Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design and Synthesis of Novel Quinazolinone-Based Oxobutanenitrile Derivatives as Antiproliferative Agents Targeting Human Breast Cancer

Author(s): Omaima Mohamed AboulWafa, Hoda Mohamed Gamal El-Din Daabees and Eman Salah Ezz-ElDien*

Volume 22, Issue 12, 2022

Published on: 17 March, 2022

Page: [2310 - 2326] Pages: 17

DOI: 10.2174/1871520621666211214104144

Price: $65

Abstract

Background: Breast cancer (BC) is among the leading causes of death in women worldwide. Medical interest has focused on quinazolinone derivatives approved and utilized in antitumor medications.

Objective: Novel quinazolinone-based oxobutanenitrile derivatives were designed, synthesized, and screened for in vitro anti-breast cancer activity.

Methods: The antiproliferative activities were determined using MTT assay against MCF-7 and MDA-MB-231 cell lines. EGFR, ARO, and caspase-9 enzymes were selected to explore the mechanism of action of the most potent compounds.

Results: Tested compounds showed better EGFRIs than ARIs. In addition, significant overexpression of caspase-9 level in treated MCF-7 breast cell line samples was observed with the most active compounds. The thienyl derivative 5 induced the greatest activation in caspase-9 level in treated MCF-7 breast cancer samples. The o-tolylhydrazone 3b, exhibiting promising ARO inhibition and weak EGFR inhibition, produced a noticeable high overexpression of caspase- 9 and showed pre-G1 apoptosis and cell cycle arrest at G2/M phase for MCF-7 cells and at S-phase for MDA-MB- 231 cells. Docking results revealed that 3b elicited binding affinities to ARO comparable to those of letrozole.

Conclusion: The obtained results support the therapeutic importance of some of these compounds as anti-breast cancer agents in light of the simple methodology used for their synthesis. Their design offered a way for the optimization and development of apoptotic quinazolinone-based ARO and EGFR inhibitors.

Keywords: Quinazolinone-based oxobutanenitriles, MTT assay, EGFR, ARO, caspase-9 activation, apoptosis, docking.

Graphical Abstract

[1]
World Health Organization. Global Health Observatory; World Health Organization: Geneva, 2018. Available from: who.int/gho/database/ Accessed on June 21, 2018.
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2018, 1-13.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[4]
Benoist, S.; Nordlinger, B. The role of preoperative chemotherapy in patients with resectable colorectal liver metastases. Ann. Surg. Oncol., 2009, 16(9), 2385-2390.
[http://dx.doi.org/10.1245/s10434-009-0492-7] [PMID: 19554377]
[5]
Roskoski, R. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006]
[6]
Wu, H.C.; Chang, D.K.; Huang, C.T. Targeted therapy for cancer. J. Cancer Mol., 2006, 2(2), 57-66.
[7]
Lavanya, V.; Mohamed Adil, A.A.; Neesar, A.; Arun, R.K.; Shazia, J. Small molecule inhibitors as emerging cancer therapeutics. Integr. Cancer Sci. Ther., 2014, 1(3), 39-46.
[http://dx.doi.org/10.15761/ICST.1000109]
[8]
Dowers, T.S.; Qin, Z.H.; Thatcher, G.R.; Bolton, J.L. Bioactivation of selective estrogen receptor modulators (SERMs). Chem. Res. Toxicol., 2006, 19(9), 1125-1137.
[http://dx.doi.org/10.1021/tx060126v] [PMID: 16978016]
[9]
Osborne, C.; Tripathy, D. Aromatase inhibitors: rationale and use in breast cancer. Annu. Rev. Med., 2005, 56(1), 103-116.
[http://dx.doi.org/10.1146/annurev.med.56.062804.103324]
[10]
Ito, K.; Blinder, V.S.; Elkin, E.B. Cost effectiveness of fracture prevention in postmenopausal women who receive aromatase inhibitors for early breast cancer. J. Clin. Oncol., 2012, 30(13), 1468-1475.
[http://dx.doi.org/10.1200/JCO.2011.38.7001]
[11]
Gore, L.; DeGregori, J.; Porter, C.C. Targeting developmental pathways in children with cancer: what price success? Lancet Oncol., 2013, 14(2), 70-78.
[http://dx.doi.org/10.1016/S1470-2045(12)70530-2]
[12]
Mohamed, A.; Krajewski, K.; Cakar, B.; Ma, C.X. Targeted therapy for breast cancer. Am. J. Pathol., 2013, 183(4), 1096-1112.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.005] [PMID: 23988612]
[13]
Laderian, B.; Fojo, T. CDK4/6 Inhibition as a therapeutic strategy in breast cancer: Palbociclib, ribociclib, and abemaciclib. Semin. Oncol., 2017, 44(6), 395-403.
[http://dx.doi.org/10.1053/j.seminoncol.2018.03.006] [PMID: 29935901]
[14]
Sobhani, N.; D’Angelo, A.; Pittacolo, M.; Roviello, G.; Miccoli, A.; Corona, S.P.; Bernocchi, O.; Generali, D.; Otto, T. Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer. Cells, 2019, 8(4), 321-344.
[http://dx.doi.org/10.3390/cells8040321] [PMID: 30959874]
[15]
Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers (Basel), 2020, 12(3), 731-747.
[http://dx.doi.org/10.3390/cancers12030731] [PMID: 32244867]
[16]
Barlési, F.; Tchouhadjian, C.; Doddoli, C.; Villani, P.; Greillier, L.; Kleisbauer, J.P.; Astoul, P. Gefitinib (ZD1839, Iressa®) in non‐small‐cell lung cancer: A review of clinical trials from a daily practice perspective. Fundam. Clin. Pharmacol., 2005, 19(3), 385-393.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00323.x]
[17]
Ganjoo, K.N.; Wakelee, H. Review of erlotinib in the treatment of advanced non-small cell lung cancer. Biol. Targets Ther., 2007, 1(4), 335-346.
[PMID: 19707304]
[18]
Vogel, C.; Chan, A.; Gril, B.; Kim, S.B.; Kurebayashi, J.; Liu, L.; Lu, Y.S.; Moon, H. Management of ErbB2-positive breast cancer: Insights from preclinical and clinical studies with lapatinib. Jpn. J. Clin. Oncol., 2010, 40(11), 999-1013.
[http://dx.doi.org/10.1093/jjco/hyq084] [PMID: 20542996]
[19]
Pines, M.; Spector, I. Halofuginone - the multifaceted molecule. Molecules, 2015, 20(1), 573-594.
[http://dx.doi.org/10.3390/molecules20010573] [PMID: 25569515]
[20]
Huan, L.C.; Phuong, C.V.; Truc, L.C.; Thanh, V.N.; Pham-The, H.; Huong, L.T.T.; Han, S.B. (E)-N′-Arylidene-2-(4-oxoquinazolin-4(3H)-yl)acetohydrazides: Synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 465-478.
[http://dx.doi.org/10.1080/14756366.2018.1555536]
[21]
Zayed, M.F.; Rateb, H.S.; Ahmed, S.; Khaled, O.A.; Ibrahim, S.R.M. Quinazolinone-amino acid hybrids as dual inhibitors of EGFR kinase and tubulin polymerization. Molecules, 2018, 23(7), 1699-1715.
[http://dx.doi.org/10.3390/molecules23071699] [PMID: 30002297]
[22]
Gatadi, S.; Pulivendala, G.; Gour, J.; Malasala, S.; Bujji, S.; Parupalli, R.; Shaikh, M.; Godugu, C.; Nanduri, S. Synthesis and evaluation of new 4(3H)-quinazolinone derivatives as potential anticancer agents. J. Mol. Struct., 2020, 1200, 127097.
[http://dx.doi.org/10.1016/j.molstruc.2019.127097]
[23]
Shagufta, W.; Ahmad, I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. Med. Chem. Comm., 2017, 8(5), 871-885.
[http://dx.doi.org/10.1039/C7MD00097A] [PMID: 30108803]
[24]
Kshirsagar, U.A. Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem., 2015, 13(36), 9336-9352.
[http://dx.doi.org/10.1039/C5OB01379H] [PMID: 26278395]
[25]
Baselga, J.; Coleman, R.E.; Cortés, J.; Janni, W. Advances in the management of HER2-positive early breast cancer. Crit. Rev. Oncol. Hematol., 2017, 119, 113-122.
[http://dx.doi.org/10.1016/j.critrevonc.2017.10.001] [PMID: 29042085]
[26]
Hegedüs, C.; Truta-Feles, K.; Antalffy, G.; Várady, G.; Német, K.; Ozvegy-Laczka, C.; Kéri, G.; Orfi, L.; Szakács, G.; Settleman, J.; Váradi, A.; Sarkadi, B. Interaction of the EGFR inhibitors gefitinib, vandetanib, pelitinib and neratinib with the ABCG2 multidrug transporter: implications for the emergence and reversal of cancer drug resistance. Biochem. Pharmacol., 2012, 84(3), 260-267.
[http://dx.doi.org/10.1016/j.bcp.2012.04.010] [PMID: 22548830]
[27]
Tong, C.W.S.; Wu, M.; Cho, W.C.S.; To, K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol., 2018, 8, 227.
[http://dx.doi.org/10.3389/fonc.2018.00227] [PMID: 29963498]
[28]
Raats, J.I.; Falkson, G.; Falkson, H.C. A study of fadrozole, a new aromatase inhibitor, in postmenopausal women with advanced metastatic breast cancer. J. Clin. Oncol., 1992, 10(1), 111-116.
[http://dx.doi.org/10.1200/JCO.1992.10.1.111] [PMID: 1530798]
[29]
Sanford, M.; Plosker, G.L. Anastrozole: A review of its use in postmenopausal women with early-stage breast cancer. Drugs, 2008, 68(9), 1319-1340.
[http://dx.doi.org/10.2165/00003495-200868090-00007] [PMID: 18547136]
[30]
He, D.X.; Ma, X. Clinical utility of letrozole in the treatment of breast cancer: A Chinese perspective. OncoTargets Ther., 2016, 9, 1077-1084.
[http://dx.doi.org/10.2147/OTT.S81087] [PMID: 27042100]
[31]
Avendano, C.O.; Menendez, C.J. Anticancer drugs that modulate hormone action. Medicinal Chemistry of Anticancer Drugs; Avendaño, C.O.; Menéndez, C.J., Eds.; Elsevier B.V: Amsterdam, 2015, pp. 81-83.
[http://dx.doi.org/10.1016/B978-0-444-62649-3.00003-X]
[32]
Dos Santos, A.M.; Cianni, L.; De Vita, D.; Rosini, F.; Leitão, A.; Laughton, C.A.; Lameira, J.; Montanari, C.A. Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles. Phys. Chem. Chem. Phys., 2018, 20(37), 24317-24328.
[http://dx.doi.org/10.1039/C8CP03320J] [PMID: 30211406]
[33]
AboulWafa. O.M.; Daabees, H.M.G.; Badawi, W.A. 2-Anilinopyrimidine derivatives: Design, synthesis, in vitro anti-proliferative activity, EGFR and ARO inhibitory activity, cell cycle analysis and molecular docking study. Bioorg. Chem., 2020, 99, 103798.
[http://dx.doi.org/10.1016/j.bioorg.2020.103798]
[34]
Leese, M.P.; Jourdan, F.L.; Gaukroger, K.; Mahon, M.F.; Newman, S.P.; Foster, P.A.; Stengel, C.; Regis-Lydi, S.; Ferrandis, E.; Di Fiore, A.; De Simone, G.; Supuran, C.T.; Purohit, A.; Reed, M.J.; Potter, B.V.L. Structure-activity relationships of C-17 cyano-substituted estratrienes as anticancer agents. J. Med. Chem., 2008, 51(5), 1295-1308.
[http://dx.doi.org/10.1021/jm701319c] [PMID: 18260615]
[35]
Mu, Y.; Nguyen, T.T.; Koh, M.J.; Schrock, R.R.; Hoveyda, A.H. E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis. Nat. Chem., 2019, 11(5), 478-487.
[http://dx.doi.org/10.1038/s41557-019-0233-x] [PMID: 30936524]
[36]
AboulWafa. O.M.; Daabees, H.M.G.; El-Tombary, A.A.; Ezz-El Dien, E.S. Investigation of an amidation reaction for the preparation of some 2-(2-phenyl-4-oxoquinazolin-3(4H)-yl)-N-substituted acetamides and N-substituted 2-(2-(4-oxo-2-phenylquinazolin-3(4H)-yl)acetyl hydrazine-1-carboxamides. Am. J. Org. Chem., 2018, 8(1), 1-7.
[http://dx.doi.org/10.5923/j.ajoc.20180801.01]
[37]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[38]
Vistica, D.T.; Skehan, P.; Scudiero, D.; Monks, A.; Pittman, A.; Boyd, M.R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res., 1991, 51(10), 2515-2520.
[PMID: 2021931]
[39]
Edmondson, J.M.; Armstrong, L.S.; Martinez, A.O. A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures. J. Tissue Cult. Methods, 1988, 11(1), 15-17.
[http://dx.doi.org/10.1007/BF01404408]
[40]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo [3, 4-d] pyrimidines: design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 532-546.
[http://dx.doi.org/10.1080/14756366.2018.1564046]
[41]
Amin, N.H.; Elsaadi, M.T.; Zaki, S.S.; Abdel-Rahman, H.M. Design, synthesis and molecular modeling studies of 2-styrylquinazoline derivatives as EGFR inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 105, 104358.
[http://dx.doi.org/10.1016/j.bioorg.2020.104358]
[42]
Fantacuzzi, M.; De Filippis, B.; Gallorini, M.; Ammazzalorso, A.; Giampietro, L.; Maccallini, C.; Aturki, Z.; Donati, E.; Ibrahim, R.S.; Shawky, E.; Cataldi, A.; Amoroso, R. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur. J. Med. Chem., 2020, 185, 111815-111828.
[http://dx.doi.org/10.1016/j.ejmech.2019.111815] [PMID: 31732252]
[43]
Abd El-Karim, S.S.; Syam, Y.M.; El Kerdawy, A.M.; Abdelghany, T.M. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorg. Chem., 2019, 86, 80-96.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.026]
[44]
Burnette, W.N. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem., 1981, 112(2), 195-203.
[http://dx.doi.org/10.1016/0003-2697(81)90281-5] [PMID: 6266278]
[45]
Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, 2nd ed.; Cold Spring Harbor: New York , 1989.
[46]
Hasmah, A.; Hawariah, L.P.A.; Hohmann, J. Release of Cytochrome c in MCF-7 Cells Treated With 7, 3′, 5′-Trihydroxyflavanone of Hydnophytum Formicarium. Biomed. Pharmacol. J., 2009, 2(1), 1-6.
[47]
Stancato, L.F.; Petricoin, E.F., III Fingerprinting of signal transduction pathways using a combination of anti-phosphotyrosine immunoprecipitations and two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 2001, 22(10), 2120-2124.
[http://dx.doi.org/10.1002/1522-2683(200106)22:10<2120::AIDELPS2120>3.0.CO;2-9] [PMID: 11465514]
[48]
Vermes, I.; Haanen, C.; Steffens-Nakken, H.; Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods, 1995, 184(1), 39-51.
[http://dx.doi.org/10.1016/0022-1759(95)00072-I] [PMID: 7622868]
[49]
Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K.J.; Rusnak, D.W.; Gilmer, T.M.; Shewchuk, L. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res., 2004, 64(18), 6652-6659.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1168] [PMID: 15374980]
[50]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457(7226), 219-223.
[http://dx.doi.org/10.1038/nature07614] [PMID: 19129847]
[51]
Omar, A.M.E. AboulWafa, O.M.; El-Shoukrofy, M.S.; Amr, M.E. Benzoxazole derivatives as new generation of anti-breast cancer agents. Bioorg. Chem., 2020, 96, 103593.
[http://dx.doi.org/10.1016/j.bioorg.2020.103593] [PMID: 32004897]
[52]
Abdelsalam, M.A. AboulWafa, O.M.; M Badawey, E.A.; El-Shoukrofy, M.S.; El-Miligy, M.M.; Gouda, N.; Elaasser, M.M. Design, synthesis, anticancer screening, docking studies and in silico ADME prediction of some β-carboline derivatives. Future Med. Chem., 2018, 10(10), 1159-1175.
[http://dx.doi.org/10.4155/fmc-2017-0206] [PMID: 29787297]
[53]
Abdelsalam, M.A. AboulWafa, O.M.; Badawey, E.A.; El-Shoukrofy, M.S.; El-Miligy, M.M.; Gouda, N. Design and synthesis of some β-carboline derivatives as multi-target anticancer agents. Future Med. Chem., 2018, 10(24), 2791-2814.
[http://dx.doi.org/10.4155/fmc-2018-0226] [PMID: 30539666]
[54]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[55]
Tsou, H.R.; Overbeek-Klumpers, E.G.; Hallett, W.A.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Michalak, R.S.; Nilakantan, R.; Discafani, C.; Golas, J.; Rabindran, S.K.; Shen, R.; Shi, X.; Wang, Y.F.; Upeslacis, J.; Wissner, A. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem., 2005, 48(4), 1107-1131.
[http://dx.doi.org/10.1021/jm040159c] [PMID: 15715478]
[56]
Kolehmainen, E.; Ośmiałowski, B. 15N-NMR studies of tautomerism. Int. Rev. Phys. Chem., 2012, 31(4), 567-629.
[http://dx.doi.org/10.1080/0144235X.2012.734157]
[57]
Behbehani, H.; Mohamed Ibrahim, H.; Makhseed, S. Studies with 3-oxoalkanonitriles: Synthesis and reactivity of 3-oxo-3-(1-methylindoloyl)propanenitrile. Heterocycles, 2009, 78(12), 3081-3090.
[http://dx.doi.org/10.3987/COM-09-11818]
[58]
Kenawi, I.M.; Elnagdi, M.H. DFT and FT-IR analyses of hydrogen bonding in 3-substistuted-3-oxo-arylhydrazonopropanenitriles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 65(3-4), 805-810.
[http://dx.doi.org/10.1016/j.saa.2006.01.017] [PMID: 16529991]
[59]
Gouda, M.A.; Berghot, M.A.; Abd El-Ghani, G.E.; Khalil, A.E.G.M. Synthesis and antioxidant evaluation of some nicotinonitriles. J. Heterocycl. Chem., 2015, 53(4), 1241-1250.
[http://dx.doi.org/10.1002/jhet.2414]
[60]
Antonsson, A.; Persson, J.L. Induction of apoptosis by staurosporine involves the inhibition of expression of the major cell cycle proteins at the G2/M checkpoint accompanied by alterations in Erk and Akt kinase activities. Anticancer Res., 2009, 29(8), 2893-2898. Available from: http://ar.iiarjournals.org/content/29/8/2893.full.pdf
[61]
Pritchett, J.C.; Naesens, L. Treating HHV-6 Infections. Human Herpes viruses HHV-6A, HHV-6B and HHV-7.Diagnosis and Clinical Management;; Flamand, L.; Lautenschlager, I.; Ablashi, D.V., Eds.; Elsevier B.V: Amsterdam, 2014, pp. 311-331.
[http://dx.doi.org/10.1016/B978-0-444-62703-2.00019-7]
[62]
Oliveira-Pinto, S.; Pontes, O.; Lopes, D.; Sampaio-Marques, B.; Costa, M.D.; Carvalho, L.; Gonçalves, C.S.; Costa, B.M.; Maciel, P.; Ludovico, P.; Baltazar, F.; Proença, F.; Costa, M. Unravelling the anticancer potential of functionalized chromeno[2,3-b]pyridines for breast cancer treatment. Bioorg. Chem., 2020, 100, 103942-103953.
[http://dx.doi.org/10.1016/j.bioorg.2020.103942] [PMID: 32450388]
[63]
Nissan, Y.M.; Mohamed, K.O.; Ahmed, W.A.; Ibrahim, D.M.; Sharaky, M.M.; Sakr, T.M.; Motaleb, M.A.; Maher, A.; Arafa, R.K. New benzenesulfonamide scaffold-based cytotoxic agents: Design, synthesis, cell viability, apoptotic activity and radioactive tracing studies. Bioorg. Chem., 2020, 96, 103577.
[http://dx.doi.org/10.1016/j.bioorg.2020.103577] [PMID: 31978683]
[64]
Zakaria, Z.; Zulkifle, M.F.; Wan, Hasan. W.A.N.; Azhari, A.K.; Abdul Raub, S.H.; Eswaran, J.; Soundararajan, M.; Syed Husain, S.N.A. Epidermal growth factor receptor (EGFR) gene alteration and protein overexpression in Malaysian triple-negative breast cancer (TNBC) cohort. OncoTargets Ther., 2019, 12, 7749-7756.
[http://dx.doi.org/10.2147/OTT.S214611] [PMID: 31571924]
[65]
Costa, R.; Shah, A.N.; Santa-Maria, C.A.; Cruz, M.R.; Mahalingam, D.; Carneiro, B.A.; Chae, Y.K.; Cristofanilli, M.; Gradishar, W.J.; Giles, F.J. Targeting epidermal growth factor receptor in triple negative breast cancer: New discoveries and practical insights for drug development. Cancer Treat. Rev., 2017, 53, 111-119.
[http://dx.doi.org/10.1016/j.ctrv.2016.12.010] [PMID: 28104566]
[66]
Nakai, K.; Hung, M.C.; Yamaguchi, H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am. J. Cancer Res., 2016, 6(8), 1609-1623.
[PMID: 27648353]
[67]
Mehta, A.; Tripathy, D. Co-targeting estrogen receptor and HER2 pathways in breast cancer. Breast, 2014, 23(1), 2-9.
[http://dx.doi.org/10.1016/j.breast.2013.09.006] [PMID: 24176518]
[68]
Wang, J.; Lenardo, M.J. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J. Cell Sci., 2000, 113(5), 753-757.
[PMID: 10671365]
[69]
Zhong, H.; Tran, L.M.; Stang, J.L. Induced-fit docking studies of the active and inactive states of protein tyrosine kinases. J. Mol. Graph. Model., 2009, 28(4), 336-346.
[http://dx.doi.org/10.1016/j.jmgm.2009.08.012]
[70]
Zhang, Y.; Chen, L.; Li, X.; Gao, L.; Hao, Li B.; Yan, Y. Novel 4-arylaminoquinazolines bearing N, N-diethyl (aminoethyl) amino moiety with antitumour activity as EGFRwt-TK inhibitor. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1668-1677.
[http://dx.doi.org/10.1080/14756366.2019.1667341] [PMID: 31530043]
[71]
Favia, A.D.; Cavalli, A.; Masetti, M.; Carotti, A.; Recanatini, M. Three‐dimensional model of the human aromatase enzyme and density functional parameterization of the iron‐containing protoporphyrin IX for a molecular dynamics study of heme‐cysteinato cytochromes. Proteins, 2006, 62(4), 1074-1087.
[http://dx.doi.org/10.1002/prot.20829] [PMID: 16395678]
[72]
Wood, P.M.; Woo, L.W.L.; Thomas, M.P.; Mahon, M.F.; Purohit, A.; Potter, B.V.L. Aromatase and dual aromatase‐steroid sulfatase inhibitors from the letrozole and vorozole templates. Chem. Med. Chem., 2011, 6(8), 1423-1438.
[http://dx.doi.org/10.1002/cmdc.201100145] [PMID: 21608133]
[73]
Di Nardo, G.; Breitner, M.; Bandino, A.; Ghosh, D.; Jennings, G.K.; Hackett, J.C.; Gilardi, G. Evidence for an elevated aspartate pKa in the active site of human aromatase. J. Biol. Chem., 2015, 290(2), 1186-1196.
[http://dx.doi.org/10.1074/jbc.M114.595108] [PMID: 25425647]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy