Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Phycocyanin: A Natural Antioxidant to Combat Free Radicals

Author(s): Dingling Zhuang, Doris Ying Ying Tang, Kit Wayne Chew* and Tau Chuan Ling*

Volume 18, Issue 4, 2022

Published on: 10 February, 2022

Page: [338 - 344] Pages: 7

DOI: 10.2174/1573401318666211221160338

Price: $65

Abstract

Various research showed that antioxidants can effectively overcome the damage caused by free radicals to human health. Therefore, antioxidants are identified as one of the main directions in the development of health care and cosmetics products due to high demand in the market. This review mainly focuses on the phycocyanin, a type of natural antioxidant mainly found in cyanobacteria. This mini review summarizes the phycocyanin sources and numerous extraction methods of phycocyanin along with the analytical methods and determine its ability to suppress free radicals. Phycocyanin has been proven to play an important role in scavenging free radicals and enhancing the body’s antioxidant capacity. However, there is a lack of long-term randomized clinical trial results that can be used as evidence in showing the benefits of phycocyanin. The existing phycocyanin extraction methods using solvents, ultrasonic-assisted, freeze-thaw, etc. can extract high-quality phycocyanin efficiently and quickly. Scientists are also trying to incorporate advanced technologies, such as "Industry 4.0" to optimize and enhance the industrial production of phycocyanin. Lastly, this review also describes the difficulties faced during the phycocyanin production or extraction process and financial obstacles in order to achieve the popularization of phycocyanin.

Keywords: Algae nutrition, supplements, oxidation, free radicals, anti-aging, Industry 4.0.

Graphical Abstract

[1]
Sarada R, Pillai MG, Ravishankar GA. Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 1999; 34(8): 795-801.
[http://dx.doi.org/10.1016/S0032-9592(98)00153-8]
[2]
Dos Santos RR, Corrêa PS, Dantas FML, Teixeira CMLL. Evaluation of the co-production of total carotenoids, C-phycocyanin and poly-hydroxyalkanoates by Arthrospira platensis. Bioresour Technol Rep 2019; 7: 100226.
[http://dx.doi.org/10.1016/j.biteb.2019.100226]
[3]
Jiang L, Wang Y, Yin Q, et al. Phycocyanin: A potential drug for cancer treatment. J Cancer 2017; 8(17): 3416-29.
[http://dx.doi.org/10.7150/jca.21058 ] [PMID: 29151925]
[4]
Munawaroh HSH, Gumilar GG, Nurjanah F, Yuliani G, Show PL. In-vitro molecular docking analysis of microalgae extracted phycocyanin as an anti-diabetic candidate. Biochem Eng J 2020; 161: 107666.
[http://dx.doi.org/10.1016/j.bej.2020.107666]
[5]
Grover P, Bhatnagar A, Kumari N, Bhatt AN, Nishad DK, Purkayastha J. C-Phycocyanin-a novel protein from Spirulina platensis - In vivo toxicity, antioxidant and immunomodulatory studies. Saudi J Biol Sci 2021; 28(3): 1853-9.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.037 ] [PMID: 33732072]
[6]
Jamshidi-Kia F, Id J, Wibowo P, Id M, Salehi MR. Battle between plants as antioxidants with free radicals in human body. J HerbMed Pharmacol 2020; 9(3): 191-9.
[http://dx.doi.org/10.34172/jhp.2020.25]
[7]
Lawson M, Jomova K, Poprac P. Kuca K, Musílek K, Valko M. Free radicals and antioxidants in human disease.Nutritional antioxi-dant therapies: treatments and perspectives berlin/heidelberg. Springer 2017; pp. 283-305.
[http://dx.doi.org/10.1007/978-3-319-67625-8_12]
[8]
Amiri M. Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. J Nephropathol 2018; 7(3): 127-31.
[http://dx.doi.org/10.15171/jnp.2018.30]
[9]
Sadeghi K, Seo J. Photografting of p-anisidine-glycidyl methacrylate onto polymeric substrate for developing free-radical scavenging films. Prog Org Coat 2020; 149: 105925.
[http://dx.doi.org/10.1016/j.porgcoat.2020.105925]
[10]
Njus D, Kelley PM, Tu Y-J, Schlegel HB. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic Biol Med 2020; 159: 37-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.013 ] [PMID: 32738399]
[11]
Morançais M, Mouget J-L, Dumay J. Proteins and pigments microalgae in health and disease prevention Cambridge 2018; pp 145-75.
[http://dx.doi.org/10.1016/B978-0-12-811405-6.00007-4]
[12]
Taufikurahman T, Ilhamsyah DPA, Rosanti S, Ardiansyah MA. Preliminary design of phycocyanin production from Spirulina platensis using anaerobically digested dairy manure wastewater. IOP Conf Ser Earth Environ Sci 2020; 520(1): 8.
[13]
Masojídek J, Torzillo G. Mass cultivation of freshwater microalgae encyclopedia of ecology. Oxford: Academic Press 2008; pp. 2226-35.
[http://dx.doi.org/10.1016/B978-008045405-4.00830-2]
[14]
Ragaza JA. Hossain, Meiler K A, Velasquez S F, Kumar V. A review on Spirulina: Alternative media for cultivation and nutritive value as an aquafeed. Rev Aquacult 2020; 12(4): 2371-95.
[15]
Dumay J, Morançais M, Munier M, Le Guillard C, Fleurence J. Phycoerythrins: Valuable proteinic pigments in red seaweeds. Advances in botanical research. Cambridge: Academic Press 2014; 71:: pp. 321-43.
[16]
Sintra TE, Bagagem SS, Ahsaie FG, Fernandes A, Ventura SPM. Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Separ Purif Tech 2020; 255: 117538.
[17]
Schipper K, Fortunati F, Oostlander PC, Muraikhi MA, Barbosa MJ. Production of phycocyanin by Leptolyngbya sp. in desert environ-ments. Algal Res 2020; 47: 101875.
[http://dx.doi.org/10.1016/j.algal.2020.101875]
[18]
Fratelli C, Burck M, Amarante MCA, Braga ARC. Antioxidant potential of nature’s “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends Food Sci Technol 2021; 107: 309-23.
[http://dx.doi.org/10.1016/j.tifs.2020.10.043]
[19]
Moraes CC, De Medeiros Burkert JF, Kalil SJ. C-phycocyanin extraction process for large-scale use. J Food Biochem 2010; 34(s1): 133-48.
[http://dx.doi.org/10.1111/j.1745-4514.2009.00317.x]
[20]
Chew KW, Chia SR, Krishnamoorthy R, Tao Y, Chu DT, Show PL. Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresour Technol 2019; 288: 121519.
[http://dx.doi.org/10.1016/j.biortech.2019.121519 ] [PMID: 31128541]
[21]
Ores JDC, Amarante MCA, Kalil SJ. Co-production of carbonic anhydrase and phycobiliproteins by Spirulina sp. and Synechococcus nidulans. Bioresour Technol 2016; 219: 219-27.
[http://dx.doi.org/10.1016/j.biortech.2016.07.133 ] [PMID: 27494103]
[22]
Yu J. Application of an ultrafine shearing method for the extraction of c-phycocyanin from Spirulina platensis. Molecules 2017; 22(11): 2023.
[http://dx.doi.org/10.3390/molecules22112023 ] [PMID: 29160837]
[23]
Considine KM, Kelly AL, Fitzgerald GF, Hill C, Sleator RD. High-pressure processing-effects on microbial food safety and food quality. FEMS Microbiol Lett 2008; 281(1): 1-9.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01084.x ] [PMID: 18279335]
[24]
Seo YC, Choi WS, Park JH, Park JO, Jung KH, Lee HY. Stable isolation of phycocyanin from Spirulina platensis associated with high-pressure extraction process. Int J Mol Sci 2013; 14(1): 1778-87.
[http://dx.doi.org/10.3390/ijms14011778 ] [PMID: 23325046]
[25]
Li Y, Zhang Z, Paciulli M, Abbaspourrad A. Extraction of phycocyanin-A natural blue colorant from dried Spirulina biomass: Influence of processing parameters and extraction techniques. J Food Sci 2020; 85(3): 727-35.
[http://dx.doi.org/10.1111/1750-3841.14842 ] [PMID: 31999367]
[26]
Rostagno MA, Palma M, Barroso CG. Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A 2003; 1012(2): 119-28.
[http://dx.doi.org/10.1016/S0021-9673(03)01184-1 ] [PMID: 14521308]
[27]
Hadiyanto H, Suttrisnorhadi S. Response surface optimization of Ultrasound Assisted Extraction (UAE) of phycocyanin from Microalgae Spirulina platensis. Emir J Food Agric 2016; 28(4): 1.
[http://dx.doi.org/10.9755/ejfa.2015-05-193]
[28]
Chia SR, Chew KW, Show PL, Xia A, Ho SH, Lim JW. Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresour Technol 2019; 289: 121727.
[http://dx.doi.org/10.1016/j.biortech.2019.121727 ] [PMID: 31279318]
[29]
Kuddus M, Singh P, Thomas G, Al-Hazimi A. Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Res Int 2013; 2013: 742859.
[http://dx.doi.org/10.1155/2013/742859 ] [PMID: 24063013]
[30]
Tooley AJ, Cai YA, Glazer AN. Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-α subunit in a heterologous host. Proc Natl Acad Sci USA 2001; 98(19): 10560-5.
[http://dx.doi.org/10.1073/pnas.181340998 ] [PMID: 11553806]
[31]
Tavanandi HA, Raghavarao K. Ultrasound-assisted enzymatic extraction of natural food colorant C-phycocyanin from dry biomass of Arthrospira platensis. Lebensm Wiss Technol 2020; 118: 108802.
[32]
Chittapun S, Jonjaroen V, Khumrangsee K, Charoenrat T. C-phycocyanin extraction from two freshwater cyanobacteria by freeze thaw and pulsed electric field techniques to improve extraction efficiency and purity. Algal Res 2020; 46: 101789.
[http://dx.doi.org/10.1016/j.algal.2020.101789]
[33]
Akaberi S, Krust D, Müller G, Frey W, Gusbeth C. Impact of incubation conditions on protein and C-phycocyanin recovery from Arthro-spira platensis post- pulsed electric field treatment. Bioresour Technol 2020; 306: 123099.
[http://dx.doi.org/10.1016/j.biortech.2020.123099 ] [PMID: 32163865]
[34]
Kferbck A, Smetana S, Vos RD, Schwarz C, Parniakov O. Sustainable extraction of valuable components from Spirulina assisted by pulsed electric fields technology. Algal Res 2020; 48: 101914.
[http://dx.doi.org/10.1016/j.algal.2020.101914]
[35]
Scorza L, Simon U, Wear M, Zouliatis A, Mccormick AJ. Evaluation of novel 3D-printed monolithic adsorbers against conventional chromatography columns for the purification of c-phycocyanin from Spirulina. Algal Res 2021; 55(364): 102253.
[http://dx.doi.org/10.1016/j.algal.2021.102253]
[36]
Fabris M, Abbriano RM, Pernice M, et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci 2020; 11: 279.
[http://dx.doi.org/10.3389/fpls.2020.00279 ] [PMID: 32256509]
[37]
Pradeep HN, Nayak CA. Enhanced stability of C-phycocyanin colorant by extrusion encapsulation. J Food Sci Technol 2019; 56(10): 4526-34.
[http://dx.doi.org/10.1007/s13197-019-03955-8 ] [PMID: 31686684]
[38]
Kedare SB, Singh RP. Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 2011; 48(4): 412-22.
[http://dx.doi.org/10.1007/s13197-011-0251-1 ] [PMID: 23572765]
[39]
Park WS, Kim H-J, Li M, et al. Two classes of pigments, carotenoids and c-phycocyanin, in Spirulina powder and their antioxidant activi-ties. Molecules 2018; 23(8): 2065.
[http://dx.doi.org/10.3390/molecules23082065 ] [PMID: 30126131]
[40]
Agrawal M, Bansal S, Chopra K. Evaluation of the in vitro and in vivo antioxidant potentials of food grade phycocyanin. J Food Sci Technol 2021; 58(11): 4382-90.
[http://dx.doi.org/10.1007/s13197-020-04922-4 ] [PMID: 34538921]
[41]
Forsido SF, Rupasinghe HPV, Astatkie T. Antioxidant capacity, total phenolics and nutritional content in selected Ethiopian staple food ingredients. Int J Food Sci Nutr 2013; 64(8): 915-20.
[http://dx.doi.org/10.3109/09637486.2013.806448 ] [PMID: 23777527]
[42]
Sonani RR, Patel S, Bhastana B, et al. Purification and antioxidant activity of phycocyanin from Synechococcus sp R42DM isolated from industrially polluted site Bioresour Technol 2017; 245(Pt A): 325-1.
[http://dx.doi.org/10.1016/j.biortech.2017.08.129] [PMID: 28898827]
[43]
Osman A, Salama A, Emam Mahmoud K, Sitohy M. Alleviation of carbon tetrachloride-induced hepatocellular damage and oxidative stress in rats by Anabaena oryzae phycocyanin. J Food Biochem 2021; 45(1): e13562.
[http://dx.doi.org/10.1111/jfbc.13562 ] [PMID: 33184842]
[44]
ElFar OA, Chang C-K, Leong HY, Peter AP, Chew KW, Show PL. Prospects of Industry 5.0 in algae: Customization of production and new advance technology for clean bioenergy generation. Energy Convers Manage 2021; 10: 100048.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy