Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Efficient Transport and Biotransformation of Dipeptide-like Tyrosine/ Phenylalanine-Conjugated Phenolic Amide Esters in THP-1 Cells and PBMCs: A Potential Means for Transporting Compounds Inside Monocytes/Macrophages

Author(s): Jae B. Park

Volume 3, Issue 2, 2022

Published on: 15 February, 2022

Article ID: e241221199425 Pages: 12

DOI: 10.2174/2665978603666211224121836

Price: $65

conference banner
Abstract

Background: Recent studies suggest that dipeptide-like tyrosine/phenylalanine-conjugated phenolic amide compounds may contain several biological activities, including anti-inflammatory activity. However, there is currently no information about their transport and biotransformation in monocytes/macrophages involved in inflammation process.

Objective: The objective of this study was to investigate cell transport and biotransformation of the phenolic amides and esters in monocyte/macrophage-like cells.

Methods: Cell transport and biotransformation of the phenolic amides and esters (N-coumaroylphenylalanine, N-caffeoylphenylalanine, N-feruloylphenylalanine, N-coumaroyltyrosine, Ncaffeoyltyrosine, N-feruloyltyrosine, and their O-methyl esters) were investigated in THP-1 cells and PBMCs using HPLC, cellular, and kinetics methods.

Results: In THP-1 cells, the phenolic amides were not transported significantly, but their O-methyl esters were transported significantly (P < 0.02). Also, the transport of the esters was found to be sodium-independent and pH-dependent. Among the tested esters, N-feruloylphenylalanine-Omethyl ester showed the highest uptake (Km of 25 μM), and the uptake was inhibited by PepT1/2 substrate and blocker (GlySar and enalapril) in THP-1 cells. Particularly, enalapril competitively inhibited the uptake with Ki of 560 μM. The data also showed that N-feruloylphenylalanine-Omethyl ester and N-feruloyltyrosine-O-methyl ester could be biotransformed into parent phenolic amides in THP-1 cells. Similarly, these ester compounds were also found to be transported and biotransformed in PBMCs.

Conclusion: The data suggest that dipeptide-like tyrosine/phenylalanine-conjugated phenolic amide esters may be transported and biotransformed in THP-1 cells and PBMCs.

Keywords: Dipeptide-like tyrosine, phenylalanine-conjugated phenolic amide esters, bioactives, nutraceuticals, transport, biotransformation, PepT2, THP-1 cells, PBMCs.

Graphical Abstract

[1]
Park, J.B. Bioavailability of alfrutamide and caffedymine and their p-selectin suppression and platelet-leukocyte aggregation mechanisms in mice. J. Nutr., 2016, 146(2), 437S-443S.
[http://dx.doi.org/10.3945/jn.114.202473] [PMID: 26764323]
[2]
Chehri, Z.; Zolfaghari, B.; Sadeghi Dinani, M. Isolation of cinnamic acid derivatives from the bulbs of Allium tripedale. Adv. Biomed. Res., 2018, 7, 60.
[http://dx.doi.org/10.4103/abr.abr_34_17] [PMID: 29862209]
[3]
Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem., 2018, 262, 56-66.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.078] [PMID: 29751921]
[4]
Han, S.H.; Lee, H.H.; Lee, I.S.; Moon, Y.H.; Woo, E.R. A new phenolic amide from Lycium chinense Miller. Arch. Pharm. Res., 2002, 25(4), 433-437.
[http://dx.doi.org/10.1007/BF02976596] [PMID: 12214850]
[5]
Chen, C.Y.; Yeh, Y.T.; Yang, W.L. Amides from the stem of Capsicum annuum. Nat. Prod. Commun., 2011, 6(2), 227-229.
[http://dx.doi.org/10.1177/1934578X1100600217] [PMID: 21425680]
[6]
Park, J.B.; Schoene, N. N-caffeoyltyramine arrests growth of U937 and Jurkat cells by inhibiting protein tyrosine phosphorylation and inducing caspase-3. Cancer Lett., 2003, 202(2), 161-171.
[http://dx.doi.org/10.1016/j.canlet.2003.08.010] [PMID: 14643446]
[7]
Park, J.B. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. Int. J. Food Sci. Nutr., 2011, 62(6), 577-584.
[http://dx.doi.org/10.3109/09637486.2011.562882] [PMID: 21506887]
[8]
Park, J.B. Effects of typheramide and alfrutamide found in Allium species on cyclooxygenases and lipoxygenases. J. Med. Food, 2011, 14(3), 226-231.
[http://dx.doi.org/10.1089/jmf.2009.0198] [PMID: 21332401]
[9]
Park, J.B. Caffedymine from cocoa has COX inhibitory activity suppressing the expression of a platelet activation marker, P-selectin. J. Agric. Food Chem., 2007, 55(6), 2171-2175.
[http://dx.doi.org/10.1021/jf0628835] [PMID: 17319684]
[10]
Kim, D.K.; Lim, J.P.; Kim, J.W.; Park, H.W.; Eun, J.S. Antitumor and antiinflammatory constituents from Celtis sinensis. Arch. Pharm. Res., 2005, 28(1), 39-43.
[http://dx.doi.org/10.1007/BF02975133] [PMID: 15742806]
[11]
Han, E.H.; Kim, J.Y.; Kim, H.G.; Choi, J.H.; Im, J.H.; Woo, E.R.; Jeong, H.G. Dihydro-N-caffeoyltyramine down-regulates cyclooxygenase-2 expression by inhibiting the activities of C/EBP and AP-1 transcription factors. Food Chem. Toxicol., 2010, 48(2), 579-586.
[http://dx.doi.org/10.1016/j.fct.2009.11.035] [PMID: 19922759]
[12]
Okombi, S.; Rival, D.; Bonnet, S.; Mariotte, A.M.; Perrier, E.; Boumendjel, A. Analogues of N-hydroxycinnamoylphenalkylamides as inhibitors of human melanocyte-tyrosinase. Bioorg. Med. Chem. Lett., 2006, 16(8), 2252-2255.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.022] [PMID: 16442796]
[13]
Olatunji, O.J.; Chen, H.; Zhou, Y. Neuroprotective effect of trans-N-caffeoyltyramine from Lycium chinense against H2O2 induced cytotoxicity in PC12 cells by attenuating oxidative stress. Biomed. Pharmacother., 2017, 93, 895-902.
[http://dx.doi.org/10.1016/j.biopha.2017.07.013] [PMID: 28715870]
[14]
Herrera-Ruiz, D.; Knipp, G.T. Current perspectives on established and putative mammalian oligopeptide transporters. J. Pharm. Sci., 2003, 92(4), 691-714.
[http://dx.doi.org/10.1002/jps.10303] [PMID: 12661057]
[15]
Fei, Y.J.; Ganapathy, V.; Leibach, F.H. Molecular and structural features of the proton-coupled oligopeptide transporter superfamily. Prog. Nucleic Acid Res. Mol. Biol., 1998, 58, 239-261.
[http://dx.doi.org/10.1016/S0079-6603(08)60038-0] [PMID: 9308368]
[16]
Ganapathy, V.; Leibach, F.H. Peptide transporters. Curr. Opin. Nephrol. Hypertens., 1996, 5(5), 395-400.
[http://dx.doi.org/10.1097/00041552-199609000-00003] [PMID: 8937806]
[17]
Smith, D.E.; Clémençon, B.; Hediger, M.A. Proton-coupled oligopeptide transporter family SLC15: Physiological, pharmacological and pathological implications. Mol. Aspects Med., 2013, 34(2-3), 323-336.
[http://dx.doi.org/10.1016/j.mam.2012.11.003] [PMID: 23506874]
[18]
Zhao, D.; Lu, K. Substrates of the human oligopeptide transporter hPEPT2. Biosci. Trends, 2015, 9(4), 207-213.
[http://dx.doi.org/10.5582/bst.2015.01078] [PMID: 26355221]
[19]
Kamal, M.A.; Keep, R.F.; Smith, D.E. Role and relevance of PEPT2 in drug disposition, dynamics, and toxicity. Drug Metab. Pharmacokinet., 2008, 23(4), 236-242.
[http://dx.doi.org/10.2133/dmpk.23.236] [PMID: 18762710]
[20]
Sun, D.; Wang, Y.; Tan, F.; Fang, D.; Hu, Y.; Smith, D.E.; Jiang, H. Functional and molecular expression of the proton-coupled oligopeptide transporters in spleen and macrophages from mouse and human. Mol. Pharm., 2013, 10(4), 1409-1416.
[http://dx.doi.org/10.1021/mp300700p] [PMID: 23442152]
[21]
Park, J.B.; Peters, R.; Pham, Q.; Wang, T.T.Y. Javamide-II Inhibits IL-6 without significant impact on TNF-alpha and IL-1beta in macrophage-like cells. Biomedicines, 2020, 8(6), 138.
[http://dx.doi.org/10.3390/biomedicines8060138] [PMID: 32485858]
[22]
Park, J.B. Concurrent detection of javamide-I/-II, 3'-CQA, 4'-CQA, 5'-CQA and caffeine in ground and instant coffees and their comparative quantification and disparity. Sep. Sci. Plus, 2019, 2(7), 230-236.
[http://dx.doi.org/10.1002/sscp.201900022]
[23]
Akarawut, W.; Lin, C.J.; Smith, D.E. Noncompetitive inhibition of glycylsarcosine transport by quinapril in rabbit renal brush border membrane vesicles: Effect on high-affinity peptide transporter. J. Pharmacol. Exp. Ther., 1998, 287(2), 684-690.
[PMID: 9808697]
[24]
Crow, J.A.; Middleton, B.L.; Borazjani, A.; Hatfield, M.J.; Potter, P.M.; Ross, M.K. Inhibition of carboxylesterase 1 is associated with cholesteryl ester retention in human THP-1 monocyte/macrophages. Biochim. Biophys. Acta, 2008, 1781(10), 643-654.
[http://dx.doi.org/10.1016/j.bbalip.2008.07.005] [PMID: 18762277]
[25]
Mangum, L.C.; Hou, X.; Borazjani, A.; Lee, J.H.; Ross, M.K.; Crow, J.A. Silencing carboxylesterase 1 in human THP-1 macrophages perturbs genes regulated by PPARγ/RXR and RAR/RXR: Down-regulation of CYP27A1-LXRα signaling. Biochem. J., 2018, 475(3), 621-642.
[http://dx.doi.org/10.1042/BCJ20180008] [PMID: 29321244]
[26]
Lee, V.H. Membrane transporters. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S41-S50.
[http://dx.doi.org/10.1016/S0928-0987(00)00163-9] [PMID: 11033426]
[27]
Newstead, S. Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim. Biophys. Acta, 2015, 1850(3), 488-499.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.011] [PMID: 24859687]
[28]
Ardura, J.A.; Rackov, G.; Izquierdo, E.; Alonso, V.; Gortazar, A.R.; Escribese, M.M. Targeting macrophages: Friends or foes in disease? Front. Pharmacol., 2019, 10, 1255.
[http://dx.doi.org/10.3389/fphar.2019.01255] [PMID: 31708781]
[29]
Siouti, E.; Andreakos, E. The many facets of macrophages in rheumatoid arthritis. Biochem. Pharmacol., 2019, 165, 152-169.
[http://dx.doi.org/10.1016/j.bcp.2019.03.029] [PMID: 30910693]
[30]
Smith, D.E.; Johanson, C.E.; Keep, R.F. Peptide and peptide analog transport systems at the blood-CSF barrier. Adv. Drug Deliv. Rev., 2004, 56(12), 1765-1791.
[http://dx.doi.org/10.1016/j.addr.2004.07.008] [PMID: 15381333]
[31]
Terada, T.; Inui, K. Peptide transporters: Structure, function, regulation and application for drug delivery. Curr. Drug Metab., 2004, 5(1), 85-94.
[http://dx.doi.org/10.2174/1389200043489153] [PMID: 14965252]
[32]
Zhu, T.; Chen, X.Z.; Steel, A.; Hediger, M.A.; Smith, D.E. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharm. Res., 2000, 17(5), 526-532.
[http://dx.doi.org/10.1023/A:1007556630189] [PMID: 10888303]
[33]
Alghamdi, O.A.; King, N.; Jones, G.L.; Moens, P.D.J. Kinetic measurements of Di- and tripeptide and peptidomimetic drug transport in different kidney regions using the fluorescent membrane potential-sensitive dye, DiS-C3-(3). J. Membr. Biol., 2017, 250(6), 641-649.
[http://dx.doi.org/10.1007/s00232-017-9990-x] [PMID: 28988287]
[34]
Alghamdi, O.A.; King, N.; Jones, G.L.; Moens, P.D.J. A new use of β-Ala-Lys (AMCA) as a transport reporter for PEPT1 and PEPT2 in renal brush border membrane vesicles from the outer cortex and outer medulla. Biochim. Biophys. Acta Biomembr., 2018, 1860(5), 960-964.
[http://dx.doi.org/10.1016/j.bbamem.2017.12.021] [PMID: 29291378]
[35]
Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev., 2015, 264(1), 182-203.
[http://dx.doi.org/10.1111/imr.12266] [PMID: 25703560]
[36]
Rogers, K.J.; Maury, W. The role of mononuclear phagocytes in Ebola virus infection. J. Leukoc. Biol., 2018, 104(4), 717-727.
[http://dx.doi.org/10.1002/JLB.4RI0518-183R] [PMID: 30095866]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy