Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

COVID-19, the Brain, and the Future: Is Infection by the Novel Coronavirus a Harbinger of Neurodegeneration?

Author(s): Adejoke Onaolapo* and Olakunle Onaolapo*

Volume 21, Issue 9, 2022

Published on: 18 February, 2022

Page: [818 - 829] Pages: 12

DOI: 10.2174/1871527321666211222162811

Price: $65

Abstract

The possible impact of viral infections on the development or pathogenesis of neurodegenerative disorders remains largely unknown. However, there have been reports associating the influenza virus pandemic and long-term infection with the Japanese encephalitis virus with the development of post-encephalitic Parkinsonism or von Economo’s encephalitis. In the last couple of years, there has been a worldwide pandemic caused by the novel coronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which causes a severe acute respiratory syndrome and is found to be associated with symptoms or complications of the central nervous system. Its possible involvement with the central nervous system is in line with emerging scientific evidence stating that the human respiratory coronaviruses can enter the brain, infect neural cells, persist in the brain, and cause activation of myelin-reactive T cells. Currently, there is a dearth of scientific information on the acute or possible long-term impact of infection with SARS-CoV-2 on the development of dementia and/or neurodegenerative diseases. This is related to the fact that the virus is ‘new,’ and its effects on humans are still being studied. This narrative review examines the extant literature for understanding the impact of coronavirus infections on the brain as there is a possibility that coronavirus disease 2019 (COVID-19) could increase the risk for the development of neurodegenerative diseases or hasten their progression.

Keywords: Alzheimer’s disease, COVID-19, chronic encephalitis, human coronaviruses, neurodegeneration, Parkinson’s disease.

Graphical Abstract

[1]
Enjuanes L, Almazán F, Sola I, Zuñiga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol 2006; 60: 211-30.
[http://dx.doi.org/10.1146/annurev.micro.60.080805.142157] [PMID: 16712436]
[2]
Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[3]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[4]
Riedel S, Morse SA, Mietzner TA, Miller S. In: Riedel S, Hobden JA, Miller S, Morse SA, Mietzner TA, Detrick B, Mitchell TG, Sakanari JA, Hotez P, Mejia R , Eds. Jawetz, Melnick, & Adelberg’s Medical Microbiology, 28th Ed.; New York: McGraw-Hill Education 2019.
[5]
Hunt R. Virology - Corona Viruses: Colds, SARS, MERS and COVID-19. In: Microbiology and Immunology Online. University of South Carolina School of Medicine: Columbia, 2020.
[6]
Corman VM, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections. Internist (Berl) 2019; 60(11): 1136-45.
[http://dx.doi.org/10.1007/s00108-019-00671-5] [PMID: 31455974]
[7]
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[8]
Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 1966; 121(1): 190-3.
[http://dx.doi.org/10.3181/00379727-121-30734] [PMID: 4285768]
[9]
Tyrrell DA, Bynoe ML. Cultivation of viruses from a high proportion of patients with colds. Lancet 1966; 1(7428): 76-7.
[http://dx.doi.org/10.1016/S0140-6736(66)92364-6] [PMID: 4158999]
[10]
McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA 1967; 57(4): 933-40.
[http://dx.doi.org/10.1073/pnas.57.4.933] [PMID: 5231356]
[11]
Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 2005; 24(11)(Suppl.): S223-7.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60] [PMID: 16378050]
[12]
Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[13]
Bergmann CC, Lane TE, Stohlman SA. Coronavirus infection of the central nervous system: Host-virus stand-off. Nat Rev Microbiol 2006; 4(2): 121-32.
[http://dx.doi.org/10.1038/nrmicro1343] [PMID: 16415928]
[14]
Khateb M, Bosak N, Muqary M. Coronaviruses and central nervous system manifestations. Front Neurol 2020; 11: 715.
[http://dx.doi.org/10.3389/fneur.2020.00715] [PMID: 32655490]
[15]
Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun 2020; 88: 945-6.
[http://dx.doi.org/10.1016/j.bbi.2020.04.017] [PMID: 32283294]
[16]
Liotta EM, Batra A, Clark JR, et al. Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Ann Clin Transl Neurol 2020; 7(11): 2221-30.
[http://dx.doi.org/10.1002/acn3.51210] [PMID: 33016619]
[17]
GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017; 16(11): 877-97.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[18]
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, et al. Re-thinking the etiological framework of neurodegeneration. Front Neurosci 2019; 13: 728.
[http://dx.doi.org/10.3389/fnins.2019.00728] [PMID: 31396030]
[19]
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5): 459-80.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[20]
Deleidi M, Isacson O. Viral and inflammatory triggers of neurodegenerative diseases. Sci Transl Med 2012; 4(121): 121ps3.
[http://dx.doi.org/10.1126/scitranslmed.3003492] [PMID: 22344685]
[21]
Karim S, Mirza Z, Kamal MA, et al. The role of viruses in neurodegenerative and neurobehavioral diseases. CNS Neurol Disord Drug Targets 2014; 13(7): 1213-23.
[http://dx.doi.org/10.2174/187152731307141015122638] [PMID: 25230220]
[22]
Costa Sa AC, Madsen H, Brown JR. Shared molecular signatures across neurodegenerative diseases and herpes virus infections highlights potential mechanisms for maladaptive innate immune responses. Sci Rep 2019; 9(1): 8795.
[http://dx.doi.org/10.1038/s41598-019-45129-8] [PMID: 31217489]
[23]
Itzhaki RF. Herpes simplex virus type 1 and Alzheimer’s disease: Possible mechanisms and signposts. FASEB J 2017; 31(8): 3216-26.
[http://dx.doi.org/10.1096/fj.201700360] [PMID: 28765170]
[24]
van den Pol AN. Viral infections in the developing and mature brain. Trends Neurosci 2006; 29(7): 398-406.
[http://dx.doi.org/10.1016/j.tins.2006.06.002] [PMID: 16806513]
[25]
Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004; 10(12): 1366-73.
[http://dx.doi.org/10.1038/nm1140] [PMID: 15558055]
[26]
Henry J, Smeyne RJ, Jang H, Miller B, Okun MS. Parkinsonism and neurological manifestations of influenza throughout the 20th and 21st centuries. Parkinsonism Relat Disord 2010; 16(9): 566-71.
[http://dx.doi.org/10.1016/j.parkreldis.2010.06.012] [PMID: 20650672]
[27]
Poskanzer DC, Schwab RS. Cohort analysis of Parkinson’s syndrome: Evidence for a single etiology related to subclinical infection about 1920. J Chronic Dis 1963; 16: 961-73.
[http://dx.doi.org/10.1016/0021-9681(63)90098-5] [PMID: 14066517]
[28]
Ravenholt RT, Foege WH. 1918 Influenza, encephalitis lethargica, parkinsonism. Lancet 1982; 2(8303): 860-4.
[http://dx.doi.org/10.1016/S0140-6736(82)90820-0] [PMID: 6126720]
[29]
Maurizi CP. Why was the 1918 influenza pandemic so lethal? The possible role of a neurovirulent neuraminidase. Med Hypotheses 1985; 16(1): 1-5.
[http://dx.doi.org/10.1016/0306-9877(85)90034-9] [PMID: 3999996]
[30]
Foley PB. Encephalitis lethargica and influenza. I. The role of the influenza virus in the influenza pandemic of 1918/1919. J Neural Transm (Vienna) 2009; 116(2): 143-50.
[http://dx.doi.org/10.1007/s00702-008-0161-1] [PMID: 19082525]
[31]
Zhou L, Miranda-Saksena M, Saksena NK. Viruses and neurodegeneration. Virol J 2013; 10: 172.
[http://dx.doi.org/10.1186/1743-422X-10-172] [PMID: 23724961]
[32]
McCall S, Vilensky JA, Gilman S, Taubenberger JK. The relationship between encephalitis lethargica and influenza: A critical analysis. J Neurovirol 2008; 14(3): 177-85.
[http://dx.doi.org/10.1080/13550280801995445] [PMID: 18569452]
[33]
Tanaka R, Iwasaki Y, Koprowski H. Intracisternal virus-like particles in brain of a multiple sclerosis patient. J Neurol Sci 1976; 28(1): 121-6.
[http://dx.doi.org/10.1016/0022-510X(76)90053-8] [PMID: 932771]
[34]
Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses: Potential neurovirulent agents in humans. Adv Exp Med Biol 2014; 807: 75-96.
[http://dx.doi.org/10.1007/978-81-322-1777-0_6] [PMID: 24619619]
[35]
Arbour N, Ekandé S, Côté G, et al. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J Virol 1999; 73(4): 3326-37.
[http://dx.doi.org/10.1128/JVI.73.4.3326-3337.1999] [PMID: 10074187]
[36]
Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol 2000; 74(19): 8913-21.
[http://dx.doi.org/10.1128/JVI.74.19.8913-8921.2000] [PMID: 10982334]
[37]
Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 2004; 10(2): 342-4.
[http://dx.doi.org/10.3201/eid1002.030638] [PMID: 15030709]
[38]
Lau SK, Woo PC, Li KS, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 2005; 102(39): 14040-5.
[http://dx.doi.org/10.1073/pnas.0506735102] [PMID: 16169905]
[39]
Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin Infect Dis 2005; 41(8): 1089-96.
[http://dx.doi.org/10.1086/444461] [PMID: 16163626]
[40]
Morgello S. Coronaviruses and the central nervous system. J Neurovirol 2020; 26(4): 459-73.
[http://dx.doi.org/10.1007/s13365-020-00868-7] [PMID: 32737861]
[41]
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020; 94: 55-8.
[http://dx.doi.org/10.1016/j.ijid.2020.03.062] [PMID: 32251791]
[42]
Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol Sci 2020; 41(10): 2657-69.
[http://dx.doi.org/10.1007/s10072-020-04575-3] [PMID: 32725449]
[43]
Bonavia A, Arbour N, Yong VW, Talbot PJ. Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. J Virol 1997; 71(1): 800-6.
[http://dx.doi.org/10.1128/jvi.71.1.800-806.1997] [PMID: 8985420]
[44]
Arbour N, Talbot PJ. Persistent infection of neural cell lines by human coronaviruses. Adv Exp Med Biol 1998; 440: 575-81.
[http://dx.doi.org/10.1007/978-1-4615-5331-1_75] [PMID: 9782332]
[45]
Sizun J, Arbour N, Talbot PJ. Comparison of immunofluorescence with monoclonal antibodies and RT-PCR for the detection of human coronaviruses 229E and OC43 in cell culture. J Virol Methods 1998; 72(2): 145-52.
[http://dx.doi.org/10.1016/S0166-0934(98)00013-5] [PMID: 9694322]
[46]
McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007; 81(2): 813-21.
[http://dx.doi.org/10.1128/JVI.02012-06] [PMID: 17079315]
[47]
Tseng CT, Huang C, Newman P, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J Virol 2007; 81(3): 1162-73.
[http://dx.doi.org/10.1128/JVI.01702-06] [PMID: 17108019]
[48]
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82(15): 7264-75.
[http://dx.doi.org/10.1128/JVI.00737-08] [PMID: 18495771]
[49]
Cheng Q, Yang Y, Gao J. Infectivity of human coronavirus in the brain. EBioMedicine 2020; 56: 102799.
[http://dx.doi.org/10.1016/j.ebiom.2020.102799] [PMID: 32474399]
[50]
Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses 2019; 12(1): 14.
[http://dx.doi.org/10.3390/v12010014] [PMID: 31861926]
[51]
Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B, et al. Infection mechanism of SARS-COV-2 and its implication on the nervous system. Front Immunol 2021; 11: 621735.
[http://dx.doi.org/10.3389/fimmu.2020.621735] [PMID: 33584720]
[52]
Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 2004; 113(1 Pt 1): e73-6.
[http://dx.doi.org/10.1542/peds.113.1.e73] [PMID: 14702500]
[53]
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194: 145-58.
[http://dx.doi.org/10.1016/j.virusres.2014.09.011] [PMID: 25281913]
[54]
Algahtani H, Subahi A, Shirah B. Neurological complications of middle east respiratory syndrome coronavirus: A report of two cases and review of the literature. Case Rep Neurol Med 2016; 2016: 3502683.
[http://dx.doi.org/10.1155/2016/3502683] [PMID: 27239356]
[55]
Arabi YM, Harthi A, Hussein J, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 2015; 43(4): 495-501.
[http://dx.doi.org/10.1007/s15010-015-0720-y] [PMID: 25600929]
[56]
Morfopoulou S, Brown JR, Davies EG, et al. Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med 2016; 375(5): 497-8.
[http://dx.doi.org/10.1056/NEJMc1509458] [PMID: 27518687]
[57]
Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol 2017; 13(3): 227-33.
[http://dx.doi.org/10.3988/jcn.2017.13.3.227] [PMID: 28748673]
[58]
Nilsson A, Edner N, Albert J, Ternhag A. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect Dis (Lond) 2020; 52(6): 419-22.
[http://dx.doi.org/10.1080/23744235.2020.1729403] [PMID: 32067542]
[59]
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415-24.
[http://dx.doi.org/10.1084/jem.20050828] [PMID: 16043521]
[60]
Tsai L, Hsieh S, Chang Y. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan 2005; 14(3): 113-9.
[61]
Beghi E, Feigin V, Caso V, Santalucia P, Logroscino G. COVID-19 infection and neurological complications: Present findings and future predictions. Neuroepidemiology 2020; 54(5): 364-9.
[http://dx.doi.org/10.1159/000508991] [PMID: 32610334]
[62]
Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper. Front Immunol 2020; 11: 1648.
[http://dx.doi.org/10.3389/fimmu.2020.01648] [PMID: 32754159]
[63]
Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology 2006; 349(2): 335-46.
[http://dx.doi.org/10.1016/j.virol.2006.01.049] [PMID: 16527322]
[64]
Jacomy H, St-Jean JR, Brison E, Marceau G, Desforges M, Talbot PJ. Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination. J Neurovirol 2010; 16(4): 279-93.
[http://dx.doi.org/10.3109/13550284.2010.497806] [PMID: 20642316]
[65]
Brison E, Jacomy H, Desforges M, Talbot PJ. Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 2011; 85(23): 12464-73.
[http://dx.doi.org/10.1128/JVI.05576-11] [PMID: 21957311]
[66]
Brison E, Jacomy H, Desforges M, Talbot PJ. Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus. J Virol 2014; 88(3): 1548-63.
[http://dx.doi.org/10.1128/JVI.02972-13] [PMID: 24227863]
[67]
Gerdes JC, Klein I, DeVald BL, Burks JS. Coronavirus isolates SK and SD from multiple sclerosis patients are serologically related to murine coronaviruses A59 and JHM and human coronavirus OC43, but not to human coronavirus 229E. J Virol 1981; 38(1): 231-8.
[http://dx.doi.org/10.1128/jvi.38.1.231-238.1981] [PMID: 7241654]
[68]
Stewart JN, Mounir S, Talbot PJ. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology 1992; 191(1): 502-5.
[http://dx.doi.org/10.1016/0042-6822(92)90220-J] [PMID: 1413524]
[69]
Cristallo A, Gambaro F, Biamonti G, Ferrante P, Battaglia M, Cereda PM. Human coronavirus polyadenylated RNA sequences in cerebrospinal fluid from multiple sclerosis patients. New Microbiol 1997; 20(2): 105-14.
[PMID: 9208420]
[70]
Fazzini E, Fleming J, Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov Disord 1992; 7(2): 153-8.
[http://dx.doi.org/10.1002/mds.870070210] [PMID: 1316552]
[71]
Talbot PJ, Desforges M, Brison E, Jacomy H. Coronaviruses as encephalitis-inducing infectious agents. Non-flavivirus Encephalitis. Rijeka: In-Tech 2011; pp. 185-202.
[72]
Alberti P, Beretta S, Piatti M, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol Neuroinflamm 2020; 7(4): e741.
[http://dx.doi.org/10.1212/NXI.0000000000000741] [PMID: 32350026]
[73]
Abdelnour L, Eltahir Abdalla M, Babiker S. COVID 19 infection presenting as motor peripheral neuropathy. J Formos Med Assoc 2020; 119(6): 1119-20.
[http://dx.doi.org/10.1016/j.jfma.2020.04.024] [PMID: 32354690]
[74]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[75]
Fernández-Domínguez J, Ameijide-Sanluis E, García-Cabo C, García-Rodríguez R, Mateos V. Miller-Fisher-like syndrome related to SARS-CoV-2 infection (COVID 19). J Neurol 2020; 267(9): 2495-6.
[http://dx.doi.org/10.1007/s00415-020-09912-2] [PMID: 32458195]
[76]
Marta-Enguita J, Rubio-Baines I, Gastón-Zubimendi I. Fatal Guillain-Barre syndrome after infection with SARS-CoV-2. Neurologia 2020; 35(5): 265-7.
[http://dx.doi.org/10.1016/j.nrl.2020.04.004]
[77]
Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1420 European patients with mild- to-moderate coronavirus disease 2019. J Intern Med 2020; 288(3): 335-44.
[http://dx.doi.org/10.1111/joim.13089] [PMID: 32352202]
[78]
Kotfis K, Williams Roberson S, Wilson JE, Dabrowski W, Pun BT, Ely EW. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care 2020; 24(1): 176.
[http://dx.doi.org/10.1186/s13054-020-02882-x] [PMID: 32345343]
[79]
Rábano-Suárez P, Bermejo-Guerrero L, Méndez-Guerrero A, et al. Generalized myoclonus in COVID-19. Neurology 2020; 95(6): e767-72.
[http://dx.doi.org/10.1212/WNL.0000000000009829] [PMID: 32439821]
[80]
Zanin L, Saraceno G, Panciani PP, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien) 2020; 162(7): 1491-4.
[http://dx.doi.org/10.1007/s00701-020-04374-x] [PMID: 32367205]
[81]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[82]
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020; 368: m1091.
[http://dx.doi.org/10.1136/bmj.m1091] [PMID: 32217556]
[83]
Al Mazrouei SS, Saeed GA, Al Helali AA, Ahmed M. COVID-19-associated encephalopathy: Neurological manifestation of COVID-19. Radiol Case Rep 2020; 15(9): 1646-9.
[http://dx.doi.org/10.1016/j.radcr.2020.07.009] [PMID: 32690988]
[84]
Gutiérrez-Ortiz C, Méndez-Guerrero A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020; 95(5): e601-5.
[http://dx.doi.org/10.1212/WNL.0000000000009619] [PMID: 32303650]
[85]
Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020; 7(7): 611-27.
[http://dx.doi.org/10.1016/S2215-0366(20)30203-0] [PMID: 32437679]
[86]
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 2020; 296(2): E119-20.
[http://dx.doi.org/10.1148/radiol.2020201187] [PMID: 32228363]
[87]
Varatharaj A, Thomas N, Ellul MA, Davies NWS, Pollak TA, Tenorio EL. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry 2020; S2215-0366(20): 30287.
[http://dx.doi.org/10.1016/S2215-0366(20)30287-X]
[88]
Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: Causality or coincidence? Lancet Neurol 2020; 19(5): 383-4.
[http://dx.doi.org/10.1016/S1474-4422(20)30109-5] [PMID: 32246917]
[89]
Bowale A, Abayomi A, Idris J, et al. Clinical presentation, case management and outcomes for the first 32 COVID-19 patients in Nigeria. Pan Afr Med J 2020; 35(Suppl. 2): 24.
[http://dx.doi.org/10.11604/pamj.supp.2020.35.2.23262] [PMID: 33623549]
[90]
Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19, 2020. Lancet Neurol 2020; 19(9): 767-83.
[http://dx.doi.org/10.1016/S1474-4422(20)30221-0]
[91]
Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common findings in COVID-19 patients. Laryngoscope 2020; 130(7): 1787.
[http://dx.doi.org/10.1002/lary.28692] [PMID: 32237238]
[92]
Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, et al. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis 2020; S1473-3099(20): 30293-0.
[http://dx.doi.org/10.1016/S1473-3099(20)30293-0]
[93]
Bullen CK, Hogberg HT, Bahadirli-Talbott A, et al. Infectability of human BrainSphere neurons suggests neurotropism of SARS- CoV-2. Altern Anim Exp 2020; 37(4): 665-71.
[http://dx.doi.org/10.14573/altex.2006111] [PMID: 32591839]
[94]
Zhou L, Zhang M, Wang J, Gao J. Sars-Cov-2: Underestimated damage to nervous system. Travel Med Infect Dis 2020; 36: 101642.
[http://dx.doi.org/10.1016/j.tmaid.2020.101642] [PMID: 32220634]
[95]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[96]
Sulzer D, Antonini A, Leta V, et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: from bench to bedside. NPJ Parkinsons Dis 2020; 6: 18.
[http://dx.doi.org/10.1038/s41531-020-00123-0] [PMID: 32885037]
[97]
Taubenberger JK, Morens DM. 1918 Influenza: The mother of all pandemics. Emerg Infect Dis 2006; 12(1): 15-22.
[http://dx.doi.org/10.3201/eid1209.05-0979] [PMID: 16494711]
[98]
Belser JA, Tumpey TM. The 1918 flu, 100 years later. Science 2018; 359(6373): 255.
[http://dx.doi.org/10.1126/science.aas9565] [PMID: 29348212]
[99]
Jester B, Uyeki T, Jernigan D. Readiness for responding to a severe pandemic 100 years after 1918. Am J Epidemiol 2018; 187(12): 2596-602.
[http://dx.doi.org/10.1093/aje/kwy165] [PMID: 30102376]
[100]
Reid AH, McCall S, Henry JM, Taubenberger JK. Experimenting on the past: The enigma of von Economo’s encephalitis lethargica. J Neuropathol Exp Neurol 2001; 60(7): 663-70.
[http://dx.doi.org/10.1093/jnen/60.7.663] [PMID: 11444794]
[101]
Hoffman LA, Vilensky JA. Encephalitis lethargica: 100 years after the epidemic. Brain 2017; 140(8): 2246-51.
[http://dx.doi.org/10.1093/brain/awx177] [PMID: 28899018]
[102]
Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. J Clin Neurosci 2020; 77: 8-12.
[http://dx.doi.org/10.1016/j.jocn.2020.05.017] [PMID: 32409215]
[103]
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020; 382(23): 2268-70.
[http://dx.doi.org/10.1056/NEJMc2008597] [PMID: 32294339]
[104]
Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of COVID-19. N Engl J Med 2020; 383(10): 1989-992.
[http://dx.doi.org/10.1056/NEJMc2019373]
[105]
Limphaibool N, Iwanowski P, Holstad MJV, Kobylarek D, Kozubski W. Infectious etiologies of parkinsonism: pathomechanisms and clinical implications. Front Neurol 2019; 10: 652.
[http://dx.doi.org/10.3389/fneur.2019.00652] [PMID: 31275235]
[106]
Cohen ME, Eichel R, Steiner-Birmanns B, et al. A case of probable Parkinson’s disease after SARS-CoV-2 infection. Lancet Neurol 2020; 19(10): 804-5.
[http://dx.doi.org/10.1016/S1474-4422(20)30305-7] [PMID: 32949534]
[107]
Achbani A, Sine H, Naciri A, et al. Can the 2019 novel coronavirus cause parkinson’s disease? Mov Disord 2020; 35(7): 1102-3.
[http://dx.doi.org/10.1002/mds.28118] [PMID: 32395864]
[108]
Méndez-Guerrero A, Laespada-García MI, Gómez-Grande A, et al. Acute hypokinetic-rigid syndrome following SARS-CoV-2 infection. Neurology 2020; 95(15): e2109-18.
[http://dx.doi.org/10.1212/WNL.0000000000010282] [PMID: 32641525]
[109]
Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995; 202(1-2): 17-20.
[http://dx.doi.org/10.1016/0304-3940(95)12192-7] [PMID: 8787820]
[110]
Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein’s prion-like behavior in Parkinson’s disease-is there a link? Mol Neurobiol 2013; 47(2): 561-74.
[http://dx.doi.org/10.1007/s12035-012-8267-8] [PMID: 22544647]
[111]
Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets cortical neurons of 3D human brain organoids and shows neurodegeneration-like effects. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.20.106575]
[112]
Idiaquez J, Roman GC. Autonomic dysfunction in neurodegenerative dementias. J Neurol Sci 2011; 305(1-2): 22-7.
[http://dx.doi.org/10.1016/j.jns.2011.02.033] [PMID: 21440258]
[113]
Gomez-Pinedo U, Matias-Guiu J, Sanclemente-Alaman I, Moreno-Jimenez L, Montero-Escribano P, Matias-Guiu JA. Is the brain a reservoir organ for SARS-CoV2? J Med Virol 2020; 92(11): 2354-5.
[http://dx.doi.org/10.1002/jmv.26046] [PMID: 32437002]
[114]
Banerjee D, Viswanath B. Neuropsychiatric manifestations of COVID-19 and possible pathogenic mechanisms: Insights from other coronaviruses. Asian J Psychiatr 2020; 54: 102350.
[http://dx.doi.org/10.1016/j.ajp.2020.102350] [PMID: 33271682]
[115]
Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurol 2020; 77(8): 1018-27.
[http://dx.doi.org/10.1001/jamaneurol.2020.2065] [PMID: 32469387]
[116]
Zhou J, Liu C, Sun Y, Huang W, Ye K. Cognitive disorders associated with hospitalization of COVID-19: Results from an observational cohort study. Brain Behav Immun 2021; 91: 383-92.
[http://dx.doi.org/10.1016/j.bbi.2020.10.019] [PMID: 33148439]
[117]
Yu Y, Travaglio M, Popovic R, Leal NS, Martins LM. Alzheimer’s and Parkinson’s diseases predict different COVID-19 outcomes: A UK biobank study. Geriatrics (Basel) 2021; 6(1): 10.
[http://dx.doi.org/10.3390/geriatrics6010010] [PMID: 33530357]
[118]
Ferini-Strambi L, Salsone M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? J Neurol 2021; 268(2): 4109-19.
[http://dx.doi.org/10.1007/s00415-020-10070-8] [PMID: 32696341]
[119]
Pinna P, Grewal P, Hall JP, et al. Neurological manifestations and COVID-19: Experiences from a tertiary care center at the Frontline. J Neurol Sci 2020; 415: 116969.
[120]
Chaumont H, San-Galli A, Martino F, et al. Mixed central and peripheral nervous system disorders in severe SARS-CoV-2 infection. J Neurol 2020; 267(11): 3121-7.
[http://dx.doi.org/10.1007/s00415-020-09986-y] [PMID: 32533322]
[121]
Mcloughlin BC, Miles A, Webb TE, et al. Functional and cognitive outcomes after COVID-19 delirium. Eur Geriatr Med 2020; 11(5): 857-62.
[http://dx.doi.org/10.1007/s41999-020-00353-8] [PMID: 32666303]
[122]
Alonso-Lana S, Marquié M, Ruiz A, Boada M. Cognitive and neuropsychiatric manifestations of COVID-19 and effects on elderly individuals with dementia. Front Aging Neurosci 2020; 12: 588872.
[http://dx.doi.org/10.3389/fnagi.2020.588872] [PMID: 33192483]
[123]
Merello M, Bhatia KP, Obeso JA. SARS-CoV-2 and the risk of Parkinson’s disease: Facts and fantasy. Lancet Neurol 2021; 20(2): 94-5.
[http://dx.doi.org/10.1016/S1474-4422(20)30442-7] [PMID: 33253627]
[124]
Mori I. Viremic attack explains the dual-hit theory of Parkinson’s disease. Med Hypotheses 2017; 101: 33-6.
[http://dx.doi.org/10.1016/j.mehy.2017.02.007] [PMID: 28351487]
[125]
Young MJ, O'Hare M, Matiello M, Schmahmann JD. Creutzfeldt Jakob disease in a man with COVID-19: SARS-CoV-2-accelerated neurodegeneration? Brain Behav Immun 2020; S0889-1591(20): 31522-1.
[http://dx.doi.org/10.1016/j.bbi.2020.07.007]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy