Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phytochemical Screening, Antibacterial, Antifungal, and Anthelmintic Activity Against Plant Pathogens of two Algerian Plants: Pergularia tomentosa L. and Forsskaolea tenacissima L. from Oued Mzab (Northern Algerian Sahara)

Author(s): Abdallah Aissa*, Sujogya Kumar Panda, Haibo hu, Abdelkrim Kameli and Walter Luyten

Volume 18, Issue 7, 2022

Published on: 02 March, 2022

Article ID: e231221199324 Pages: 8

DOI: 10.2174/1573407218666211223113527

Price: $65

Abstract

Background: Plants are an abundant natural source of potential chemical compounds; they have been widely used in various industries, such as pharmaceuticals, cosmetics, and food. This work aims to study two Saharan medicinal plants by evaluating the activity of plant extract against bacterial and fungal plant pathogens as well as against the model nematode Caenorhabditis (C.) elegans.

Methods: The antimicrobial activity of plant extracts against plants pathogen was assessed in a 96- well plate assay by calculating the percentage of inhibition of bacteria. The antifungal activity against plant pathogenic fungi was evaluated by the agar diffusion method, and inhibition was calculated by measuring the diameter of the inhibition zone. Anthelmintic activity was evaluated by calculating the average movement of C. elegans worms. Preliminary phytochemical screening was realized with HPTLC.

Results: Hexane and ethyl acetate extract of Pergularia tomentosa showed broad-spectrum antimicrobial activity. This plant has the potential to act as a broad-spectrum antibacterial biopesticide. Hexane extract of Forsskaolea tenacissima exhibited good activity against one fungus. The extracts of Pergularia tomentosa showed good activity against Caenorhabditis elegans, and the extracts of Forsskaolea tenacissima exhibited a low activity. Preliminary phytochemical screening with HPTLC shows that both plants are rich in steroids and flavonoids.

Conclusion: Our study shows that the studied plants may possess a broad-spectrum antibacterial effect with narrow-spectrum antifungal properties which can offer more sustainable crop protection with a much safer environmental and human health impact. Plant extracts that inhibited C. elegans could provide a starting point for the development of new anthelmintic drugs.

Keywords: Biopesticide, antibacterial, antifungal, plant pathogen, anthelmintic, HPTLC analysis.

Graphical Abstract

[1]
Miara, M.D.; Teixidor-Toneu, I.; Sahnoun, T.; Bendif, H.; Ait Hammou, M. Herbal remedies and traditional knowledge of the tuareg community in the region of Illizi (Algerian Sahara). J. Arid Environ., 2019, 167, 65-73.
[http://dx.doi.org/10.1016/j.jaridenv.2019.04.020]
[2]
Ozenda, P. Flora and vegetation of the Sahara. In: Editions of the National Center for Scientific Research; CNRS: France, 1991.
[3]
de Lemps, A.H. La végétation de la terre; Masson, 1970.
[4]
Sahara - Plant life. Available from: https://www.britannica.com/place/Sahara-desert-Africa (Accessed on 2020 -07 -01).
[5]
Derbel- Jmal, S. Statut écologique et stratégies adaptatives et fonctionnelles de certaines espèces végétales sahariennes Nord-africaines., 2012.
[6]
Ibrahim, M.M. Instinctive Plant Tolerance Towards Abiotic Stresses in Arid Regions; IntechOpen, 2012.
[http://dx.doi.org/10.5772/26273]
[7]
Palici, I.F.; Liktor-Busa, E.; Zupkó, I.; Touzard, B.; Chaieb, M.; Urbán, E.; Hohmann, J. Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants. Acta Biol. Hung., 2015, 66(4), 385-394.
[http://dx.doi.org/10.1556/018.66.2015.4.3] [PMID: 26616371]
[8]
Uysal, A.; Ozer, O.Y.; Zengin, G.; Stefanucci, A.; Mollica, A.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Multifunctional approaches to provide potential pharmacophores for the pharmacy shelf: Heracleum sphondylium L. subsp. ternatum (Velen.) Brummitt. Comput. Biol. Chem., 2019, 78, 64-73.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.018] [PMID: 30500554]
[9]
Fawzi Mahomoodally, M.; Mollica, A.; Stefanucci, A.; Zakariyyah Aumeeruddy, M.; Poorneeka, R.; Zengin, G. Volatile components, pharmacological profile, and computational studies of essential oil from aegle marmelos (Bael) leaves: A functional approach. Ind. Crops Prod., 2018, 126, 13-21.
[http://dx.doi.org/10.1016/j.indcrop.2018.09.054]
[10]
Panda, S.K.; Padhi, L.; Leyssen, P.; Liu, M.; Neyts, J.; Luyten, W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the similipal biosphere reserve, Odisha, India. Front. Pharmacol., 2017, 8, 658.
[http://dx.doi.org/10.3389/fphar.2017.00658] [PMID: 29109684]
[11]
Chehma, A. Catalog of spontaneous plants of the Northern Algeria Sahara; Univ Européenne, 2019.
[12]
Ali, N.; Jamil, A.; Shah, S.W.A.; Shah, I.; Ahmed, G. Spasmogenic and spasmolytic activity of rind of Punica granatum Linn. BMC Complement. Altern. Med., 2017, 17(1), 97.
[http://dx.doi.org/10.1186/s12906-017-1616-4] [PMID: 28173798]
[13]
Assaf, H.K.; Nafady, A.M.; Allam, A.E.; Hamed, A.N.E.; Kamel, M.S. Phytochemistry and biological activity of family. J. Adv. Biomed. Pharm. Sci., 2020, 3(3), 150-176.
[http://dx.doi.org/10.21608/jabps.2020.24043.1073]
[14]
Heneidak, S.; Grayer, R.J.; Kite, G.C.; Simmonds, M.S.J. Flavonoid glycosides from Egyptian species of the tribe asclepiadeae (Apocynaceae, Subfamily Asclepiadoideae). Biochem. Syst. Ecol., 2006, 34(7), 575-584.
[http://dx.doi.org/10.1016/j.bse.2006.03.001]
[15]
Hamed, A.I.; Plaza, A.; Balestrieri, M.L.; Mahalel, U.A.; Springuel, I.V.; Oleszek, W.; Pizza, C.; Piacente, S. Cardenolide glycosides from Pergularia tomentosa and their proapoptotic activity in Kaposi’s sarcoma cells. J. Nat. Prod., 2006, 69(9), 1319-1322.
[http://dx.doi.org/10.1021/np060228l] [PMID: 16989527]
[16]
Al-Mekhlafi, N.; Masoud, A. Phytochemical and pharmacological activities of pergularia tomentosa l.-a review. Available from: https://www.semanticscholar.org/paper/PHYTOCHEMICAL-AND-PHARMACOLOGICAL-ACTIVITIES-OF-Al-Mekhlafi-Masoud/a5a9b174e935e9aef282a9c2edb9f52119c0614d (Accessed on 2021 -11 -05).
[17]
Chan, E.W.C.; Wong, S.K.; Chan, H.T. Apocynaceae species with antiproliferative and/or antiplasmodial properties: A review of ten genera. J. Integr. Med., 2016, 14(4), 269-284.
[http://dx.doi.org/10.1016/S2095-4964(16)60261-3] [PMID: 27417173]
[18]
Bhadane, B.S.; Patil, M.P.; Maheshwari, V.L.; Patil, R.H. Ethnopharmacology, phytochemistry, and biotechnological advances of family Apocynaceae: A review. Phytother. Res., 2018, 32(7), 1181-1210.
[http://dx.doi.org/10.1002/ptr.6066] [PMID: 29575195]
[19]
Panda, S.K.; Mohanta, Y.K.; Padhi, L.; Park, Y-H.; Mohanta, T.K.; Bae, H. Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules, 2016, 21(3), 293.
[http://dx.doi.org/10.3390/molecules21030293] [PMID: 26985889]
[20]
Porta-de-la-Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans methods: Synchronization and observation. J. Vis. Exp., 2012, (64), e4019.
[http://dx.doi.org/10.3791/4019] [PMID: 22710399]
[21]
Liu, M.; Veryser, C.; Lu, J-G.; Wenseleers, T.; De Borggraeve, W.M.; Jiang, Z-H.; Luyten, W. Bioassay-guided isolation of active substances from Semen Torreyae identifies two new anthelmintic compounds with novel mechanism of action. J. Ethnopharmacol., 2018, 224, 421-428.
[http://dx.doi.org/10.1016/j.jep.2018.06.026] [PMID: 29933012]
[22]
Bardakci, H.; Cevik, D.; Barak, T.H.; Gozet, T.; Kan, Y.; Kirmizibekmez, H. Secondary metabolites, phytochemical characterization and antioxidant activities of different extracts of sideritis congesta P.H. Davis et Hub.-Mor. Biochem. Syst. Ecol., 2020, 92, 104120.
[http://dx.doi.org/10.1016/j.bse.2020.104120]
[23]
Tewari, D.; Sah, A.N.; Bawari, S.; Sharma, H.; Mangal, A.K. Pharmacognostical evaluation and HPTLC fingerprinting identification of Ficus Palmata Forssk. (Bedu) from Western Himalaya. Curr. Bioact. Compd., 2018, 14(2), 180-190.
[http://dx.doi.org/10.2174/1573407213666170126161111]
[24]
Rosenthal, G.A. The biochemical basis for the deleterious effects of L-Canavanine. Phytochemistry, 1991, 30(4), 1055-1058.
[http://dx.doi.org/10.1016/S0031-9422(00)95170-7]
[25]
Schäfer, H.; Wink, M. Medicinally important secondary metabolites in recombinant microorganisms or plants: Progress in alkaloid biosynthesis. Biotechnol. J., 2009, 4(12), 1684-1703.
[http://dx.doi.org/10.1002/biot.200900229] [PMID: 19946877]
[26]
Phatik, T.; Das, J.; Boruah, P. Antifungal activity of Polygonum hydropiper and Solanum melongena against plant pathogenic fungi. Plant Arch., 2014, 14(1), 15-17.
[27]
Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16(2-3), 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[28]
Perry, B.D.; Randolph, T.F. Improving the assessment of the economic impact of parasitic diseases and of their control in production animals. Vet. Parasitol., 1999, 84(3-4), 145-168.
[http://dx.doi.org/10.1016/S0304-4017(99)00040-0] [PMID: 10456413]
[29]
Geerts, S.; Gryseels, B. Drug resistance in human helminths: current situation and lessons from livestock. Clin. Microbiol. Rev., 2000, 13(2), 207-222.
[http://dx.doi.org/10.1128/CMR.13.2.207] [PMID: 10755998]
[30]
Desalermos, A.; Muhammed, M.; Glavis-Bloom, J.; Mylonakis, E. Using C. elegans for antimicrobial drug discovery. Expert Opin. Drug Discov., 2011, 6(6), 645-652.
[http://dx.doi.org/10.1517/17460441.2011.573781] [PMID: 21686092]
[31]
Cherif, R.; Abdellah, K.; Boual, Z.; Bouziane, N.; Fouzi, B.; Hadjseyd, A.; Gharib, T.; Aminata, K.; Sakeur, M.; Mohamed Didi, O.E.H. Biological activities of aqueous extracts of Pergularia tomentosa L. (Asclepiadeae). Leban. Sci. J., 2016, 17.
[http://dx.doi.org/10.22453/LSJ-017.1.025035]
[32]
Fouladvand, M.A.; Khorami, S.; Sartavi, K. Evaluation of lethal effect of Pergularia tomentosa and Priploca aphylla on trichomonas vaginalis in vitro. ISMJ, 2017, 20(4), 370-379.
[33]
Yousif, F.; Hifnawy, M.S.; Soliman, G.; Boulos, L.; Labib, T.; Mahmoud, S.; Ramzy, F.; Yousif, M.; Hassan, I.; Mahmoud, K.; El-Hallouty, S.M.; El-Gendy, M.; Gohar, L.; El-Manawaty, M.; Fayyad, W.; El-Menshawi, B.S. Large-scale in vitro screening of egyptian native and cultivated plants for schistosomicidal activity. Pharm. Biol., 2007, 45(6), 501-510.
[http://dx.doi.org/10.1080/13880200701389425]
[34]
Al Nasr, I. In vitro anti-leishmanial assessment of some medicinal plants collected from Al Qassim, Saudi Arabia. Acta Parasitol., 2020, 65(3), 696-703.
[http://dx.doi.org/10.2478/s11686-020-00205-2] [PMID: 32347535]
[35]
Choudhury, D.; Dobhal, P.; Srivastava, S.; Saha, S.; Kundu, S. Role of botanical plant extracts to control plant pathogens-. Int. J. Agric. Res., 2018, 52, 341-346.
[http://dx.doi.org/10.18805/IJARe.A-5005]
[36]
Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev., 2017, 11(22), 57-72.
[http://dx.doi.org/10.4103/phrev.phrev_21_17] [PMID: 28989242]
[37]
Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar. J., 2011, 10(Suppl. 1), S4.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S4] [PMID: 21411015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy