Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Extracting Atomic Contributions to Binding Free Energy Using Molecular Dynamics Simulations with Mixed Solvents (MDmix)

Author(s): Daniel Alvarez-Garcia, Peter Schmidtke, Elena Cubero and Xavier Barril*

Volume 19, Issue 2, 2022

Published on: 16 February, 2022

Article ID: e231221199369 Pages: 7

DOI: 10.2174/1570163819666211223162829

open access plus

Abstract

Background: Mixed solvents MD (MDmix) simulations have proved to be a useful and increasingly accepted technique with several applications in structure-based drug discovery. One of the assumptions behind the methodology is the transferability of free energy values from the simulated cosolvent molecules to larger drug-like molecules. However, the binding free energy maps (ΔGbind) calculated for the different moieties of the cosolvent molecules (e.g. a hydroxyl map for the ethanol) are largely influenced by the rest of the solvent molecule and do not reflect the intrinsic affinity of the moiety in question. As such, they are hardly transferable to different molecules.

Method: To achieve transferable energies, we present here a method for decomposing the molecular binding free energy into accurate atomic contributions.

Result: We demonstrate with two qualitative visual examples how the corrected energy maps better match known binding hotspots and how they can reveal hidden hotspots with actual drug design potential.

Conclusion: Atomic decomposition of binding free energies derived from MDmix simulations provides transferable and quantitative binding free energy maps.

Keywords: Mixed solvents, MD simulations, structure-based drug discovery, binding free energy, atomic contribution, MDmix.

Graphical Abstract

[1]
de Ruiter A, Oostenbrink C. Free energy calculations of protein-ligand interactions. Curr Opin Chem Biol 2011; 15(4): 547-52.
[http://dx.doi.org/10.1016/j.cbpa.2011.05.021] [PMID: 21684797]
[2]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[3]
De Vivo M, Masetti M, Bottegoni G, Cavalli A. Role of molecular dynamics and related methods in drug discovery. J Med Chem 2016; 59(9): 4035-61.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[4]
Pan AC, Xu H, Palpant T, Shaw DE. Quantitative characterization of the binding and unbinding of millimolar drug fragments with molecular dynamics simulations. J Chem Theory Comput 2017; 13(7): 3372-7.
[http://dx.doi.org/10.1021/acs.jctc.7b00172] [PMID: 28582625]
[5]
Pan AC, Borhani DW, Dror RO, Shaw DE. Molecular determinants of drug-receptor binding kinetics. Drug Discov Today 2013; 18(13-14): 667-73.
[http://dx.doi.org/10.1016/j.drudis.2013.02.007] [PMID: 23454741]
[6]
Kokh DB, Amaral M, Bomke J, et al. Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. J Chem Theory Comput 2018; 14(7): 3859-69.
[http://dx.doi.org/10.1021/acs.jctc.8b00230] [PMID: 29768913]
[7]
Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M. Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations. J Am Chem Soc 2017; 139(13): 4780-8.
[http://dx.doi.org/10.1021/jacs.6b12950] [PMID: 28290199]
[8]
Plattner N, Doerr S, De Fabritiis G, Noé F. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat Chem 2017; 9(10): 1005-11.
[http://dx.doi.org/10.1038/nchem.2785] [PMID: 28937668]
[9]
Seco J, Luque FJ, Barril X. Binding site detection and druggability index from first principles. J Med Chem 2009; 52(8): 2363-71.
[http://dx.doi.org/10.1021/jm801385d] [PMID: 19296650]
[10]
Guvench O, MacKerell AD Jr. Computational fragment-based binding site identification by ligand competitive saturation. PLOS Comput Biol 2009; 5(7)e1000435
[http://dx.doi.org/10.1371/journal.pcbi.1000435] [PMID: 19593374]
[11]
Byerly DW, McElroy CA, Foster MP. Mapping the surface of Escherichia coli peptide deformylase by NMR with organic solvents. Protein Sci 2002; 11(7): 1850-3.
[http://dx.doi.org/10.1110/ps.0203402] [PMID: 12070337]
[12]
Mattos C, Bellamacina CR, Peisach E, et al. Multiple solvent crystal structures: Probing binding sites, plasticity and hydration. J Mol Biol 2006; 357(5): 1471-82.
[http://dx.doi.org/10.1016/j.jmb.2006.01.039] [PMID: 16488429]
[13]
Ghanakota P, Carlson HA. Driving structure-based drug discovery through cosolvent molecular dynamics. J Med Chem 2016; 59(23): 10383-99.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00399] [PMID: 27486927]
[14]
Patel Y, Gillet VJ, Howe T, Pastor J, Oyarzabal J, Willett P. Assessment of additive/nonadditive effects in structure-activity relationships: Implications for iterative drug design. J Med Chem 2008; 51(23): 7552-62.
[http://dx.doi.org/10.1021/jm801070q] [PMID: 19012393]
[15]
Barril Alonso X, Alvarez Garcia D, Schmidtke P. Method of binding site and binding energy determination by mixed explicit solvent simulations WO2013092922A2 2012.
[16]
Alvarez-Garcia D, Barril X. Relationship between protein flexibility and binding: Lessons for structure-based drug design. J Chem Theory Comput 2014; 10(6): 2608-14.
[http://dx.doi.org/10.1021/ct500182z] [PMID: 26580781]
[17]
Alvarez-Garcia D, Barril X. Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. J Med Chem 2014; 57(20): 8530-9.
[http://dx.doi.org/10.1021/jm5010418] [PMID: 25275946]
[18]
Kuntz ID, Chen K, Sharp KA, Kollman PA. The maximal affinity of ligands. Proc Natl Acad Sci USA 1999; 96(18): 9997-10002.
[http://dx.doi.org/10.1073/pnas.96.18.9997] [PMID: 10468550]
[19]
Janin YL. Heat shock protein 90 inhibitors. A text book example of medicinal chemistry? J Med Chem 2005; 48(24): 7503-12.
[http://dx.doi.org/10.1021/jm050759r] [PMID: 16302791]
[20]
Ruiz-Carmona S, Schmidtke P, Luque FJ, et al. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat Chem 2017; 9(3): 201-6.
[http://dx.doi.org/10.1038/nchem.2660] [PMID: 28221352]
[21]
Murray CW, Carr MG, Callaghan O, et al. Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem 2010; 53(16): 5942-55.
[http://dx.doi.org/10.1021/jm100059d] [PMID: 20718493]
[22]
Boy N, Mühlhausen C, Maier EM, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: Second revision. J Inherit Metab Dis 2017; 40(1): 75-101.
[http://dx.doi.org/10.1007/s10545-016-9999-9] [PMID: 27853989]
[23]
Mosaeilhy A, Mohamed MM. C GPD, et al Genotype-phenotype correlation in 18 Egyptian patients with glutaric acidemia type I. Metab Brain Dis 2017; 32(5): 1417-26.
[http://dx.doi.org/10.1007/s11011-017-0006-4] [PMID: 28389991]
[24]
Schmiesing J, Lohmöller B, Schweizer M, et al. Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture. Hum Mol Genet 2017; 26(3): 538-51.
[http://dx.doi.org/10.1093/hmg/ddw411] [PMID: 28062662]
[25]
Oleinikovas V, Saladino G, Cossins BP, Gervasio FL. Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J Am Chem Soc 2016; 138(43): 14257-63.
[http://dx.doi.org/10.1021/jacs.6b05425] [PMID: 27726386]
[26]
Kimura SR, Hu HP, Ruvinsky AM, Sherman W, Favia AD. Deciphering cryptic binding sites on proteins by mixed-solvent molecular dynamics. J Chem Inf Model 2017; 57(6): 1388-401.
[http://dx.doi.org/10.1021/acs.jcim.6b00623] [PMID: 28537745]
[27]
Ghanakota P, van Vlijmen H, Sherman W, Beuming T. Large-scale validation of mixed-solvent simulations to assess hotspots at protein-protein interaction interfaces. J Chem Inf Model 2018; 58(4): 784-93.
[http://dx.doi.org/10.1021/acs.jcim.7b00487] [PMID: 29617116]
[28]
Schmidt D, Boehm M, McClendon CL, Torella R, Gohlke H. Cosolvent-enhanced sampling and unbiased identification of cryptic pockets suitable for structure-based drug design. J Chem Theory Comput 2019; 15(5): 3331-43.
[http://dx.doi.org/10.1021/acs.jctc.8b01295] [PMID: 30998331]
[29]
Smith RD, Carlson HA. Identification of cryptic binding sites using mixmd with standard and accelerated molecular dynamics. J Chem Inf Model 2021; 61(3): 1287-99.
[http://dx.doi.org/10.1021/acs.jcim.0c01002] [PMID: 33599485]
[30]
Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, et al. rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLOS Comput Biol 2014; 10(4)e1003571
[http://dx.doi.org/10.1371/journal.pcbi.1003571] [PMID: 24722481]
[31]
Defelipe LA, Arcon JP, Modenutti CP, Marti MA, Turjanski AG, Barril X. Solvents to fragments to drugs: MD applications in drug design. Molecules 2018; 23(12): 1-14.
[http://dx.doi.org/10.3390/molecules23123269] [PMID: 30544890]
[32]
Yanagisawa K, Moriwaki Y, Terada T, Shimizu K. Exprorer: Rational cosolvent set construction method for cosolvent molecular dynamics using large-scale computation. J Chem Inf Model 2021; 61(6): 2744-53.
[http://dx.doi.org/10.1021/acs.jcim.1c00134] [PMID: 34061535]
[33]
Arcon JP, Defelipe LA, Modenutti CP, et al. Molecular dynamics in mixed solvents reveals protein-ligand interactions, Improves docking, and allows accurate binding free energy predictions. J Chem Inf Model 2017; 57(4): 846-63.
[http://dx.doi.org/10.1021/acs.jcim.6b00678] [PMID: 28318252]
[34]
Arcon JP, Defelipe LA, Lopez ED, et al. Cosolvent-based protein pharmacophore for ligand enrichment in virtual screening. J Chem Inf Model 2019; 59(8): 3572-83.
[http://dx.doi.org/10.1021/acs.jcim.9b00371] [PMID: 31373819]
[35]
Goel H, Hazel A, Ustach VD, Jo S, Yu W, MacKerell AD Jr. Rapid and accurate estimation of protein-ligand relative binding affinities using site-identification by ligand competitive saturation. Chem Sci (Camb) 2021; 12(25): 8844-58.
[http://dx.doi.org/10.1039/D1SC01781K] [PMID: 34257885]

© 2025 Bentham Science Publishers | Privacy Policy