Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

New Approaches for the Synthesis of 2,3,5,6-Tetrahydrobenzo[d]thiazole Derivatives and their Anti-Proliferative, c-Met Enzymatic Activity and Tyrosine Kinases Inhibitions

Author(s): Rafat M. Mohareb*, Maher H. E. Helal, Sara S. Mohamed and Amira E. M. Abdallah*

Volume 22, Issue 12, 2022

Published on: 14 February, 2022

Page: [2327 - 2339] Pages: 13

DOI: 10.2174/1871520622666211224102301

Price: $65

Abstract

Background: Due to their biological applications, many tetrahydrobenzo[d]thiazole derivatives were considered the most important class of heterocyclic compounds. There are many drugs known in the market containing the thiazole moiety responsible for the high drug activity.

Objective: This work aimed to produce novel heterocyclic compounds such as pyrazole, isoxazole, thiophene, chromeno[ 7,8-d]thiazole, and thiazolo[4,5-h]quinoline derivatives. The newly synthesized heterocyclic compounds were evaluated against anticancer cell lines followed by c-Met enzymatic activity and tyrosine kinases inhibition for the most active compounds.

Methods: In this work, the 3-phenyl-2-thioxo-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (3) was synthesized through the reaction of cyclohexane-1,3-dione with phenyl isothiocyanate and elemental sulfur. Compound 3 showed interesting activity toward some chemical reagents producing new heterocyclic compounds that can not be obtained another way. The newly synthesized compounds were evaluated towards the six cancer cell lines. The most active compounds were selected and tested toward the c-Met enzyme by taking foretinib as the positive control. Also, the inhibitions toward the PC-3 cell line using the reference SGI-1776 were measured. Finally, the inhibitions towards the five tyrosine kinases were also tested.

Results: The synthesized quinoline and chromene derivatives were evaluated toward the c-Met enzyme using foretinib as the positive control. The obtained results showed that twelve compounds exhibited IC50 values less than 1.30 nM. On the other hand, sixteen compounds showed higher inhibitions than the reference SGI-1776 (IC50 4.86 nM) toward the PC-3 cell line.

Conclusion: Novel, heterocyclic compounds were synthesized with a high impact on biological activities. All synthesized compounds were screened for their anti-proliferative effect, and most of them revealed high potent effects. In addition, the c-Met and prostate cancer cell line PC-3 inhibitions for the most active compounds showed that these compounds exhibited high inhibitions. Anti-proliferative activity of selected compounds toward cancer cell lines classified according to the disease showed that most compounds exhibited high inhibitions.

Keywords: Chromeno[7, 8-d]thiazole, thiazole, thiazolo[4, 5-h]quinoline, c-Met enzyme, tyrosine kinases, heterocyclic compounds.

Graphical Abstract

[1]
Antonioletti, R.; Bovicelli, P.; Malancona, S. A new route to 2-alkenyl-1,3-dicarbonyl compounds, intermediates in the synthesis of dihydrofurans. Tetrahedron, 2002, 58(3), 589-596.
[http://dx.doi.org/10.1016/S0040-4020(01)01173-5]
[2]
Sevenard, D.V.; Vorobyev, M.; Sosnovskikh, V.Y.; Wessel, H.; Kazakova, O.; Vogel, V.; Shevchenko, N.E.; Nenajdenko, V.G.; Lork, E.; Röschenthaler, G.V. Halogenation of fluorinated cyclic 1,3-dicarbonyl compounds: New aspects of synthesis application. Tetrahedron, 2009, 65(36), 7538-7552.
[http://dx.doi.org/10.1016/j.tet.2009.06.122]
[3]
Narayanaperumal, S.; da Silva, R.C.; Feu, K.S.; de la Torre, A.F.; Corrêa, A.G.; Paixão, M.W. Basic-functionalized recyclable ionic liquid catalyst: A solvent-free approach for Michael addition of 1,3-dicarbonyl compounds to nitroalkenes under ultrasound irradiation. Ultrason. Sonochem., 2013, 20(3), 793-798.
[http://dx.doi.org/10.1016/j.ultsonch.2012.11.002] [PMID: 23218731]
[4]
Ohtsuka, Y.; Uraguchi, D.; Yamamoto, K.; Tokuhisa, K.; Yamakawa, T. Synthesis of 2-(trifluouromethyl)-1,3-dicarbonyl compounds through direct trifluoromethylation with CF3I and their application to fluorinated pyrazoles syntheses. Tetrahedron, 2012, 68(12), 2636-2649.
[http://dx.doi.org/10.1016/j.tet.2012.01.075]
[5]
Chatterjee, P.N.; Roy, S. Alkylation of 1, 3-dicarbonyl compounds with benzylic and propargylic alcohols using Ir–Sn bimetallic catalyst: Synthesis of fully decorated furans and pyrroles. Tetrahedron, 2011, 67(25), 4569-4577.
[http://dx.doi.org/10.1016/j.tet.2011.04.092]
[6]
Kozlov, N.G.; Kadutskii, A.P. A novel three-component reaction of anilines, formaldehyde and dimedone: Simple synthesis of spirosubstituted piperidines. Tetrahedron Lett., 2008, 49(29-30), 4560-4562.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.160]
[7]
Liang-liang, C.; Yong, Z.; Wen-fang, S. Photoinitiating characteristics of benzophenone derivatives as type II macromolecular photoinitiators used for uv curable resins. Chem. Res. Chin. Univ., 2011, 27(1), 145-149.
[8]
Zhang, Z-H.; Zhang, P.; Yang, S.H.; Wang, H.J.; Deng, J. Multicomponent, solvent-free synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]-xanthen-11-one derivatives catalysed by cyanuric chloride. J. Chem. Sci., 2010, 122, 427-432.
[http://dx.doi.org/10.1007/s12039-010-0049-0]
[9]
Zhang, Z.H.; Zgang, P.; Yang, S.H.; Wang, H.J.; Deng, J. β-Cyclodextrin mediated synthesis of 1,8-dioxooctahydroxanthenes in water. J. Chem. Sci., 2010, 122, 427-732.
[http://dx.doi.org/10.1007/s12039-010-0049-0]
[10]
Mohamed, S.K.; Abdelhamid, A.A.; Maharramov, A.M.; Khalilov, A.N.; Gurbanov, A.V.; Allahverdiev, M.A. Trizma: Efficient catalyst and reactant in Knoevenagel condensation reaction under conventional heat and microwave irradiation conditions. J. Chem. Pharm. Res., 2012, 4(3), 1787-1793.
[11]
Rohr, K.; Mahrwald, R. Catalyst-free tandem aldol condensation/Michael addition of 1,3-cyclohexanediones with enolizable aldehydes. Bioorg. Med. Chem. Lett., 2009, 19(14), 3949-3951.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.040] [PMID: 19328691]
[12]
Khurana, J.M.; Magoo, D. Efficient one-pot syntheses of 2H-indazolo[2,1-b]phthalazine-triones by catalytic H2SO4 in water–ethanol or ionic liquid. Tetrahedron Lett., 2009, 50(52), 7300-7303.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.032]
[13]
Verma, G.K.; Raghuvanshi, K.; Verma, R.K.; Dwivedi, P.; Singh, M.S. An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1, 8-diones. Tetrahedron, 2011, 67(20), 3698-3704.
[http://dx.doi.org/10.1016/j.tet.2011.03.078]
[14]
Reddy, M.V.; Sekhar Reddy, G.C.; Jeong, Y.T. Microwave-assisted, montmorillonite K-10 catalyzed three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Tetrahedron, 2012, 68(34), 6820-6828.
[http://dx.doi.org/10.1016/j.tet.2012.06.045]
[15]
Quiroga, J.; Trilleras, J.; Pantoja, D.; Abonía, R.; Insuasty, B.; Nogueras Cobo, J. Microwave-assisted synthesis of pyrazolo[3,4-b]pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic β-diketones. Tetrahedron Lett., 2010, 51(36), 4717-4719.
[http://dx.doi.org/10.1016/j.tetlet.2010.07.009]
[16]
Saitoh, T.; Taguchi, K.; Hiraide, M. Derivatization of formaldehyde with dimedone and subsequent sorption on sodium dodecylsulfate/alumina admicelles for fluorometric analysis. Anal. Sci., 2002, 18(11), 1267-1268.
[http://dx.doi.org/10.2116/analsci.18.1267] [PMID: 12458715]
[17]
Cremlyn, R.J.; Saunders, D. Chlorosulfonation of 9-aryl 3,3,6,6-tetramethylocta hydro-xanthen-1,8-diones. Phosphorus Sulfur Silicon Relat. Elem., 1993, 81(1-4), 73-82.
[http://dx.doi.org/10.1080/10426509308034375]
[18]
Li, Z.; Wang, W.; Jian, H.; Li, W.; Dai, B.; He, Li. Synthesis of 9-phenol-substituted xanthenes by cascade O-insertion/1,6-conjugate addition of benzyne with ortho-hydroxyphenyl substituted para-quinone methides. Chin. Chem. Lett., 2019, 30(2), 386-388.
[http://dx.doi.org/10.1016/j.cclet.2018.04.003]
[19]
Guan-Wu, W.; Chun-Bao, M. Environmentally benign one-pot multi-component approaches to the synthesis of novel unsymmetrical 4-arylacridinediones. Green Chem., 2006, 8(12), 1080-1085.
[http://dx.doi.org/10.1039/b604064k]
[20]
James, L.D.; Richard, A.G.; Surya, K.D. An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation. J. Mol. Catal. Chem., 2006, 256(1-2), 309-311.
[http://dx.doi.org/10.1016/j.molcata.2006.03.079]
[21]
Majumdar, K.C.; Samanta, S.K. Studies in aza-Claisen rearrangement: Synthesis of dimedone-annelated unusual heterocycles. Tetrahedron, 2001, 57(23), 4955-4958.
[http://dx.doi.org/10.1016/S0040-4020(01)00405-7]
[22]
Majumdar, K.C.; Samanta, S.K. Studies on sulfoxide rearrangement: Synthesis of dimedone-annelated heterocycles. Tetrahedron, 2002, 58(22), 4551-4958.
[http://dx.doi.org/10.1016/S0040-4020(02)00396-4]
[23]
Yaragorla, S.; Pareek, A.; Dada, R. Regioselective annulation of propargyl alcohols with ambident-enols: A Ca(II)-catalyzed trisubstituted benzochromene synthesis. Tetrahedron Lett., 2017, 58(49), 4642-4647.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.077]
[24]
Liu, H.G.; Wu, C.S.; Wang, J.F.; Yang, D.Y. Isomerization of enol esters derived from 2-acyl-1,3-cyclohexanediones: Mechanism and driving force. Tetrahedron Lett., 2003, 44(15), 3137-3141.
[http://dx.doi.org/10.1016/S0040-4039(03)00554-9]
[25]
Chassaing, S.; Specklin, S.; Weibel, J.M.; Pale, P. Vinyl triflates derived from 1,3-dicarbonyl compounds and analogs: Access and applications to organic synthesis. Tetrahedron, 2012, 68(36), 7245-7273.
[http://dx.doi.org/10.1016/j.tet.2012.05.107]
[26]
Feng, G.; Sun, C.; Xin, X.; Wan, R.; Liu, L. Total synthesis based modification of benzoquinone ansamycin antibiotics: C8 diversification of C5-C15 fragments. Tetrahedron Lett., 2019, 60(7), 547-551.
[http://dx.doi.org/10.1016/j.tetlet.2019.01.024]
[27]
Li, M.; Zhao, X.; Yang, W.; Zhong, F.; Yuan, L.; Ren, Q. Asymmetric synthesis and biological evaluation of 3-nitro-2H-chromenes as potential antibacterial agents. Tetrahedron Lett., 2018, 59(39), 3511-3515.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.046]
[28]
Cui, Y.; Dang, Y.; Yang, Y.; Ji, R. Synthesis of novel oxazolidinone derivatives for antibacterial investigation. Curr. Sci., 2005, 89(3), 531-534.
[29]
Jae-Min, H.; Sung-Ho, Y.; Kang-Yeoun, J. Synthesis of oxazolidinone phosphonate derivatives, part II. Bull. Korean Chem. Soc., 2007, 28(5), 821-826.
[http://dx.doi.org/10.5012/bkcs.2007.28.5.821]
[30]
Jo, Y.W.; Im, W.B.; Rhee, J.K.; Shim, M.J.; Kim, W.B.; Choi, E.C. Synthesis and antibacterial activity of oxazolidinones containing pyridine substituted with heteroaromatic ring. Bioorg. Med. Chem., 2004, 12(22), 5909-5915.
[http://dx.doi.org/10.1016/j.bmc.2004.08.025] [PMID: 15498667]
[31]
Pae, A.N.; Kim, H.Y.; Joo, H.J.; Kim, B.H.; Cho, Y.S.; Choi, K.I.; Choi, J.H.; Koh, H.Y. Synthesis and in vitro activity of new oxazolidinone antibacterial agents having substituted isoxazoles. Bioorg. Med. Chem. Lett., 1999, 9(18), 2679-2684.
[http://dx.doi.org/10.1016/S0960-894X(99)00473-4] [PMID: 10509915]
[32]
Wardakhan, W.W.; Youssef, M.A.; Hamed, F.I.; Ouf, S.A. New Approaches for the synthesis of thiazoles and their fused derivatives with antimicrobial activities. J. Chin. Chem. Soc. (Taipei), 2008, 55(5), 1133-1144.
[http://dx.doi.org/10.1002/jccs.200800167]
[33]
Geronikaki, A.A.; Pitta, E.P.; Liaras, K.S. Thiazoles and thiazolidinones as antioxidants. Curr. Med. Chem., 2013, 20(36), 4460-4480.
[http://dx.doi.org/10.2174/09298673113209990143] [PMID: 23834182]
[34]
Khatik, G.L.; Datusalia, A.K.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, S.K. A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Curr. Drug Discov. Technol., 2018, 15(3), 163-177.
[http://dx.doi.org/10.2174/1570163814666170915134018] [PMID: 28914188]
[35]
Mohareb, R.; Al-Omran, F.; Abdelaziz, M.; Ibrahim, R. Anti-inflammatory and anti-ulcer activities of new fused thiazole derivatives derived from 2-(2-Oxo-2H-chromen-3-yl)thiazol-4(5H)-one. Acta Chim. Slov., 2017, 64(2), 349-364.
[http://dx.doi.org/10.17344/acsi.2017.3200] [PMID: 28621395]
[36]
Hameed, S.; Akhtar, T.; Al-Masoudi, N.A.; Al-Masoudi, W.A.; Jones, P.G.; Pannecouque, C. Synthesis, crystal structure, anti-HIV, and antiproliferative activity of new oxadiazole and thiazole analogs. Med. Chem. Res., 2016, 25(10), 2399-2409.
[http://dx.doi.org/10.1007/s00044-016-1669-9]
[37]
Kryshchyshyn, A.; Atamanyuk, D.; Lesyk, R. Fused thiopyrano[2,3-d]thiazole derivatives as potential anticancer agents. Sci. Pharm., 2012, 80(3), 509-529.
[http://dx.doi.org/10.3797/scipharm.1204-02] [PMID: 23008803]
[38]
Amr, Ael-G.; Sabrry, N.M.; Abdalla, M.M.; Abdel-Wahab, B.F. Synthesis, antiarrhythmic and anticoagulant activities of novel thiazolo derivatives from methyl 2-(thiazol-2-ylcarbamoyl)acetate. Eur. J. Med. Chem., 2009, 44(2), 725-735.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.004] [PMID: 18579260]
[39]
Mishchenko, M.; Shtrygol, S.; Kaminskyy, D.; Lesyk, R. Thiazole-bearing 4-thiazolidinones as new anticonvulsant agents. Sci. Pharm., 2020, 88(1), 16-30.
[http://dx.doi.org/10.3390/scipharm88010016]
[40]
Mohareb, R.M.; El-Sayed, N.N.; Abdelaziz, M.A. The Knoevenagel reactions of pregnenolone with cyanomethylene reagents: synthesis of thiophene, thieno[2,3-b]pyridine, thieno[3,2-d]isoxazole derivatives of pregnenolone and their in vitro cytotoxicity towards tumor and normal cell lines. Steroids, 2013, 78(12-13), 1209-1219.
[http://dx.doi.org/10.1016/j.steroids.2013.08.007] [PMID: 24012739]
[41]
Mohareb, R.M.; Abdallah, A.E.M.; Abdelaziz, M.A. New approaches for the synthesis of pyrazole, thiophene, thieno[2,3-b]pyridine, and thiazole derivatives together with their anti-tumor evaluations. Med. Chem. Res., 2014, 23, 564-579.
[http://dx.doi.org/10.1007/s00044-013-0664-7]
[42]
Abdallah, A.E.M.; Mohareb, R.M.; Ahmed, E.A. Novel pyrano[2,3-d]thiazole and thiazolo[4,5-b]pyridine derivatives: One-pot three-component synthesis and biological evaluation as anticancer agents, c-Met, and Pim-1 kinase inhibitors. J. Heterocycl. Chem., 2019, 56(11), 3017-3029.
[http://dx.doi.org/10.1002/jhet.3697]
[43]
Abdallah, A.E.M.; Mohareb, R.M.; Khalil, E.M.; Elshamy, M.A.M.A.E. Synthesis of novel heterocyclic compounds incorporate 4,5,6,7-tetrahydrobenzo[b]thiophene together with their cytotoxic evaluations. Chem. Pharm. Bull. (Tokyo), 2017, 65(5), 469-477.
[http://dx.doi.org/10.1248/cpb.c16-00925] [PMID: 28458368]
[44]
Mohareb, R.M.; Abdallah, A.E.M.; Mohamed, A.A. Synthesis of novel thiophene, thiazole and coumarin derivatives based on benzimidazole nucleus and their cytotoxicity and toxicity evaluations. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 309-318.
[http://dx.doi.org/10.1248/cpb.c17-00922] [PMID: 29491264]
[45]
Mohareb, R.M.; Khalil, E.M.; Mayhoub, A.E.; Abdallah, A.E.M. Novel synthesis of pyran, thiophene, and pyridine derivatives incorporating thiazole ring and their antitumor evaluation. J. Heterocycl. Chem., 2020, 57(3), 1330-1343.
[http://dx.doi.org/10.1002/jhet.3870]
[46]
Mohareb, R.M.; Abdallah, A.E.M.; Helal, M.H.E.; Shaloof, S.M.H. Synthesis and structure elucidation of some novel thiophene and benzothiophene derivatives as cytotoxic agents. Acta Pharm., 2016, 66(1), 53-68.
[http://dx.doi.org/10.1515/acph-2016-0005] [PMID: 26959543]
[47]
Tang, Q.; Zhao, Y.; Du, X.; Chong, L.; Gong, P.; Guo, C. Design, synthesis, and structure-activity relationships of novel 6,7-disubstituted-4-phenoxyquinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2013, 69, 77-89.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.019] [PMID: 24012712]
[48]
Tang, Q.; Wang, L.; Tu, Y.; Zhu, W.; Luo, R.; Tu, Q.; Wang, P.; Wu, C.; Gong, P.; Zheng, P. Discovery of novel pyrrolo[2,3-b]pyridine derivatives bearing 1,2,3-triazole moiety as c-Met kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(7), 1680-1684.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.059] [PMID: 26923692]
[49]
Zhou, S.; Liao, H.; Liu, M.; Feng, G.; Fu, B.; Li, R.; Cheng, M.; Zhao, Y.; Gong, P. Discovery andw biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy)quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2014, 22(22), 6438-6452.
[http://dx.doi.org/10.1016/j.bmc.2014.09.037] [PMID: 25438768]
[50]
Gewald, K.; Schindler, R. Cyclisierungen mit cyanthioacetamid in gegenwart von schwefel. J. Prakt. Chem., 1990, 332(2), 223-228.
[http://dx.doi.org/10.1002/prac.19903320213]
[51]
Xu, X.; Shi, W.; Zhou, Y.; Wang, Y.; Zhang, M.; Song, L.; Deng, H. Convenient one-pot synthesis of monofluorinated functionalized 4-H-pyran derivatives via multi-component reactions. J. Fluor. Chem., 2015, 176, 127-133.
[http://dx.doi.org/10.1016/j.jfluchem.2015.05.008]
[52]
Penta, S.; Gadidasu, K.K.; Basavoju, S.; Rao, V.R. An efficient one-pot synthesis of pyrazolyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl)-2H-pyran-2-one derivatives via multicomponent approach and their potential antimicrobial and nematicidal activities. Tetrahedron Lett., 2013, 54(22), 5663-5666.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.148]
[53]
Wagh, Y.B.; Tayade, Y.A.; Padvi, S.A.; Patil, B.S.; Patil, N.B.; Dalal, D.S. A cesium fluoride promoted efficient and rapid multicomponent synthesis of functionalized 2-amino-3-cyano-4H-pyran and spirooxindole derivatives. Chin. Chem. Lett., 2015, 26, 1273-1277.
[http://dx.doi.org/10.1016/j.cclet.2015.06.014]
[54]
Jolodar, O.G.; Shirini, F.; Seddighi, M. Introduction of a novel basic ionic liquid containing dual basic functional groups for the efficient synthesis of spiro-4H-pyrans. J. Mol. Liq., 2016, 224(Part A), 1092-1111.
[http://dx.doi.org/10.1016/j.molliq.2016.10.093]
[55]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Cambell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[56]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of thenational cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[57]
Boyd, M.R. Cancer Drug Discovery and Development, 2; Teicher, B.A., Ed.; Humana Press, 1997, pp. 23-43.
[58]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy