Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Review of Therapies using TiO2 Nanomaterials for Increased Anticancer Capability

Author(s): Noé Rodríguez-Barajas, Luis Miguel Anaya-Esparza, Zuami Villagrán-de la Mora, Jorge Alberto Sánchez-Burgos and Alejandro Pérez-Larios*

Volume 22, Issue 12, 2022

Published on: 11 March, 2022

Page: [2241 - 2254] Pages: 14

DOI: 10.2174/1871520622666211228112631

Price: $65

conference banner
Abstract

Recently, Titanium dioxide (TiO2) has been studied as an alternative to treat cancer diseases under different activation therapies. The aim of this review was to describe the effect of TiO2 nanoparticles (NPs) on some cancer cell lines and their interaction with phototherapies such as photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), and ultraviolet therapy (UV) for anticancer treatment. The use of TiO2 combined with PDT, PTT, SDT, or UV has shown a remarkable capacity to enhance the killing of cancer cells through reactive oxygen species formation. Thus, the combination of TiO2 and activation therapies exhibited great potential and could be a viable anticancer treatment strategy. However, more studies on phototherapies in combination with TiO2 and their effects under different experimental conditions (TiO2 concentration, type of cancer cells, and intensity and frequency of therapies) are necessary to guarantee the safe use of this kind of therapy.

Keywords: Titanium dioxide, antiproliferative effect, cancer treatment, alternative therapies, photodynamic therapy (PDT), photothermal therapy (PTT), sonodynamic therapy (SDT), ultraviolet therapy (UV).

Graphical Abstract

[1]
Wu, L.; Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[http://dx.doi.org/10.1039/C4CS00370E]
[2]
Sandbhor Gaikwad, P.; Banerjee, R. Advances in point-of-care diagnostic devices in cancers. Analyst (Lond.), 2018, 143(6), 1326-1348.
[http://dx.doi.org/10.1039/C7AN01771E]
[3]
Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev., 2014, 43(5), 1423-1449.
[http://dx.doi.org/10.1039/C3CS60329F]
[4]
Enderling, H. Cancer stem cells: small subpopulation or evolving fraction? Integr. Biol. (United Kingdom), 2015, 7(1), 14-23.
[http://dx.doi.org/10.1039/C4IB00191E]
[5]
Simão, É.M.; Sinigaglia, M.; Bugs, C.A.; Castro, M.A.A.; Librelotto, G.R.; Alves, R.; Mombach, J.C.M. Induced genome maintenance pathways in pre-cancer tissues describe an anti-cancer barrier in tumor development. Mol. Biosyst., 2012, 8(11), 3003-3009.
[http://dx.doi.org/10.1039/c2mb25242b]
[6]
Um, E.; Oh, J.M.; Granick, S.; Cho, Y.K. Cell migration in microengineered tumor environments. Lab Chip, 2017, 17(24), 4171-4185.
[http://dx.doi.org/10.1039/C7LC00555E]
[7]
Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for cancer: a trigger for metastases. Cancer Res., 2017, 77(7), 1548-1552.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1536]
[8]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565]
[9]
Song, W.; Musetti, S.N.; Huang, L. Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.017]
[10]
Fort, R.S.; Trinidad Barnech, J.M.; Dourron, J.; Colazzo, M.; Aguirre-Crespo, F.J.; Duhagon, M.A.; Álvarez, G. Isolation and structural characterization of bioactive molecules on prostate cancer from mayan traditional medicinal plants. Pharmaceuticals, 2018, 11(3), 78.
[http://dx.doi.org/10.3390/ph11030078]
[11]
Abbot, V.; Sharma, P.; Dhiman, S.; Noolvi, M.N.; Patel, H.M.; Bhardwaj, V. Small hybrid heteroaromatics: Resourceful biological tools in cancer research. RSC Advances, 2017, 7(45), 28313-28349.
[http://dx.doi.org/10.1039/C6RA24662A]
[12]
Lawrence, N.; Philippe, G.J-B.; Harvey, P.J.; Condon, N.D.; Benfield, A.H.; Cheneval, O.; Craik, D.J.; Troeira Henriques, S. Cyclic peptide scaffold with ability to stabilize and deliver a helical cell-impermeable cargo across membranes of cultured cancer cells. In: RSC. Chem. Biol., 2020, 1(5), 405-420.
[http://dx.doi.org/10.1039/D0CB00099J]
[13]
Lopes, C.M.; Dourado, A.; Oliveira, R. Phytotherapy and nutritional supplements on breast cancer. Bio. Med. Res. Int., 2017, 2017
[http://dx.doi.org/10.1155/2017/7207983]
[14]
Lee, S.M.; Choi, H.C.; Hyun, M.K. An overview of systematic reviews: Complementary therapies for cancer patients. Integr. Cancer Ther., 2019, 18, 1534735419890029.
[http://dx.doi.org/10.1177/1534735419890029]
[15]
Kwon, S.; Ko, H.; You, D.G.; Kataoka, K.; Park, J.H. Nanomedicines for reactive oxygen species mediated approach: An emerging paradigm for cancer treatment. Acc. Chem. Res., 2019, 52(7), 1771-1782.
[http://dx.doi.org/10.1021/acs.accounts.9b00136]
[16]
Yu, Q.; Sun, J.; Zhu, X.; Qiu, L.; Xu, M.; Liu, S.; Ouyang, J.; Liu, J. Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(30), 6081-6096.
[http://dx.doi.org/10.1039/C7TB01035D]
[17]
Saeed, M.; Iqbal, M.Z.; Ren, W.; Xia, Y.; Liu, C.; Khan, W.S.; Wu, A. Controllable synthesis of Fe3O4 nanoflowers: Enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO2. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(22), 3800-3810.
[http://dx.doi.org/10.1039/C8TB00745D]
[18]
Hou, Z.; Zhang, Y.; Deng, K.; Chen, Y.; Li, X.; Deng, X.; Cheng, Z.; Lian, H.; Li, C.; Lin, J. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano, 2015, 9(3), 2584-2599.
[http://dx.doi.org/10.1021/nn506107c]
[19]
Caputo, F.; De Nicola, M.; Sienkiewicz, A.; Giovanetti, A.; Bejarano, I.; Licoccia, S.; Traversa, E.; Ghibelli, L. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale, 2015, 7(38), 15643-15656.
[http://dx.doi.org/10.1039/C5NR03767K]
[20]
Ng, C.W.; Li, J.; Pu, K. Recent progresses in phototherapy-synergized cancer immunotherapy. Adv. Funct. Mater., 2018, 28(46), 1-20.
[http://dx.doi.org/10.1002/adfm.201804688]
[21]
Hamad, K.M.; Mahmoud, N.N.; Al-Dabash, S.; Al-Samad, L.A.; Abdallah, M.; Al-Bakri, A.G. Fluconazole conjugated-gold nanorods as an antifungal nanomedicine with low cytotoxicity against human dermal fibroblasts. RSC Advances, 2020, 10(43), 25889-25897.
[http://dx.doi.org/10.1039/D0RA00297F]
[22]
Chen, F.; Liu, Q.; Xiong, Y.; Xu, L. Current strategies and potential prospects of nanomedicine-mediated therapy in inflammatory bowel disease. Int. J. Nanomedicine, 2021, 16(June), 4225-4237.
[http://dx.doi.org/10.2147/IJN.S310952]
[23]
Chiang, C.L.; Cheng, M.H.; Lin, C.H. From nanoparticles to cancer nanomedicine: Old problems with new solutions. Nanomaterials (Basel), 2021, 11(7), 1-19.
[http://dx.doi.org/10.3390/nano11071727]
[24]
Malmsten, M. Handbook of nanomaterials properties. In: Handbook of Nanomaterials Properties;; , 2014; pp. 1053-1075.
[http://dx.doi.org/10.1007/978-3-642-31107-9]
[25]
Aur, C.; Nesma, T.; Juanes-velasco, P.; Landeira-viñuela, A.; Fidalgo-gomez, H.; Acebes-fernandez, V.; Gongora, R.; Parra, A.; Manzano-roman, R.; Fuentes, M. Interactions of nanoparticles and biosystems : Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials (Basel), 2019, 9(1365), 1-20.
[26]
Chen, M.; Zeng, G.; Xu, P.; Lai, C.; Tang, L. How do enzymes ‘meet’ nanoparticles and nanomaterials? Trends Biochem. Sci., 2017, 42(11), 914-930.
[http://dx.doi.org/10.1016/j.tibs.2017.08.008]
[27]
Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals, 2021, 14(8), 1-26.
[http://dx.doi.org/10.3390/ph14080707]
[28]
Xia, Z.; He, J.; Li, B.; He, K.; Yang, W.; Chen, X.; Zhang, J.; Xiang, G. Titanium dioxide nanoparticles induce mitochondria-associated apoptosis in HepG2 cells. RSC Advances, 2018, 8(55), 31764-31776.
[http://dx.doi.org/10.1039/C8RA05132A]
[29]
Saravana Kumar, P.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.; Ignacimuthu, S.; Al-Dhabi, N.A. Extracellular biosynthesis of silver nanoparticle using streptomyces Sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Appl. Nanosci., 2015, 5(2), 169-180.
[http://dx.doi.org/10.1007/s13204-014-0304-7]
[30]
You, D.G.; Deepagan, V.G.; Um, W.; Jeon, S.; Son, S.; Chang, H.; Yoon, H.I.; Cho, Y.W.; Swierczewska, M.; Lee, S.; Pomper, M.G.; Kwon, I.C.; Kim, K.; Park, J.H. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep., 2015, 2016(6), 1-12.
[http://dx.doi.org/10.1038/srep23200]
[31]
Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials (Basel), 2020, 10(2), 387.
[http://dx.doi.org/10.3390/nano10020387]
[32]
Wang, Z.; Zhang, N.; Wang, H.Y.; Sui, S.Y.; Sun, X.X.; Ma, Z.S. The effects of ultrasonic/microwave assisted treatment on the properties of soy protein isolate/titanium dioxide films. Lebensm. Wiss. Technol., 2014, 57(2), 548-555.
[http://dx.doi.org/10.1016/j.lwt.2014.01.036]
[33]
Khan, M.M.; Ansari, S.A.; Pradhan, D.; Ansari, M.O.; Han, D.H.; Lee, J.; Cho, M.H. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(3), 637-644.
[http://dx.doi.org/10.1039/C3TA14052K]
[34]
Anaya-Esparza, L.M.; González-Silva, N.; Yahia, E.M.; González-Vargas, O.A.; Montalvo-González, E.; Pérez-Larios, A. Effect of TiO2-ZnO-MgO mixed oxide on microbial growth and toxicity against artemia salina. Nanomaterials (Basel), 2019, 9(7), 992.
[http://dx.doi.org/10.3390/nano9070992]
[35]
Anaya-Esparza, L.M.; de la Mora, Z.V.; Ruvalcaba-Gómez, J.M.; Romero-Toledo, R.; Sandoval-Contreras, T.; Aguilera-Aguirre, S.; Montalvo-González, E.; Pérez-Larios, A. Use of titanium dioxide (TiO2) nanoparticles as reinforcement agent of polysaccharide-based materials. Processes (Basel), 2020, 8(11), 1-26.
[http://dx.doi.org/10.3390/pr8111395]
[36]
Haghighi, F.; Mohammadi, S.R.; Mohammadi, P.; Hosseinkhani, S.; Shidpour, R. Antifungal activity of TiO2 nanoparticles and EDTA on candida albicans biofilms. Orig. Artic. Infect. Epidemiol. Med, 2013, 1(1), 33-38.
[37]
Zhou, J.J.; Wang, S.Y.; Gunasekaran, S. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci., 2009, 74(7), N50-N56.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01270.x]
[38]
de Dicastillo, C.L.; Patiño, C.; Galotto, M.J.; Vásquez-Martínez, Y.; Torrent, C.; Alburquenque, D.; Pereira, A.; Escrig, J. Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein J. Nanotechnol., 2019, 10, 1716-1725.
[http://dx.doi.org/10.3762/bjnano.10.167]
[39]
Tong, T.; Shereef, A.; Wu, J.; Binh, C.T.T.; Kelly, J.J.; Gaillard, J.F.; Gray, K.A. Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environ. Sci. Technol., 2013, 47(21), 12486-12495.
[http://dx.doi.org/10.1021/es403079h]
[40]
Santhoshkumar, T.; Rahuman, A.A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A.V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S.K. Green synthesis of titanium dioxide nanoparticles using psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med., 2014, 7(12), 968-976.
[http://dx.doi.org/10.1016/S1995-7645(14)60171-1]
[41]
Rehman, F.U.; Zhao, C.; Jiang, H.; Wang, X. Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomater. Sci., 2016, 4(1), 40-54.
[http://dx.doi.org/10.1039/C5BM00332F]
[42]
Ren, W.; Iqbal, M.Z.; Zeng, L.; Chen, T.; Pan, Y.; Zhao, J.; Yin, H.; Zhang, L.; Zhang, J.; Li, A.; Wu, A. Black TiO2 based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer. Nanoscale, 2017, 9(31), 11195-11204.
[http://dx.doi.org/10.1039/C7NR04039C]
[43]
Zhang, H.; Zhu, X.; Ji, Y.; Jiao, X.; Chen, Q.; Hou, L.; Zhang, H.; Zhang, Z. Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(30), 6310-6326.
[http://dx.doi.org/10.1039/C5TB00904A]
[44]
Li, S.; Zhang, L. Erythrocyte membrane nano-capsules: Biomimetic delivery and controlled release of photothermal-photochemical coupling agents for cancer cell therapy. Dalton Trans., 2020, 49(8), 2645-2651.
[http://dx.doi.org/10.1039/C9DT04335G]
[45]
Xu, P.; Wang, R.; Ouyang, J.; Chen, B. A new strategy for TiO2 whiskers mediated multi-mode cancer treatment. Nanoscale Res. Lett., 2015, 10(1)
[http://dx.doi.org/10.1186/s11671-015-0796-4]
[46]
Fei, Yin Z.; Wu, L.; Gui Yang, H.; Hua Su, Y. Recent progress in biomedical applications of titanium dioxide. Phys. Chem. Chem. Phys., 2013, 15(14), 4844-4858.
[http://dx.doi.org/10.1039/c3cp43938k]
[47]
Abdulla-Al-Mamun, M.; Kusumoto, Y.; Zannat, T.; Islam, M.S. Synergistic enhanced photocatalytic and photothermal activity of au@tio 2 nanopellets against human epithelial carcinoma cells. Phys. Chem. Chem. Phys., 2011, 13(47), 21026-21034.
[http://dx.doi.org/10.1039/c1cp22683e]
[48]
Abdulla-Al-Mamun, M.; Kusumoto, Y.; Islam, M.S. Enhanced photocatalytic cytotoxic activity of ag@fe-doped TiO2 nanocomposites against human epithelial carcinoma cells. J. Mater. Chem., 2012, 22(12), 5460-5469.
[http://dx.doi.org/10.1039/c2jm15636a]
[49]
Yu, N.; Hu, Y.; Wang, X.; Liu, G.; Wang, Z.; Liu, Z.; Tian, Q.; Zhu, M.; Shi, X.; Chen, Z. Dynamically tuning near-infrared-induced photothermal performances of TiO2 nanocrystals by Nb doping for imaging-guided photothermal therapy of tumors. Nanoscale, 2017, 9(26), 9148-9159.
[http://dx.doi.org/10.1039/C7NR02180A]
[50]
Sawant, V.J.; Bamane, S.R.; Kanase, D.G.; Patil, S.B.; Ghosh, J. Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for ph sensitive enhancement of anticancer and anti-psoriatic potential. RSC Advances, 2016, 6(71), 66745-66755.
[http://dx.doi.org/10.1039/C6RA13851A]
[51]
Xie, Z.; Fan, T.; An, J.; Choi, W.; Duo, Y.; Ge, Y.; Zhang, B.; Nie, G.; Xie, N.; Zheng, T.; Chen, Y.; Zhang, H.; Kim, J.S. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev., 2020, 49(22), 8065-8087.
[http://dx.doi.org/10.1039/D0CS00215A]
[52]
van Eck, N.J.; Waltman, L. Software survey: vosviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2), 523-538.
[http://dx.doi.org/10.1007/s11192-009-0146-3]
[53]
Gao, Y.; Zhang, L.; Liu, Y.; Sun, S.; Yin, Z.; Zhang, L.; Li, A.; Lu, G.; Wu, A.; Zeng, L. Ce6/Mn2+-chelated polydopamine@black-TiO2 nanoprobes for enhanced synergistic phototherapy and magnetic resonance imaging in 4T1 breast cancer. Nanoscale, 2020, 12(3), 1801-1810.
[http://dx.doi.org/10.1039/C9NR09236F]
[54]
M., Sheikh Mohamed Veeranarayanan, Srivani; Maekawa, Toru; D, Sakthi Kumar External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv. Drug Deliv. Rev., 2019, 138, 18-40.
[http://dx.doi.org/10.1016/j.addr.2018.10.007]
[55]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[http://dx.doi.org/10.1021/cr400532z]
[56]
Gangopadhyay, M.; Mukhopadhyay, S.K.; Karthik, S.; Barman, S.; Singh, N.D.P. Targeted photoresponsive TiO2–coumarin nanoconjugate for efficient combination therapy in MDA-MB-231 breast cancer cells: synergic effect of photodynamic therapy (PDT) and anticancer drug chlorambucil. MedChemComm, 2015, 6, 769-777.
[http://dx.doi.org/10.1039/C4MD00481G]
[57]
Guo, W.; Wang, F.; Ding, D.; Song, C.; Guo, C.; Liu, S. TiO2-x based nanoplatform for bimodal cancer imaging and nir-triggered chem/photodynamic/photothermal combination therapy. Chem. Mater., 2017, 29(21), 9262-9274.
[http://dx.doi.org/10.1021/acs.chemmater.7b03241]
[58]
Gschwend, P.M.; Conti, S.; Kaech, A.; Maake, C.; Pratsinis, S.E. Silica-coated TiN particles for killing cancer cells. ACS Appl. Mater. Interfaces, 2019, 11, 22550-22560.
[http://dx.doi.org/10.1021/acsami.9b07239]
[59]
Gao, F.; He, G.; Yin, H.; Chen, J.; Liu, Y.; Lan, C.; Zhang, S.; Yang, B. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nanoscale, 2019, 11(5), 2374-2384.
[http://dx.doi.org/10.1039/C8NR07188H]
[60]
Han, X.; Huang, J.; Jing, X.; Yang, D.; Lin, H.; Wang, Z.; Li, P.; Chen, Y. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano, 2018, 12(5), 4545-4555.
[http://dx.doi.org/10.1021/acsnano.8b00899]
[61]
He, L.; Mao, C.; Brasino, M.; Harguindey, A.; Park, W.; Goodwin, A.P.; Cha, J.N. TiO2-capped gold nanorods for plasmon-enhanced production of reactive oxygen species and photothermal delivery of chemotherapeutic agents. ACS Appl. Mater. Interfaces, 2018, 10(33), 27965-27971.
[http://dx.doi.org/10.1021/acsami.8b08868]
[62]
Wu, M.; Ding, Y.; Li, L. Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. Nanoscale, 2019, 11(42), 19658-19683.
[http://dx.doi.org/10.1039/C9NR06651A]
[63]
Wang, X.; Wang, W.; Yu, L.; Tang, Y.; Cao, J.; Chen, Y. Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(24), 4579-4586.
[http://dx.doi.org/10.1039/C7TB00938K]
[64]
Zhukova, L.V. Evidence for compression of Escherichia Coli K12 cells under the effect of TiO2 nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(49), 27197-27205.
[http://dx.doi.org/10.1021/acsami.5b08042]
[65]
Duan, D.; Liu, H.; Xu, Y.; Han, Y.; Xu, M.; Zhang, Z.; Liu, Z. Activating TiO2 nanoparticles: Gallium-68 serves as a high-yield photon emitter for cerenkov-induced photodynamic therapy. ACS Appl. Mater. Interfaces, 2018, 10(6), 5278-5286.
[http://dx.doi.org/10.1021/acsami.7b17902]
[66]
Zhang, H.; Shi, R.; Xie, A.; Li, J.; Chen, L.; Chen, P.; Li, S.; Huang, F.; Shen, Y. Novel TiO2/PEGDA hybrid hydrogel prepared in situ on tumor cells for effective photodynamic therapy. ACS Appl. Mater. Interfaces, 2013, 5(23), 12317-12322.
[http://dx.doi.org/10.1021/am4025559]
[67]
Flak, D.; Coy, E.; Nowaczyk, G.; Yate, L.; Jurga, S. Tuning the photodynamic efficiency of TiO2 nanotubes against Hela Cancer cells by Fe-doping. RSC Advances, 2015, 5(103), 85139-85152.
[http://dx.doi.org/10.1039/C5RA17430A]
[68]
Li, Z.; Ou-Yang, Y.; Liu, Y.; Wang, Y.Q.; Zhu, X.L.; Zhang, Z.Z. Folic acid-conjugated TiO2-doped mesoporous carbonaceous nanocomposites loaded with mitoxantrone HCl for chemo-photodynamic therapy. Photochem. Photobiol. Sci., 2015, 14(6), 1197-1206.
[http://dx.doi.org/10.1039/C5PP00097A]
[69]
Moosavi, M.A.; Sharifi, M.; Ghafary, S.M.; Mohammadalipour, Z.; Khataee, A.; Rahmati, M.; Hajjaran, S.; Łos, M.J.; Klonisch, T.; Ghavami, S. Photodynamic N-TiO2 nanoparticle treatment induces controlled ROS-mediated autophagy and terminal differentiation of leukemia cells. Sci. Rep., 2016, 6(September), 1-16.
[http://dx.doi.org/10.1038/srep34413]
[70]
Byeon, J.H. Scalable hybrid chemical manufacture to photothermal therapy: PEG-capped phototransducers. Sci. Rep., 2016, 6(April), 1-8.
[http://dx.doi.org/10.1038/srep31351]
[71]
Zeng, J.; Wu, M.; Lan, S.; Li, J.; Zhang, X.; Liu, J.; Liu, X.; Wei, Z.; Zeng, Y. Facile preparation of biocompatible Ti2O3 nanoparticles for second near-infrared window photothermal therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(47), 7889-7897.
[http://dx.doi.org/10.1039/C8TB02079E]
[72]
Deepagan, V.G.; You, D.G.; Um, W.; Ko, H.; Kwon, S.; Choi, K.Y.; Yi, G.R.; Lee, J.Y.; Lee, D.S.; Kim, K.; Kwon, I.C.; Park, J.H. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett., 2016, 16(10), 6257-6264.
[http://dx.doi.org/10.1021/acs.nanolett.6b02547]
[73]
Shen, S.; Guo, X.; Wu, L.; Wang, M.; Wang, X.; Kong, F.; Shen, H.; Xie, M.; Ge, Y.; Jin, Y. Dual-Core@shell-structured Fe3O4-NaYF 4@TiO2 nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(35), 5775-5784.
[http://dx.doi.org/10.1039/C4TB00841C]
[74]
Zhang, G.; Zhang, X.; Yang, Y.; Chi, R.; Shi, J.; Hang, R.; Huang, X.; Yao, X.; Chu, P.K.; Zhang, X. Dual light-induced in situ antibacterial activities of biocompatibleTiO2/MoS2/PDA/RGD nanorod arrays on titanium. Biomater. Sci., 2020, 8(1), 391-404.
[http://dx.doi.org/10.1039/C9BM01507H]
[75]
Chen, Y.; Zhang, F.; Wang, Q.; Tong, R.; Lin, H.; Qu, F. Near-infrared light-mediated LA-UCNPs@SiO2-C/HA@mSiO2-DOX@NB nanocomposite for chemotherapy/PDT/PTT and imaging. Dalton Trans., 2017, 41, 7292-7301.
[http://dx.doi.org/10.1039/C7NJ01291H]
[76]
Xiang, H.J.; Deng, Q.; An, L.; Guo, M.; Yang, S.P.; Liu, J.G. Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 Nm near-infrared light. Chem. Commun. (Camb.), 2016, 52(1), 148-151.
[http://dx.doi.org/10.1039/C5CC07006F]
[77]
Zhu, X.M.; Fang, C.; Jia, H.; Huang, Y.; Cheng, C.H.K.; Ko, C.H.; Chen, Z.; Wang, J.; Wang, Y.X.J. Cellular uptake behaviour, photothermal therapy performance, and cytotoxicity of gold nanorods with various coatings. Nanoscale, 2014, 6(19), 11462-11472.
[http://dx.doi.org/10.1039/C4NR03865G]
[78]
Sun, L.; Li, Z.; Li, Z.; Hu, Y.; Chen, C.; Yang, C.; Du, B.; Sun, Y.; Besenbacher, F.; Yu, M. Design and mechanism of core-shell TiO2 nanoparticles as a high-performance photothermal Agent. Nanoscale, 2017, 9(42), 16183-16192.
[http://dx.doi.org/10.1039/C7NR02848B]
[79]
Xu, J.; Sun, Y.; Zhao, Y.; Huang, J.; Chen, C.; Jiang, Z. Photocatalytic inactivation effect of gold-doped TiO2 (Au/ TiO2) nanocomposites on human colon carcinoma LoVo cells. Int. J. Photoenergy, 2007, 2007
[http://dx.doi.org/10.1155/2007/97308]
[80]
Chen, J.; Zhou, H.; Santulli, A.C.; Wong, S.S. Evaluating cytotoxicity and cellular uptake from the presence of variously processed TiO2 nanostructured morphologies. Chem. Res. Toxicol., 2010, 23(5), 871-879.
[http://dx.doi.org/10.1021/tx900418b]
[81]
Sharsheeva, A.; Iglin, V.A.; Nesterov, P.V.; Kuchur, O.A.; Garifullina, E.; Hey-Hawkins, E.; Ulasevich, S.A.; Skorb, E.V.; Vinogradov, A.V.; Morozov, M.I. Light-Controllable systems based on TiO2-zif-8 composites for targeted drug release: communicating with tumour cells. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(43), 6810-6821.
[http://dx.doi.org/10.1039/C9TB01377F]
[82]
Morlando, A.; Chaki Borrás, M.; Rehman, Y.; Bakand, S.; Barker, P.; Sluyter, R.; Konstantinov, K. Development of CeO2 nanodot encrusted TiO2 nanoparticles with reduced photocatalytic activity and increased biocompatibility towards a human keratinocyte cell line. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(18), 4016-4028.
[http://dx.doi.org/10.1039/D0TB00629G]
[83]
Imani, R.; Veranič, P.; Iglič, A.; Kreft, M.E.; Pazoki, M.; Hudoklin, S. Combined cytotoxic effect of UV-irradiation and TiO2 microbeads in normal urothelial cells, low-grade and high-grade urothelial cancer cells. Photochem. Photobiol. Sci., 2015, 14(3), 583-590.
[http://dx.doi.org/10.1039/C4PP00272E]
[84]
Yadav, H.M.; Thorat, N.D.; Yallapu, M.M.; Tofail, S.A.M.; Kim, J.S. Functional TiO2 nanocoral architecture for light-activated cancer chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(7), 1461-1470.
[http://dx.doi.org/10.1039/C6TB02324J]
[85]
Runa, S.; Khanal, D.; Kemp, M.L.; Payne, C.K. TiO2 nanoparticles alter the expression of peroxiredoxin antioxidant genes. J. Phys. Chem. C, 2016, 120(37), 20736-20742.
[http://dx.doi.org/10.1021/acs.jpcc.6b01939]
[86]
Patel, S.; Jana, S.; Chetty, R.; Thakore, S.; Singh, M.; Devkar, R. TiO2 nanoparticles induce omphalocele in chicken embryo by disrupting wnt signaling pathway. Sci. Rep., 2018, 8(1), 1-11.
[http://dx.doi.org/10.1038/s41598-018-23215-7]
[87]
Koedrith, P.; Kim, Y.J.; Kim, Y.; Kang, J.H.; Seo, Y.R. Intrinsic toxicity of stable nanosized titanium dioxide using polyacrylate in human keratinocytes. Mol. Cell. Toxicol., 2018, 14(3), 273-282.
[http://dx.doi.org/10.1007/s13273-018-0030-4]
[88]
Haleem, A.M.; Abbas, R.H.; Jawad, M.A.; Alberaqdar, F. Cytotoxic effects of titanium dioxide nanaoparticles synthesized by laser technique on peripheral blood lymphocytes and Hep-2 cell line. Toxicol. Environ. Health Sci., 2019, 11(3), 219-225.
[http://dx.doi.org/10.1007/s13530-019-0407-3]
[89]
Liu, J.; Yin, P.; Zhao, L. Adverse effect of TiO2 nanoparticles on antioxidant system and antitumor activities of macroalgae gracilaria lemaneiformis. J. Ocean Univ. China, 2019, 18(5), 1130-1138.
[http://dx.doi.org/10.1007/s11802-019-3819-4]
[90]
Martin, A.; Sarkar, A. Epithelial to mesenchymal transition, EIF2α phosphorylation and Hsp70 expression enable greater tolerance in A549 cells to TiO2 over ZnO nanoparticles. Sci. Rep., 2019, 9(1), 1-14.
[http://dx.doi.org/10.1038/s41598-018-36716-2]
[91]
Mohamed, M.S.; Torabi, A.; Paulose, M.; Kumar, D.S.; Varghese, O.K. Anodically grown titania nanotube induced cytotoxicity has genotoxic origins. Sci. Rep., 2017, 7, 1-11.
[http://dx.doi.org/10.1038/srep41844]
[92]
Chen, Z.; Han, S.; Zheng, P.; Zhou, D.; Zhou, S.; Jia, G. Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in sprague-dawley rats. Nanoscale, 2020, 12(10), 5973-5986.
[http://dx.doi.org/10.1039/C9NR10947A]
[93]
Peng, F.; Setyawati, M.I.; Tee, J.K.; Ding, X.; Wang, J.; Nga, M.E.; Ho, H.K.; Leong, D.T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol., 2019, 14(3), 279-286.
[http://dx.doi.org/10.1038/s41565-018-0356-z]
[94]
Notter, T.; Aengenheister, L.; Weber-Stadlbauer, U.; Naegeli, H.; Wick, P.; Meyer, U.; Buerki-Thurnherr, T. Prenatal exposure to TiO2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Transl. Psychiatry, 2018, 8(1)
[http://dx.doi.org/10.1038/s41398-018-0251-2]
[95]
Setyawati, M.I.; Tay, C.Y.; Chia, S.L.; Goh, S.L.; Fang, W.; Neo, M.J.; Chong, H.C.; Tan, S.M.; Loo, S.C.J.; Ng, K.W.; Xie, J.P.; Ong, C.N.; Tan, N.S.; Leong, D.T. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun., 2013, 4, 1-12.
[http://dx.doi.org/10.1038/ncomms2655]
[96]
Tucci, P.; Porta, G.; Agostini, M.; Dinsdale, D.; Iavicoli, I.; Cain, K.; Finazzi-Agró, A.; Melino, G.; Willis, A. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis., 2013, 4(3), 1-11.
[http://dx.doi.org/10.1038/cddis.2013.76]
[97]
Hu, M.; Lin, D.; Shang, Y.; Hu, Y.; Lu, W.; Huang, X.; Ning, K.; Chen, Y.; Wang, Y. CO2-induced PH reduction increases physiological toxicity of nano-TiO2 in the mussel mytilus coruscus. Sci. Rep., 2017, 7(January), 1-11.
[http://dx.doi.org/10.1038/srep40015]
[98]
Bettini, S.; Boutet-Robinet, E.; Cartier, C.; Coméra, C.; Gaultier, E.; Dupuy, J.; Naud, N.; Taché, S.; Grysan, P.; Reguer, S.; Thieriet, N.; Réfrégiers, M.; Thiaudière, D.; Cravedi, J.P.; Carrière, M.; Audinot, J.N.; Pierre, F.H.; Guzylack-Piriou, L.; Houdeau, E. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep., 2017, 7(January), 1-13.
[http://dx.doi.org/10.1038/srep40373]
[99]
Proquin, H.; Jonkhout, M.C.M.; Jetten, M.J.; van Loveren, H.; de Kok, T.M.; Briedé, J.J. Transcriptome changes in undifferentiated caco-2 cells exposed to food-grade titanium dioxide (E171): contribution of the nano- and micro- sized particles. Sci. Rep., 2019, 9(1), 1-14.
[http://dx.doi.org/10.1038/s41598-019-54675-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy