpour, E. A novel chemosensor based on graphitic carbon nitride quantum dots and potassium ferricy-anide chemiluminescence system for Hg (II) ion detection. Sens. Actuators B Chem., 2016, 225, 258-266.
[http://dx.doi.org/10.1016/j.snb.2015.11.052]
[77]
Zhou, J.; Yang, Y.; Zhang, C.Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun. (Camb.), 2013, 49(77), 8605-8607.
[http://dx.doi.org/10.1039/c3cc42266f] [PMID: 23749222]
[78]
Zhao, Y.; Liu, Z.; Chu, W.; Song, L.; Zhang, Z.; Yu, D.; Tian, Y.; Xie, S.; Sun, L. Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor. Adv. Mater., 2008, 20(9), 1777-1781.
[http://dx.doi.org/10.1002/adma.200702230]
[79]
Li, J.; Cao, C.; Zhu, H. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology, 2007, 18(11)115605
[http://dx.doi.org/10.1088/0957-4484/18/11/115605]
[80]
Gao, H.; Yan, S.; Wang, J.; Huang, Y.A.; Wang, P.; Li, Z.; Zou, Z. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys., 2013, 15(41), 18077-18084.
[http://dx.doi.org/10.1039/c3cp53774a] [PMID: 24061109]
[81]
Yang, J.; Wu, X.; Li, X.; Liu, Y.; Gao, M.; Liu, X.; Kong, L.; Yang, S. Synthesis and characterization of nitrogen-rich carbon nitride nano-belts by pyrolysis of melamine. Appl. Phys., A Mater. Sci. Process., 2011, 105(1), 161-166.
[http://dx.doi.org/10.1007/s00339-011-6471-4]
[82]
Bai, X.; Cao, C.; Xu, X.; Yu, Q. Synthesis and characterization of crystalline carbon nitride nanowires. Solid State Commun., 2010, 150(43), 2148-2153.
[http://dx.doi.org/10.1016/j.ssc.2010.09.007]
[83]
Zhang, J.; Zhang, M.; Yang, C.; Wang, X. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater., 2014, 26(24), 4121-4126.
[http://dx.doi.org/10.1002/adma.201400573] [PMID: 24706532]
[84]
Sun, J.; Zhang, J.; Zhang, M.; Antonietti, M.; Fu, X.; Wang, X. Bioinspired hollow semiconductor nanospheres as photosynthetic nanopar-ticles. Nat. Commun., 2012, 3(1), 1-7.
[http://dx.doi.org/10.1038/ncomms2152]
[85]
Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P.M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater., 2013, 25(17), 2452-2456.
[http://dx.doi.org/10.1002/adma.201204453] [PMID: 23450777]
[86]
Niu, P.; Zhang, L.; Liu, G.; Cheng, H.M. Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater., 2012, 22(22), 4763-4770.
[http://dx.doi.org/10.1002/adfm.201200922]
[87]
Guo, S.; Zhu, Y.; Yan, Y.; Min, Y.; Fan, J.; Xu, Q. Holey structured graphitic carbon nitride thin sheets with edge oxygen doping via pho-to-Fenton reaction with enhanced photocatalytic activity. Appl. Catal. B, 2016, 185, 315-321.
[http://dx.doi.org/10.1016/j.apcatb.2015.11.030]
[88]
Li, X.; Hartley, G.; Ward, A.J.; Young, P.A.; Masters, A.F.; Maschmeyer, T. Hydrogenated defects in graphitic carbon nitride nanosheets for improved photocatalytic hydrogen evolution. J. Phys. Chem. C, 2015, 119(27), 14938-14946.
[http://dx.doi.org/10.1021/acs.jpcc.5b03538]
[89]
Yan, H. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. (Camb.), 2012, 48(28), 3430-3432.
[http://dx.doi.org/10.1039/c2cc00001f] [PMID: 22358113]
[90]
Wang, X.L.; Fang, W.Q.; Yang, S.; Liu, P.; Zhao, H.; Yang, H.G. Structure disorder of graphitic carbon nitride induced by liquid-assisted grinding for enhanced photocatalytic conversion. RSC Advances, 2014, 4(21), 10676-10679.
[http://dx.doi.org/10.1039/C3RA47824F]
[91]
Gu, Q.; Liao, Y.; Yin, L.; Long, J.; Wang, X.; Xue, C. Template-free synthesis of porous graphitic carbon nitride microspheres for en-hanced photocatalytic hydrogen generation with high stability. Appl. Catal. B, 2015, 165, 503-510.
[http://dx.doi.org/10.1016/j.apcatb.2014.10.045]
[92]
He, F.; Chen, G.; Zhou, Y.; Yu, Y.; Zheng, Y.; Hao, S. The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance. Chem. Commun. (Camb.), 2015, 51(90), 16244-16246.
[http://dx.doi.org/10.1039/C5CC06713H] [PMID: 26399299]
[93]
Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev., 2016, 45(9), 2603-2636.
[http://dx.doi.org/10.1039/C5CS00838G] [PMID: 26963902]
[94]
Akple, M.S.; Ishigaki, T.; Madhusudan, P. Bio-inspired honeycomb-like graphitic carbon nitride for enhanced visible light photocatalytic CO2 reduction activity. Environ. Sci. Pollut. Res. Int., 2020, 27(18), 22604-22618.
[http://dx.doi.org/10.1007/s11356-020-08804-2] [PMID: 32314294]
[95]
Abdellah, A.R.; Abdelhamid, H.N.; El-Adasy, A.B.; Atalla, A.A.; Aly, K.I. One-pot synthesis of hierarchical porous covalent organic frameworks and two-dimensional nanomaterials for selective removal of anionic dyes. J. Environ. Chem. Eng., 2020, 8(5), 104054-104081.
[http://dx.doi.org/10.1016/j.jece.2020.104054]
[96]
Jun, Y.S.; Park, J.; Lee, S.U.; Thomas, A.; Hong, W.H.; Stucky, G.D. Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem. Int. Ed. Engl., 2013, 52(42), 11083-11087.
[http://dx.doi.org/10.1002/anie.201304034] [PMID: 24038778]
[97]
Wang, Y.; Ibad, M.F.; Kosslick, H.; Harloff, J.; Beweries, T.; Radnik, J.; Schulz, A.; Tschierlei, S.; Lochbrunner, S.; Guo, X. Synthesis and comparative study of the photocatalytic performance of hierarchically porous polymeric carbon nitrides. Microporous Mesoporous Mater., 2015, 211, 182-191.
[http://dx.doi.org/10.1016/j.micromeso.2015.02.050]
[98]
Sun, Z.; Wang, W.; Chen, Q.; Pu, Y.; He, H.; Zhuang, W.; He, J.; Huang, L. A hierarchical carbon nitride tube with oxygen doping and carbon defects promotes solar-to-hydrogen conversion. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(6), 3160-3167.
[http://dx.doi.org/10.1039/C9TA13012H]
[99]
Huang, Z.; Yan, F-W.; Yuan, G-Q. Ultrasound-assisted fabrication of hierarchical rodlike graphitic carbon nitride with fewer defects and enhanced visible-light photocatalytic activity. ACS Sustain. Chem.& Eng., 2018, 6(3), 3187-3195.
[http://dx.doi.org/10.1021/acssuschemeng.7b03305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy