Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Design, Synthesis and Spectroscopic Characterizations of Medicinal Hydrazide Derivatives and Metal Complexes of Malonic Ester

Author(s): Sajidah Parveen*, Hafiza Ammara Naseem, Khalil Ahmad, Habib-Ur-Rehman Shah*, Tariq Aziz, Muhammad Ashfaq* and Abdul Rauf

Volume 19, Issue 4, 2023

Published on: 27 July, 2022

Article ID: e221221199270 Pages: 16

DOI: 10.2174/1573407218666211222124947

Price: $65

Abstract

Background: A new series of malonic acid-based hydrazide derivatives (BPMPDH, 2HPMPDH, 3HPMPDH, 4HPMPDH, DMPDH) were successfully synthesized by the reaction of malonic ester hydrazide with various aldehydes like salicylaldehyde, benzaldehyde, 4-hydroxy benzaldehyde, 3-hydroxy benzaldehyde and formaldehyde.

Objectives: Furthermore, metal complexes of prepared hydrazide derivatives were prepared using metals like Cu+2, Zn+2 and Ni+2 in a mild efficient and convenient method.

Methods: Newly synthesized compounds have been described by IR, NMR (1H & 13C), UV/VIS and mass spectrometry. The presence of –C=N- peak at 1600-1700 cm-1 with the absence of NH2 peak at 3500 cm-1 in FTIR spectra and chemical change at 11.00-13.00 ppm for –OH protons, even chemical changes varying from 7.00-9.50 ppm for –NH verified synthesis of modern Dihydrazide derivatives. The presence of a C-OH sharp peak at 180-190 ppm, a C=O peak at 160-170 ppm and a C=N peak at 140-150 ppm have shown the development of compounds. The presence of molecular ion peaks at 308 m/z, 340 m/z and 156 m/z, respectively, provides a good indication of the synthesis of the possible Dihydrazide derivatives.

Results: Synthesized compounds have also been analyzed for their antioxidant, antibacterial, antifungal, chymotrypsin and tyrosinase inhibition activities. The findings of activities revealed that the 2HPMPDH, 3HPMPDH, 4HPMPDH and their Cu+2 and Zn+2 metal complexes showed more successful inhibitions against standard drugs.

Conclusion: In addition, structural behavior and metal complexes vs. ligand activity interaction were also discussed in this research, which indicated that the existence of electron-donating groups and transition metals improved the biological activities of the studied compounds.

Keywords: Malonic Ester, Hydrazide, Dihydrazide Compounds, Dihydrazide Derivative Metal Complexes, Biological Activities.

Graphical Abstract

[1]
Koz’minykh, V.O. Synthesis and biological activity of substituted amides and hydrazides of 1,4-dicarboxylic acids (a review). Pharm. Chem. J., 2006, 40(1), 8-17.
[http://dx.doi.org/10.1007/s11094-006-0048-0]
[2]
Ahmad, K.; Naseem, H.A.; Parveen, S. Synthesis and spectroscopic characterization of medicinal azo derivatives and metal complexes of Indandion. J. Mol. Struct., 2019, 1198, 126885.
[http://dx.doi.org/10.1016/j.molstruc.2019.126885]
[3]
Shah, H.U.R.; Ahmad, K.; Naseema, H.A.; Parveena, S.; Ashfaq, M.; Aziz, T.; Shaheen, S.; Babras, A.; Shahzad, A. Synthetic routes of azo derivatives: A brief overview. J. Mol. Struct., 2021, 1244, 131181.
[http://dx.doi.org/10.1016/j.molstruc.2021.131181]
[4]
Chhina, M.K.; Singh, K. Dysprosium doped and titanium activated calcium silicates for cool white light emitting diode derived from natural resources. J. Mol. Struct., 2021, 1227, 129665.
[http://dx.doi.org/10.1016/j.molstruc.2020.129665]
[5]
Asgharzadeh, R.; Imanzadeh, G.; Soltanzadeh, Z. Green synthesis of new acyl hydrazide derivatives by single and double aza-Michael reaction under solvent-free conditions. Green Chem. Lett. Rev., 2017, 10(2), 80-87.
[http://dx.doi.org/10.1080/17518253.2017.1293177]
[6]
Munir, A.; Khushal, A.; Saeed, K.; Sadiq, A.; Ullah, R.; Ali, G.; Ashraf, Z.; Ullah Mughal, E.; Saeed Jan, M.; Rashid, U.; Hussain, I.; Mumtaz, A. Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorg. Chem., 2020, 104, 104168.
[http://dx.doi.org/10.1016/j.bioorg.2020.104168] [PMID: 32947133]
[7]
Duong, T-H.; Paramita Devi, A.; Tran, N.M.; Phan, H.V.; Huynh, N.V.; Sichaem, J.; Tran, H.D.; Alam, M.; Nguyen, T.P.; Nguyen, H.H.; Chavasiri, W.; Nguyen, T.C. Synthesis, α-glucosidase inhibition, and molecular docking studies of novel N-substituted hydrazide derivatives of atranorin as antidiabetic agents. Bioorg. Med. Chem. Lett., 2020, 30(17), 127359.
[http://dx.doi.org/10.1016/j.bmcl.2020.127359] [PMID: 32738998]
[8]
Abid, O.; Imran, S.; Taha, M.; Ismail, N.H.; Jamil, W.; Kashif, S.M.; Khan, K.M.; Yusoff, J. Synthesis, β-glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids. Mol. Divers., 2021, 25(2), 995-1009.
[http://dx.doi.org/10.1007/s11030-020-10084-4] [PMID: 32301032]
[9]
Dyniewicz, J. Lipiński, P.F.J.; Kosson, P.; Bochyńska-Czyż M.; Matalińska, J.; Misicka, A. antinociceptive and cytotoxic activity of opioid peptides with hydrazone and hydrazide moieties at the C-terminus. Molecules, 2020, 25(15), 3429.
[http://dx.doi.org/10.3390/molecules25153429] [PMID: 32731576]
[10]
Gonzaga, R.V.; do Nascimento, L.A.; Santos, S.S.; Machado Sanches, B.A.; Giarolla, J.; Ferreira, E.I. Perspectives about self-immolative drug delivery systems. J. Pharm. Sci., 2020, 109(11), 3262-3281.
[http://dx.doi.org/10.1016/j.xphs.2020.08.014] [PMID: 32860799]
[11]
Sakthivel, A. Recent advances in Schiff base metal complexes derived from 4-amoniantipyrine derivatives and their potential applications. J. Mol. Struct., 2020, 1222, 128885.
[http://dx.doi.org/10.1016/j.molstruc.2020.128885]
[12]
Rehman Shah, H.U.; Ahmad, K.; Naseem, H.A.; Parveen, S.; Ashfaq, M.; Rauf, A.; Aziz, T. Water stable graphene oxide metal-organic frameworks composite (ZIF-67@GO) for efficient removal of malachite green from water. Food Chem. Toxicol., 2021, 154, 112312.
[http://dx.doi.org/10.1016/j.fct.2021.112312] [PMID: 34102214]
[13]
Bermejo, M.R. Synthesis, characterization, and catalytic studies of Mn(III)-Schiff base-dicyanamide complexes: Checking the rhombicity effect in peroxidase studies. J. Chem., 2017, 2017, 5465890.
[http://dx.doi.org/10.1155/2017/5465890]
[14]
Popiołek, L.; Kosikowska, U.; Mazur, L.; Dobosz, M.; Malm, A. Synthesis and antimicrobial evaluation of some novel 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Med. Chem. Res., 2013, 22(7), 3134-3147.
[http://dx.doi.org/10.1007/s00044-012-0302-9] [PMID: 23710121]
[15]
Murti, Y.; Pathak, D.; Pathak, K. Green approaches to synthesize organic compounds and drugs, In: Inamuddin, Asiri, A. (eds) in applications of nanotechnology for green synthesis. Nanotechnology in the Life Sciences. Springer, Cham. 2020, pp. 191-222.
[http://dx.doi.org/10.1007/978-3-030-44176-0_8]
[16]
Knopp, R.C.; Lee, S.H.; Hollas, M.; Nepomuceno, E.; Gonzalez, D.; Tam, K.; Aamir, D.; Wang, Y.; Pierce, E.; BenAissa, M.; Thatcher, G.R.J. Interaction of oxidative stress and neurotrauma in ALDH2-/- mice causes significant and persistent behavioral and pro-inflammatory effects in a tractable model of mild traumatic brain injury. Redox Biol., 2020, 32, 101486.
[http://dx.doi.org/10.1016/j.redox.2020.101486] [PMID: 32155582]
[17]
Cisterna, J. Pentacoordinated isothiocyanate iron (III) complexes supported by asymmetric tetradentate donor and acceptor Schiff base ligands: Spectral, structural and hirshfeld surface analyses. J. Mol. Struct., 2021, 1230, 129864.
[http://dx.doi.org/10.1016/j.molstruc.2020.129864]
[18]
Ahmad, K. Synthesis of new series of phenyldiazene based metal complexes for designing most active antibacterial and antifungal agents. J. Chem. Soc. Pak., 2021, 43(5), 54977777.
[19]
Said, M.A. Easy coordinate geometry indexes, τ4 and τ5 and HSA study for unsymmetrical Pd (II), Fe (II), Zn (II), Mn (II), Cu (II) and VO (IV) complexes of a tetradentate ligand: Synthesis, characterization, properties, and antioxidant activities. Inorg. Chim. Acta, 2020, 505, 119434.
[http://dx.doi.org/10.1016/j.ica.2020.119434]
[20]
Shah, H-U.R. Metal organic frameworks for efficient catalytic conversion of CO2 and CO into applied products. Molecular Catalysis, 2022, 517, 112055.
[http://dx.doi.org/10.1016/j.mcat.2021.112055]
[21]
Tapanyiğit, O. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives. Arab. J. Chem., 2020, 13(12), 9105-9117.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.034]
[22]
Lv, G. Fluoride-responsive organogel based on hydrazide derivatives. J. Materials Sci. Chem. Eng., 2020, 8(12), 8-17.
[http://dx.doi.org/10.4236/msce.2020.812002]
[23]
Khair-Ul-Bariyah, S.; Arshad, M.; Ali, M.; Din, M.I.; Sharif, A.; Ahmed, E. Benzocaine: Review on a drug with unfold potential. Mini Rev. Med. Chem., 2020, 20(1), 3-11.
[http://dx.doi.org/10.2174/1389557519666190913145423] [PMID: 31518221]
[24]
Al-Ashqar, S.M. Comparative studies of new complexes synthesized by chemical and tribochemical reactions derived from malonic acid dihydrazide (L; MAD) with Cu2+ and Co2+ salts. Open J. Inorg. Chem., 2017, 8(1), 28-42.
[http://dx.doi.org/10.4236/ojic.2018.81003]
[25]
Ahmad, K.; Shah, H-U-R.; Nasim, H.A.; Ayub, A.; Ashfaq, M.; Rauf, A.; Shah, S.S.A.; Ahmad, M.M.; Nawaz, H.; Hussain, E. Synthesis and characterization of water stable polymeric metallo organic composite (PMOC) for the removal of arsenic and lead from brackish water. Toxin Rev., 2022, 41, 577-587.
[26]
Singh, C.; Sahoo, B. Transition metal cluster complexes—I: Trinuclear dimethylglyoximato and acetylacetonedioximato copper (II) complexes. Their infrared and electronic spectra and magnetic properties. J. Inorg. Nucl. Chem., 1974, 36(6), 1259-1264.
[http://dx.doi.org/10.1016/0022-1902(74)80061-8]
[27]
Michell, A. Infrared spectra of lignin model compounds and of lignins from Eucalyptus regnans. Aust. J. Chem., 1966, 19(12), 2285-2298.
[http://dx.doi.org/10.1071/CH9662285]
[28]
Desai, K.G.; Desai, K.R. Synthesis of some novel pharmacologically active Schiff bases using microwave method and their derivatives formazans by conventional method. ChemInform, 2005, 37.
[29]
Ahmad, K.; Shah, H.U.; Ashfaq, M.; Shah, S.S.A.; Hussain, E.; Naseem, H.A.; Parveen, S.; Ayub, A. Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of Pb2+ & Hg2+ from water. Food Chem. Toxicol., 2021, 149, 112008.
[http://dx.doi.org/10.1016/j.fct.2021.112008] [PMID: 33508417]
[30]
Issa, Y.M.; Hassib, H.B.; Abdelaal, H.E. 1H NMR, 13C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 74(4), 902-910.
[http://dx.doi.org/10.1016/j.saa.2009.08.042] [PMID: 19783202]
[31]
Ahmad, K. Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Mater. Sci. Eng. B, 2020, 262, 114766.
[http://dx.doi.org/10.1016/j.mseb.2020.114766]
[32]
Ayub, A. Development of poly (1-vinylimidazole)-chitosan composite sorbent under microwave irradiation for enhanced uptake of Cd (II) ions from aqueous media. Polym. Bull., 2022, 79, 807-827.
[33]
Gang, Z.; Yongxiang, M. Coordination complexes of acetylferrocene-m-nitrobenzoylhydrazone with lanthanides. Polyhedron, 1991, 10(18), 2185-2189.
[http://dx.doi.org/10.1016/S0277-5387(00)86139-2]
[34]
Turan, N. Şekerci, M. Synthesis, characterization and thermal behavior of some Zn (II) complexes with ligands having 1, 3, 4‐thiadiazole moieties. Heteroatom Chem., 2010, 21(1), 14-23.
[http://dx.doi.org/10.1002/hc.20572]
[35]
Ray, A. Two new end-on azido bridged dinuclear copper (II) and cobalt (III) complexes derived from the (E)-N′-((pyridin-2-yl) methylene) acetohydrazide Schiff base ligand: Characterisation, crystal structures and magnetic study. Polyhedron, 2008, 27(11), 2409-2415.
[http://dx.doi.org/10.1016/j.poly.2008.04.018]
[36]
Anđelković K. Complexes of iron (II), iron (III) and zinc (II) with condensation derivatives of 2-acetylpyridine and oxalic or malonic dihydrazide. Crystal structure of tris [(1-(2-pyridyl) ethylidene) hydrazine] iron (II) perchlorate. Transition Metal Chemistry, 2005, 30(2), 243-250.
[http://dx.doi.org/10.1007/s11243-004-3173-1]
[37]
Dey, D. A perfectly linear trinuclear zinc–Schiff base complex: Synthesis, luminescence property and photocatalytic activity of zinc oxide nanoparticle. Inorg. Chim. Acta, 2014, 421, 335-341.
[http://dx.doi.org/10.1016/j.ica.2014.06.014]
[38]
Abu-Dief, A.M. Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: Synthesis, characterization, DFT and detailed in-silico confirmation. J. Mol. Liq., 2021, 322, 114977.
[http://dx.doi.org/10.1016/j.molliq.2020.114977]
[39]
Zhang, Z.; Bi, C.; Fan, Y.; Zhang, N.; Deshmukh, R.; Yan, X.; Lv, X.; Zhang, P.; Zhang, X.; Dou, Q.P. L-Ornithine Schiff base-copper and -cadmium complexes as new proteasome inhibitors and apoptosis inducers in human cancer cells. Eur. J. Biochem., 2015, 20(1), 109-121.
[http://dx.doi.org/10.1007/s00775-014-1219-1] [PMID: 25467055]
[40]
Iraji, A. Design, synthesis, in vitro and in silico studies of novel Schiff base derivatives of 2‐hydroxy‐4‐methoxybenzamide as tyrosinase inhibitors. Drug Dev. Res., 2021, 82, 533-542.
[PMID: 33340117]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy