Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Heterocyclic Moieties as HDAC Inhibitors: Role in Cancer Therapeutics

Author(s): Sharba Tasneem, Mohammad Mumtaz Alam*, Mohammad Amir, Mymoona Akhter, Suhel Parvez, Garima Verma, Lalit Mohan Nainwal, Ashif Equbal, Tarique Anwer and Mohammad Shaquiquzzaman*

Volume 22, Issue 12, 2022

Published on: 07 February, 2022

Page: [1648 - 1706] Pages: 59

DOI: 10.2174/1389557519666211221144013

Price: $65

conference banner
Abstract

‘Epigenetic’ regulation of genes via post-translational modulation of proteins is a wellexplored approach for disease therapies, particularly cancer chemotherapeutics. Histone deacetylases (HDACs) are one of the important epigenetic targets and are mainly responsible for balancing the acetylation/deacetylation of lysine amino acids on histone/nonhistone proteins along with histone acetyltransferase (HAT). HDAC inhibitors (HDACIs) have become important biologically active compounds for the treatment of cancers due to cell cycle arrest, differentiation, and apoptosis in tumor cells, thus leading to anticancer activity. Out of the four classes of HDAC, i.e., Class I, II, III, and IV, HDACIs act on Class IV (Zinc dependent HDAC), and various FDA-approved drugs belong to this category. The required canonical pharmacophore model (zinc-binding group, surface recognition cap, and appropriate linker) supported by HDACIs, various heterocyclic moieties containing compounds exhibiting HDAC inhibitory activity, and structure-activity relationship of different synthetic derivatives reported during the last twelve years have been summarized in this review.

Keywords: Histone deacetylase, histone deacetylase inhibitors, tubulin, cancer, structure-activity relationship, heterocyclic moieties.

« Previous
Graphical Abstract

[1]
Definition of cancer - NCI Dictionary of Cancer Terms - National Cancer Institute. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/cancer
[3]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[4]
Akavia, U.D.; Litvin, O.; Kim, J.; Sanchez-Garcia, F.; Kotliar, D.; Causton, H.C.; Pochanard, P.; Mozes, E.; Garraway, L.A.; Pe’er, D. An integrated approach to uncover drivers of cancer. Cell, 2010, 143(6), 1005-1017.
[http://dx.doi.org/10.1016/j.cell.2010.11.013] [PMID: 21129771]
[5]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[6]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inciden-ce and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[8]
Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; Flanders, W.D.; Brawley, O.W.; Gapstur, S.M.; Jemal, A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin., 2018, 68(1), 31-54.
[http://dx.doi.org/10.3322/caac.21440] [PMID: 29160902]
[9]
Huynh, N.C-N.; Everts, V.; Ampornaramveth, R.S. Histone deacetylases and their roles in mineralized tissue regeneration. Bone Rep., 2017, 7, 33-40.
[http://dx.doi.org/10.1016/j.bonr.2017.08.001] [PMID: 28856178]
[10]
Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 2011, 123(19), 2145-2156.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.956839] [PMID: 21576679]
[11]
Loscalzo, J.; Handy, D.E. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference se-ries). Pulm. Circ., 2014, 4(2), 169-174.
[http://dx.doi.org/10.1086/675979] [PMID: 25006435]
[12]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414-1438.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[13]
Lai, F.; Jin, L.; Gallagher, S.; Mijatov, B.; Zhang, X.D.; Hersey, P. Histone deacetylases (HDACs) as mediators of resistance to apoptosis in melanoma and as targets for combination therapy with selective BRAF inhibitors. Adv. Pharmacol., 2012, 65, 27-43.
[http://dx.doi.org/10.1016/B978-0-12-397927-8.00002-6] [PMID: 22959022]
[14]
Manal, M.; Chandrasekar, M.J.; Gomathi Priya, J.; Nanjan, M.J. Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg. Chem., 2016, 67, 18-42.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.005] [PMID: 27239721]
[15]
Taunton, J.; Hassig, C.A.; Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science, 1996, 272(5260), 408-411.
[http://dx.doi.org/10.1126/science.272.5260.408] [PMID: 8602529]
[16]
Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol., 2014, 6(4), a018713.
[http://dx.doi.org/10.1101/cshperspect.a018713] [PMID: 24691964]
[17]
He, S.; Dong, G.; Li, Y.; Wu, S.; Wang, W.; Sheng, C. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew. Chem. Int. Ed. Engl., 2020, 59(8), 3028-3032.
[http://dx.doi.org/10.1002/anie.201915896] [PMID: 31943585]
[18]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[19]
Dai, W.; Zhou, J.; Jin, B.; Pan, J. Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci. Rep., 2016, 6, 22622.
[http://dx.doi.org/10.1038/srep22622] [PMID: 26940009]
[20]
Costa-Machado, L.F.; Fernandez-Marcos, P.J. The sirtuin family in cancer. Cell Cycle, 2019, 18(18), 2164-2196.
[http://dx.doi.org/10.1080/15384101.2019.1634953] [PMID: 31251117]
[21]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of hdac inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[22]
Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[23]
Tang, J.; Yan, H.; Zhuang, S. Histone deacetylases as targets for treatment of multiple diseases. Clin. Sci. (Lond.), 2013, 124(11), 651-662.
[http://dx.doi.org/10.1042/CS20120504] [PMID: 23414309]
[24]
Banik, D.; Khan, A.N.H.; Walseng, E.; Segal, B.H.; Abrams, S.I. Interferon regulatory factor-8 is important for histone deacetylase inhibi-tor-mediated antitumor activity. PLoS One, 2012, 7(9), e45422.
[http://dx.doi.org/10.1371/journal.pone.0045422] [PMID: 23028998]
[25]
Suzuki, K.; Oneyama, C.; Kimura, H.; Tajima, S.; Okada, M. Down-regulation of the tumor suppressor C-terminal Src kinase (Csk)-binding protein (Cbp)/PAG1 is mediated by epigenetic histone modifications via the mitogen-activated protein kinase (MAPK)/phosphatidylinositol 3-kinase (PI3K) pathway. J. Biol. Chem., 2011, 286(18), 15698-15706.
[http://dx.doi.org/10.1074/jbc.M110.195362] [PMID: 21388951]
[26]
Park, J.H.; Ahn, M.Y.; Kim, T.H.; Yoon, S.; Kang, K.W.; Lee, J.; Moon, H.R.; Jung, J.H.; Chung, H.Y.; Kim, H.S. A new synthetic HDAC inhibitor, MHY218, induces apoptosis or autophagy-related cell death in tamoxifen-resistant MCF-7 breast cancer cells. Invest. New Drugs, 2012, 30(5), 1887-1898.
[http://dx.doi.org/10.1007/s10637-011-9752-z] [PMID: 21983700]
[27]
Kurundkar, D.; Srivastava, R.K.; Chaudhary, S.C.; Ballestas, M.E.; Kopelovich, L.; Elmets, C.A.; Athar, M. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model. Toxicol. Appl. Pharmacol., 2013, 266(2), 233-244.
[http://dx.doi.org/10.1016/j.taap.2012.11.002] [PMID: 23147569]
[28]
Malone, C.F.; Emerson, C.; Ingraham, R.; Barbosa, W.; Guerra, S.; Yoon, H.; Liu, L.L.; Michor, F.; Haigis, M.; Macleod, K.F.; Maertens, O.; Cichowski, K.; Maertens, O. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discov., 2017, 7(12), 1450-1463.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0177] [PMID: 28963352]
[29]
Sidana, A.; Wang, M.; Shabbeer, S.; Chowdhury, W.H.; Netto, G.; Lupold, S.E.; Carducci, M.; Rodriguez, R. Mechanism of growth inhibi-tion of prostate cancer xenografts by valproic acid. J. Biomed. Biotechnol., 2012, 2012, 180363.
[http://dx.doi.org/10.1155/2012/180363] [PMID: 23093837]
[30]
Hannemann, J.; Kristel, P.; van Tinteren, H.; Bontenbal, M.; van Hoesel, Q.G.; Smit, W.M.; Nooij, M.A.; Voest, E.E.; van der Wall, E.; Hupperets, P.; de Vries, E.G.; Rodenhuis, S.; van de Vijver, M.J. Molecular subtypes of breast cancer and amplification of topoisomerase II α: predictive role in dose intensive adjuvant chemotherapy. Br. J. Cancer, 2006, 95(10), 1334-1341.
[http://dx.doi.org/10.1038/sj.bjc.6603449] [PMID: 17088909]
[31]
Woo, S.; Gardner, E.R.; Chen, X.; Ockers, S.B.; Baum, C.E.; Sissung, T.M.; Price, D.K.; Frye, R.; Piekarz, R.L.; Bates, S.E.; Figg, W.D. Population pharmacokinetics of romidepsin in patients with cutaneous T-cell lymphoma and relapsed peripheral T-cell lymphoma. Clin. Cancer Res., 2009, 15(4), 1496-1503.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1215] [PMID: 19228751]
[32]
Srinivas, N.R. Clinical pharmacokinetics of panobinostat, a novel histone deacetylase (HDAC) inhibitor: Review and perspectives. Xenobiotica, 2017, 47(4), 354-368.
[http://dx.doi.org/10.1080/00498254.2016.1184356] [PMID: 27226420]
[33]
Takebe, N.; Beumer, J.H.; Kummar, S.; Kiesel, B.F.; Dowlati, A.; O’Sullivan Coyne, G.; Piekarz, R.; Rubinstein, L.; Fogli, L.K.; Vaisham-payan, U.; Goel, S.; O’Bryant, C.L.; El-Rayes, B.F.; Chung, V.; Lenz, H.J.; Kim, R.; Belani, C.P.; Tuscano, J.M.; Schelman, W.; Moore, N.; Doroshow, J.H.; Chen, A.P. A phase I pharmacokinetic study of belinostat in patients with advanced cancers and varying degrees of liver dysfunction. Br. J. Clin. Pharmacol., 2019, 85(11), 2499-2511.
[http://dx.doi.org/10.1111/bcp.14054] [PMID: 31271459]
[34]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACI. Front. Oncol., 2018, 8, 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[35]
Basu, A.; Krishnamurthy, S. Cellular responses to Cisplatin-induced DNA damage. J. Nucleic Acids, 2010, 2010, 201367.
[http://dx.doi.org/10.4061/2010/201367] [PMID: 20811617]
[36]
Thurn, K.T.; Thomas, S.; Moore, A.; Munster, P.N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol., 2011, 7(2), 263-283.
[http://dx.doi.org/10.2217/fon.11.2] [PMID: 21345145]
[37]
Björkman, M.; Iljin, K.; Halonen, P.; Sara, H.; Kaivanto, E.; Nees, M.; Kallioniemi, O.P. Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERG-positive prostate cancer. Int. J. Cancer, 2008, 123(12), 2774-2781.
[http://dx.doi.org/10.1002/ijc.23885] [PMID: 18798265]
[38]
Mai, A. Histone deacetylase inhibitors: Updated studies in various epigenetic-related diseases. J. Clin. Epigenetics, 2016, 2, 1-15.
[39]
Zhang, L.; Zhang, J.; Jiang, Q.; Zhang, L.; Song, W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 714-721.
[http://dx.doi.org/10.1080/14756366.2017.1417274] [PMID: 29616828]
[40]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[41]
Shamma, M. The isoquinoline alkaloids chemistry and Pharmacology; Elsevier, 2012.
[42]
Scott, J.D.; Williams, R.M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev., 2002, 102(5), 1669-1730.
[http://dx.doi.org/10.1021/cr010212u] [PMID: 11996547]
[43]
Zhang, Y.; Feng, J.; Liu, C.; Zhang, L.; Jiao, J.; Fang, H.; Su, L.; Zhang, X.; Zhang, J.; Li, M.; Wang, B.; Xu, W. Design, synthesis and pre-liminary activity assay of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as novel Histone deacetylases (HDACs) inhibitors. Bioorg. Med. Chem., 2010, 18(5), 1761-1772.
[http://dx.doi.org/10.1016/j.bmc.2010.01.060] [PMID: 20171895]
[44]
Zhang, Y.; Feng, J.; Jia, Y.; Wang, X.; Zhang, L.; Liu, C.; Fang, H.; Xu, W. Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: Potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem., 2011, 54(8), 2823-2838.
[http://dx.doi.org/10.1021/jm101605z] [PMID: 21476600]
[45]
Zhang, Y.; Fang, H.; Feng, J.; Jia, Y.; Wang, X.; Xu, W. Discovery of a tetrahydroisoquinoline-based hydroxamic acid derivative (ZYJ-34c) as histone deacetylase inhibitor with potent oral antitumor activities. J. Med. Chem., 2011, 54(15), 5532-5539.
[http://dx.doi.org/10.1021/jm200577a] [PMID: 21714538]
[46]
Zhang, Y.; Liu, C.; Chou, C.J.; Wang, X.; Jia, Y.; Xu, W. Design and synthesis of a tetrahydroisoquinoline-based hydroxamate derivative (ZYJ-34v), an oral active histone deacetylase inhibitor with potent antitumor activity. Chem. Biol. Drug Des., 2013, 82(2), 125-130.
[http://dx.doi.org/10.1111/cbdd.12144] [PMID: 23581848]
[47]
Blackburn, C.; Barrett, C.; Chin, J.; Garcia, K.; Gigstad, K.; Gould, A.; Gutierrez, J.; Harrison, S.; Hoar, K.; Lynch, C.; Rowland, R.S.; Tsu, C.; Ringeling, J.; Xu, H. Potent histone deacetylase inhibitors derived from 4-(aminomethyl)-N-hydroxybenzamide with high selectivity for the HDAC6 isoform. J. Med. Chem., 2013, 56(18), 7201-7211.
[http://dx.doi.org/10.1021/jm400385r] [PMID: 23964961]
[48]
Liu, Y.M.; Lee, H.Y.; Chen, C.H.; Lee, C.H.; Wang, L.T.; Pan, S.L.; Lai, M.J.; Yeh, T.K.; Liou, J.P. 1-Arylsulfonyl-5-(N-hydroxyacrylamide)tetrahydroquinolines as potent histone deacetylase inhibitors suppressing the growth of prostate cancer cells. Eur. J. Med. Chem., 2015, 89, 320-330.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.052] [PMID: 25462248]
[49]
Chen, D.; Shen, A.; Fang, G.; Liu, H.; Zhang, M.; Tang, S.; Xiong, B.; Ma, L.; Geng, M.; Shen, J. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer. Acta Pharm. Sin. B, 2016, 6(1), 93-99.
[http://dx.doi.org/10.1016/j.apsb.2015.11.002] [PMID: 26904403]
[50]
Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 34.
[http://dx.doi.org/10.1186/s12941-016-0150-4] [PMID: 27215369]
[51]
Peterson, L.R. Quinolone molecular structure-activity relationships: What we have learned about improving antimicrobial activity. Clin. Infect. Dis., 2001, 33(Suppl. 3), S180-S186.
[http://dx.doi.org/10.1086/321846] [PMID: 11524717]
[52]
Balasubramanian, G.; Kilambi, N.; Rathinasamy, S.; Rajendran, P.; Narayanan, S.; Rajagopal, S. Quinolone-based HDAC inhibitors. J. Enzyme Inhib. Med. Chem., 2014, 29(4), 555-562.
[http://dx.doi.org/10.3109/14756366.2013.827675] [PMID: 25019596]
[53]
Tashima, T.; Murata, H.; Kodama, H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem., 2014, 22(14), 3720-3731.
[http://dx.doi.org/10.1016/j.bmc.2014.05.001] [PMID: 24864038]
[54]
Wang, X.; Jiang, X.; Sun, S.; Liu, Y. Synthesis and biological evaluation of novel quinolone derivatives dual targeting histone deacetylase and tubulin polymerization as anti-proliferative agents. RSC Advances, 2018, 8, 16494-16502.
[http://dx.doi.org/10.1039/C8RA02578A]
[55]
Collin, G.; Höke, H. Ullmann's encyclopedia of Industrial Chemistry., Quinoline and isoquinoline, 2000, 1-6..
[http://dx.doi.org/10.1002/14356007.a22_465]
[56]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile hete-rocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[57]
Wang, L.; Hou, X.; Fu, H.; Pan, X.; Xu, W.; Tang, W.; Fang, H. Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4364-4374.
[http://dx.doi.org/10.1016/j.bmc.2015.06.024] [PMID: 26149591]
[58]
Lee, H.Y.; Chang, C.Y.; Su, C.J.; Huang, H.L.; Mehndiratta, S.; Chao, Y.H.; Hsu, C.M.; Kumar, S.; Sung, T.Y.; Huang, Y.Z.; Li, Y.H.; Yang, C.R.; Liou, J.P. 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur. J. Med. Chem., 2016, 122, 92-101.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.023] [PMID: 27344487]
[59]
Chen, C.; Hou, X.; Wang, G.; Pan, W.; Yang, X.; Zhang, Y.; Fang, H. Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors. Eur. J. Med. Chem., 2017, 133, 11-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.064] [PMID: 28371677]
[60]
Lee, H.Y.; Nepali, K.; Huang, F.I.; Chang, C.Y.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Yang, C.R.; Liou, J.P. (N-Hydroxycarbonylbenylamino) quinolines as selective Histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo. J. Med. Chem., 2018, 61(3), 905-917.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01404] [PMID: 29304284]
[61]
Gupta, T.; Rohilla, A.; Pathak, A.; Akhtar, M.J.; Haider, M.R.; Yar, M.S. Current perspectives on quinazolines with potent biological activi-ties: A review. Synth. Commun., 2018, 48, 1099-1127.
[http://dx.doi.org/10.1080/00397911.2018.1431282]
[62]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 395637.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[63]
Hieu, D.T.; Anh, D.T.; Tuan, N.M.; Hai, P.T.; Huong, L.T.; Kim, J.; Kang, J.S.; Vu, T.K.; Dung, P.T.P.; Han, S.B.; Nam, N.H.; Hoa, N.D. Design, synthesis and evaluation of novel N-hydroxybenzamides/N-hydroxypropenamides incorporating quinazolin-4(3H)-ones as histo-ne deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2018, 76, 258-267.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.007] [PMID: 29223029]
[64]
Yu, C.W.; Hung, P.Y.; Yang, H.T.; Ho, Y.H.; Lai, H.Y.; Cheng, Y.S.; Chern, J.W. Quinazolin-2,4-dione-based hydroxamic acids as selecti-ve Histone deacetylase-6 inhibitors for treatment of non-small cell lung cancer. J. Med. Chem., 2019, 62(2), 857-874.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01590] [PMID: 30525585]
[65]
Hieu, D.T.; Anh, D.T.; Hai, P.T.; Thuan, N.T.; Huong, L.T.T.; Park, E.J.; Young Ji, A.; Soon Kang, J.; Phuong Dung, P.T.; Han, S.B.; Nam, N.H. Quinazolin‐4 (3H)‐one‐based hydroxamic acids: Design, synthesis and evaluation of Histone deacetylase inhibitory effects and cy-totoxicity. Chem. Biodivers., 2019, 16(4), e1800502.
[http://dx.doi.org/10.1002/cbdv.201800502] [PMID: 30653817]
[66]
Zhang, K.; Lai, F.; Lin, S.; Ji, M.; Zhang, J.; Zhang, Y.; Jin, J.; Fu, R.; Wu, D.; Tian, H.; Xue, N.; Sheng, L.; Zou, X.; Li, Y.; Chen, X.; Xu, H. Design, synthesis and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting Phosphoinositide 3-kinases and Histone deacetylases. J. Med. Chem., 2019, 62(15), 6992-7014.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00390] [PMID: 31117517]
[67]
Chen, J.; Sang, Z.; Jiang, Y.; Yang, C.; He, L. Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC1 and HDAC6 inhibitors for the treatment of cancer. Chem. Biol. Drug Des., 2019, 93(3), 232-241.
[http://dx.doi.org/10.1111/cbdd.13405] [PMID: 30251407]
[68]
Kumari, A. Sweet biochemistry: Remembering structures, cycles and pathways by mnemonics; Academic Press, 2017.
[69]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 202784.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[70]
Zhou, Y.; Dun, Y.; Fu, H.; Wang, L.; Pan, X.; Yang, X.; Fang, H. Design, synthesis, and preliminary bioactivity evaluation of N-benzylpyrimidin-2-amine derivatives as novel histone deacetylase inhibitor. Chem. Biol. Drug Des., 2017, 90(5), 936-942.
[http://dx.doi.org/10.1111/cbdd.13019] [PMID: 28489276]
[71]
Wang, J.; Su, M.; Li, T.; Gao, A.; Yang, W.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of thienopyri-midine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2017, 128, 293-299.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.035] [PMID: 28213282]
[72]
Tan, Q.; Zhang, Z.; Hui, J.; Zhao, Y.; Zhu, L. Synthesis and anticancer activities of thieno[3,2-d]pyrimidines as novel HDAC inhibitors. Bioorg. Med. Chem., 2014, 22(1), 358-365.
[http://dx.doi.org/10.1016/j.bmc.2013.11.021] [PMID: 24296013]
[73]
Moffat, D.; Patel, S.; Day, F.; Belfield, A.; Donald, A.; Rowlands, M.; Wibawa, J.; Brotherton, D.; Stimson, L.; Clark, V. Discovery of 2-(6-{[(6-fluoroquinolin-2-yl) methyl] amino} bicyclo [3.1. 0] hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selec-tive orally active histone deacetylase inhibitor. J. Med. Chem., 2010, 53, 8663-8678.
[http://dx.doi.org/10.1021/jm101177s] [PMID: 21080647]
[74]
Banerji, U.; van Doorn, L.; Papadatos-Pastos, D.; Kristeleit, R.; Debnam, P.; Tall, M.; Stewart, A.; Raynaud, F.; Garrett, M.D.; Toal, M.; Hooftman, L.; De Bono, J.S.; Verweij, J.; Eskens, F.A. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors. Clin. Cancer Res., 2012, 18(9), 2687-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3165] [PMID: 22553374]
[75]
Popat, R.; Brown, S.R.; Tillotson, A-L.; Collinson, F.; Flanagan, L.M.; Williams, C.D.; Yong, K.L.; Cook, G.; Jenner, M.W.; Kaiser, M. A phase I dose-escalation study of the class 1 selective histone deacetylase inhibitor CHR-3996 in combination with tosedostat for patients with relapsed, refractory multiple myeloma: results of the muk three trial. Blood, 2016, 128, 3321.
[http://dx.doi.org/10.1182/blood.V128.22.3321.3321]
[76]
Zhou, N.; Moradei, O.; Raeppel, S.; Leit, S.; Frechette, S.; Gaudette, F.; Paquin, I.; Bernstein, N.; Bouchain, G.; Vaisburg, A.; Jin, Z.; Gi-llespie, J.; Wang, J.; Fournel, M.; Yan, P.T.; Trachy-Bourget, M.C.; Kalita, A.; Lu, A.; Rahil, J.; MacLeod, A.R.; Li, Z.; Besterman, J.M.; Delorme, D. Discovery of N-(2-aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino)methyl]benzamide (MGCD0103), an orally active histone deacetylase inhibitor. J. Med. Chem., 2008, 51(14), 4072-4075.
[http://dx.doi.org/10.1021/jm800251w] [PMID: 18570366]
[77]
Peri, S.; Andrews, A.J.; Bhatia, A.; Mehra, R. Epigenetic changes and epigenetic targets in head and neck cancer. Mol. Determinan. Head Neck Cancer; Springer, 2018, pp. 327-352.
[http://dx.doi.org/10.1007/978-3-319-78762-6_12]
[78]
Chen, D.; Soh, C.K.; Goh, W.H.; Wang, H. Design, synthesis, and preclinical evaluation of fused pyrimidine-based hydroxamates for the treatment of hepatocellular carcinoma. J. Med. Chem., 2018, 61(4), 1552-1575.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01465] [PMID: 29360358]
[79]
Yao, L.; Mustafa, N.; Tan, E.C.; Poulsen, A.; Singh, P.; Duong-Thi, M-D.; Lee, J.X.T.; Ramanujulu, P.M.; Chng, W.J.; Yen, J.J.Y.; Ohlson, S.; Dymock, B.W. Design and synthesis of ligand efficient dual inhibitors of Janus Kinase (JAK) and Histone Deacetylase (HDAC) based on ruxolitinib and vorinostat. J. Med. Chem., 2017, 60(20), 8336-8357.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00678] [PMID: 28953386]
[80]
Yao, L.; Ohlson, S.; Dymock, B.W. Design and synthesis of triple inhibitors of Janus Kinase (JAK), Histone Deacetylase (HDAC) and Heat Shock Protein 90 (HSP90). Bioorg. Med. Chem. Lett., 2018, 28(8), 1357-1362.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.009] [PMID: 29545103]
[81]
Jarpe, M.B.; Van Den Bosch, L.; Benoy, V.; Van Helleputte, L. Pyrimidine hydroxy amide compounds for treating peripheral neuropathy; Google Pat, 2016.
[82]
Van Duzer, J.H.; Mazitschek, R.; Jones, S.S.; Yang, M.; Tamang, D.L. Pyrimidine hydroxy amide compounds as histone deacetylase inhi-bitors; Google Pat, 2016.
[83]
Tamang, D.L.; Yang, M.; Jones, S.S. Combinations of histone deacetylase inhibitors and either Her2 inhibitors or PI3K inhibitors; Google Pat, 2016.
[84]
Vaisburg, A.; Paquin, I.; Bernstein, N.; Frechette, S.; Gaudette, F.; Leit, S.; Moradei, O.; Raeppel, S.; Zhou, N.; Bouchain, G.; Woo, S.H.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel, M.; Yan, P.T.; Trachy-Bourget, M.C.; Robert, M.F.; Lu, A.; Yuk, J.; Rahil, J.; Macleod, A.R.; Bes-terman, J.M.; Li, Z.; Delorme, D.N. -(2-Amino-phenyl)-4-(heteroarylmethyl)-benzamides as new histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(24), 6729-6733.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.050] [PMID: 17977726]
[85]
Li, Y.; Zhou, Y.; Qian, P.; Wang, Y.; Jiang, F.; Yao, Z.; Hu, W.; Zhao, Y.; Li, S. Design, synthesis and bioevalution of novel benzamides derivatives as HDAC inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(1), 179-182.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.114] [PMID: 23206867]
[86]
Bhat, K.; Sufeera, K.; Chaitanya, S.K.P. Synthesis, characterization and biological activity studies of 1,3,4-oxadiazole analogs. J. Young Pharm., 2011, 3(4), 310-314.
[http://dx.doi.org/10.4103/0975-1483.90243] [PMID: 22224038]
[87]
Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Kharya, M.D. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibi-tors. Bioorg. Med. Chem. Lett., 2011, 21(19), 5735-5738.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.022] [PMID: 21875796]
[88]
Valente, S.; Trisciuoglio, D.; De Luca, T.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Del Bufalo, D.; Altucci, L.; Mai, A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: Anticancer activities in cancer cells. J. Med. Chem., 2014, 57(14), 6259-6265.
[http://dx.doi.org/10.1021/jm500303u] [PMID: 24972008]
[89]
Cai, J.; Wei, H.; Hong, K.H.; Wu, X.; Zong, X.; Cao, M.; Wang, P.; Li, L.; Sun, C.; Chen, B.; Zhou, G.; Chen, J.; Ji, M. Discovery, bioactivi-ty and docking simulation of Vorinostat analogues containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors and antitu-mor agents. Bioorg. Med. Chem., 2015, 23(13), 3457-3471.
[http://dx.doi.org/10.1016/j.bmc.2015.04.028] [PMID: 25953722]
[90]
Pidugu, V.R.; Yarla, N.S.; Pedada, S.R.; Kalle, A.M.; Satya, A.K. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity. Bioorg. Med. Chem., 2016, 24(21), 5611-5617.
[http://dx.doi.org/10.1016/j.bmc.2016.09.022] [PMID: 27665180]
[91]
Pidugu, V.R.; Yarla, N.S.; Bishayee, A.; Kalle, A.M.; Satya, A.K. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells. Apoptosis, 2017, 22(11), 1394-1403.
[http://dx.doi.org/10.1007/s10495-017-1410-2] [PMID: 28840369]
[92]
Fang, K.; Dong, G.; Li, Y.; He, S.; Wu, Y.; Wu, S.; Wang, W.; Sheng, C. Discovery of Novel Indoleamine 2,3-Dioxygenase 1 (IDO1) and Histone Deacetylase (HDAC) Dual Inhibitors. ACS Med. Chem. Lett., 2018, 9(4), 312-317.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00487] [PMID: 29670692]
[93]
Yang, F.; Shan, P.; Zhao, N.; Ge, D.; Zhu, K.; Jiang, C.S.; Li, P.; Zhang, H. Development of hydroxamate-based histone deacetylase inhibi-tors containing 1,2,4-oxadiazole moiety core with antitumor activities. Bioorg. Med. Chem. Lett., 2019, 29(1), 15-21.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.027] [PMID: 30455152]
[94]
Yang, Z.; Shen, M.; Tang, M.; Zhang, W.; Cui, X.; Zhang, Z.; Pei, H.; Li, Y.; Hu, M.; Bai, P.; Chen, L. Discovery of 1,2,4-oxadiazole-Containing hydroxamic acid derivatives as histone deacetylase inhibitors potential application in cancer therapy. Eur. J. Med. Chem., 2019, 178, 116-130.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.089] [PMID: 31177073]
[95]
Liang, Y.Y.; Zhang, C.M.; Liu, Z.P. Evaluation of WO2017018805: 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors. Expert Opin. Ther. Pat., 2018, 28(8), 647-651.
[http://dx.doi.org/10.1080/13543776.2018.1508451] [PMID: 30073889]
[96]
Jain, P.; Joshi, H. Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci., 2012, 2, 236-240.
[97]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Lee, S.S.; Hsu, F.L.; Lu, Y.L.; Hung, M.F.; Chang, C.I. Synthesis of N-hydroxycinnamides capped with a naturally occurring moiety as inhibitors of histone deacetylase. ChemMedChem, 2010, 5(4), 598-607.
[http://dx.doi.org/10.1002/cmdc.200900494] [PMID: 20209563]
[98]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Yu, C.C.; Yang, C.Y.; Guh, J.H.; Lin, Y.C.; Kuo, C.I.; Yang, P.; Chang, C.I. Synthesis and evaluation of aliphatic-chain hydroxamates capped with osthole derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4042-4049.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.002] [PMID: 21712146]
[99]
Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.024] [PMID: 28340413]
[100]
Tan, S.; He, F.; Kong, T.; Wu, J.; Liu, Z. Design, synthesis and tumor cell growth inhibitory activity of 3-nitro-2H-cheromene derivatives as histone deacetylaes inhibitors. Bioorg. Med. Chem., 2017, 25(15), 4123-4132.
[http://dx.doi.org/10.1016/j.bmc.2017.05.062] [PMID: 28629630]
[101]
Roychowdhury, P.; Basak, B. The crystal structure of indole. Acta Crystallogr. B, 1975, 31, 1559-1563.
[http://dx.doi.org/10.1107/S0567740875005687]
[102]
Zhang, Y.; Yang, P.; Chou, C.J.; Liu, C.; Wang, X.; Xu, W. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with an indole-containing cap group. ACS Med. Chem. Lett., 2013, 4(2), 235-238.
[http://dx.doi.org/10.1021/ml300366t] [PMID: 23493449]
[103]
Li, X.; Inks, E.S.; Li, X.; Hou, J.; Chou, C.J.; Zhang, J.; Jiang, Y.; Zhang, Y.; Xu, W. Discovery of the first N-hydroxycinnamamide-based histone deacetylase 1/3 dual inhibitors with potent oral antitumor activity. J. Med. Chem., 2014, 57(8), 3324-3341.
[http://dx.doi.org/10.1021/jm401877m] [PMID: 24694055]
[104]
Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N-hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675.
[http://dx.doi.org/10.1016/j.bmc.2016.12.001] [PMID: 28336407]
[105]
Wang, X.; Li, X.; Li, J.; Hou, J.; Qu, Y.; Yu, C.; He, F.; Xu, W.; Wu, J. Design, synthesis, and preliminary bioactivity evaluation of N1 -hydroxyterephthalamide derivatives with indole cap as novel histone deacetylase inhibitors. Chem. Biol. Drug Des., 2017, 89(1), 38-46.
[http://dx.doi.org/10.1111/cbdd.12819] [PMID: 27416889]
[106]
Yu, C.; He, F.; Qu, Y.; Zhang, Q.; Lv, J.; Zhang, X.; Xu, A.; Miao, P.; Wu, J. Structure optimization and preliminary bioactivity evaluation of N-hydroxybenzamide-based HDAC inhibitors with Y-shaped cap. Bioorg. Med. Chem., 2018, 26(8), 1859-1868.
[http://dx.doi.org/10.1016/j.bmc.2018.02.033] [PMID: 29500131]
[107]
Li, X.; Zhang, Y.; Jiang, Y.; Wu, J.; Inks, E.S.; Chou, C.J.; Gao, S.; Hou, J.; Ding, Q.; Li, J.; Wang, X.; Huang, Y.; Xu, W. Selective HDAC inhibitors with potent oral activity against leukemia and colorectal cancer: Design, structure-activity relationship and anti-tumor activity study. Eur. J. Med. Chem., 2017, 134, 185-206.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.069] [PMID: 28415009]
[108]
Lai, M.J.; Ojha, R.; Lin, M.H.; Liu, Y.M.; Lee, H.Y.; Lin, T.E.; Hsu, K.C.; Chang, C.Y.; Chen, M.C.; Nepali, K.; Chang, J.Y.; Liou, J.P. 1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur. J. Med. Chem., 2019, 162, 612-630.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.066] [PMID: 30476825]
[109]
Bush, K. Bradford, P.A. β-Lactams and β-Lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[110]
Kim, H.M.; Lee, K.; Park, B.W.; Ryu, D.K.; Kim, K.; Lee, C.W.; Park, S.K.; Han, J.W.; Lee, H.Y.; Lee, H.Y.; Han, G. Synthesis, enzymatic inhibition, and cancer cell growth inhibition of novel δ--lactam-based histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(15), 4068-4070.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.091] [PMID: 16723227]
[111]
Kim, H.M.; Ryu, D.K.; Choi, Y.; Park, B.W.; Lee, K.; Han, S.B.; Lee, C.W.; Kang, M.R.; Kang, J.S.; Boovanahalli, S.K.; Park, S.K.; Han, J.W.; Chun, T.G.; Lee, H.Y.; Nam, K.Y.; Choi, E.H.; Han, G. Structure-activity relationship studies of a series of novel δ--lactam-based his-tone deacetylase inhibitors. J. Med. Chem., 2007, 50(11), 2737-2741.
[http://dx.doi.org/10.1021/jm0613828] [PMID: 17477518]
[112]
Kim, H.M.; Hong, S.H.; Kim, M.S.; Lee, C.W.; Kang, J.S.; Lee, K.; Park, S.K.; Han, J.W.; Lee, H.Y.; Choi, Y.; Kwon, H.J.; Han, G. Modifi-cation of cap group in δ--lactam-based histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(22), 6234-6238.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.034] [PMID: 17904843]
[113]
Kwon, H.K.; Ahn, S.H.; Park, S.H.; Park, J.H.; Park, J.W.; Kim, H.M.; Park, S.K.; Lee, K.; Lee, C.W.; Choi, E.; Han, G.; Han, J.W. A novel γ-lactam-based histone deacetylase inhibitor potently inhibits the growth of human breast and renal cancer cells. Biol. Pharm. Bull., 2009, 32(10), 1723-1727.
[http://dx.doi.org/10.1248/bpb.32.1723] [PMID: 19801834]
[114]
Kang, M.R.; Kang, J.S.; Han, S-B.; Kim, J.H.; Kim, D-M.; Lee, K.; Lee, C.W.; Lee, K.H.; Lee, C.H.; Han, G.; Kang, J.S.; Kim, H.M.; Park, S.K. A novel δ--lactam-based histone deacetylase inhibitor, KBH-A42, induces cell cycle arrest and apoptosis in colon cancer cells. Biochem. Pharmacol., 2009, 78(5), 486-494.
[http://dx.doi.org/10.1016/j.bcp.2009.05.010] [PMID: 19445901]
[115]
Yoon, H.C.; Choi, E.; Park, J.E.; Cho, M.; Seo, J.J.; Oh, S.J.; Kang, J.S.; Kim, H.M.; Park, S.K.; Lee, K.; Han, G. Property based optimiza-tion of δ--lactam HDAC inhibitors for metabolic stability. Bioorg. Med. Chem. Lett., 2010, 20(22), 6808-6811.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.117] [PMID: 20850971]
[116]
Fort, R.C.; Schleyer, P.V.R. Adamantane: Consequences of the diamondoid structure. Chem. Rev., 1964, 64, 277-300.
[http://dx.doi.org/10.1021/cr60229a004]
[117]
Cincinelli, R.; Musso, L.; Giannini, G.; Zuco, V.; De Cesare, M.; Zunino, F.; Dallavalle, S. Influence of the adamantyl moiety on the activi-ty of biphenylacrylohydroxamic acid-based HDAC inhibitors. Eur. J. Med. Chem., 2014, 79, 251-259.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.021] [PMID: 24742384]
[118]
Gopalan, B.; Ponpandian, T.; Kachhadia, V.; Bharathimohan, K.; Vignesh, R.; Sivasudar, V.; Narayanan, S.; Mandar, B.; Praveen, R.; Sa-ranya, N.; Rajagopal, S.; Rajagopal, S. Discovery of adamantane based highly potent HDAC inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(9), 2532-2537.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.002] [PMID: 23538115]
[119]
Shimizu, S.; Watanabe, N.; Kataoka, T.; Shoji, T.; Abe, N.; Morishita, S.; Ichimura, H. Pyridine and pyridine derivatives; Ullmanns Encyclopedia of Industrial Chemistry, 2000, pp. 557-589.
[120]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[121]
Patil, V.; Sodji, Q.H.; Kornacki, J.R.; Mrksich, M.; Oyelere, A.K. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition. J. Med. Chem., 2013, 56(9), 3492-3506.
[http://dx.doi.org/10.1021/jm301769u] [PMID: 23547652]
[122]
Sodji, Q.H.; Patil, V.; Kornacki, J.R.; Mrksich, M.; Oyelere, A.K. Synthesis and structure-activity relationship of 3-hydroxypyridine-2-thione-based histone deacetylase inhibitors. J. Med. Chem., 2013, 56(24), 9969-9981.
[http://dx.doi.org/10.1021/jm401225q] [PMID: 24304348]
[123]
Cho, M.; Choi, E.; Yang, J.S.; Lee, C.; Seo, J.J.; Kim, B.S.; Oh, S.J.; Kim, H.M.; Lee, K.; Park, S.K.; Kwon, H.J.; Han, G. Discovery of pyridone-based histone deacetylase inhibitors: approaches for metabolic stability. ChemMedChem, 2013, 8(2), 272-279.
[http://dx.doi.org/10.1002/cmdc.201200529] [PMID: 23292995]
[124]
Song, D.; Lee, C.; Kook, Y.J.; Oh, S.J.; Kang, J.S.; Kim, H-J.; Han, G. Improving potency and metabolic stability by introducing an alkenyl linker to pyridine-based histone deacetylase inhibitors for orally available RUNX3 modulators. Eur. J. Med. Chem., 2017, 126, 997-1010.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.055] [PMID: 28011426]
[125]
Zhang, Q.W.; Li, J.Q. Synthesis and biological evaluation of N-(aminopyridine) benzamide analogues as histone deacetylase inhibitors. Bull. Korean Chem. Soc., 2012, 33, 535-540.
[http://dx.doi.org/10.5012/bkcs.2012.33.2.535]
[126]
Methot, J.L.; Hamblett, C.L.; Mampreian, D.M.; Jung, J.; Harsch, A.; Szewczak, A.A.; Dahlberg, W.K.; Middleton, R.E.; Hughes, B.; Fle-ming, J.C.; Wang, H.; Kral, A.M.; Ozerova, N.; Cruz, J.C.; Haines, B.; Chenard, M.; Kenific, C.M.; Secrist, J.P.; Miller, T.A. SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg. Med. Chem. Lett., 2008, 18(23), 6104-6109.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.052] [PMID: 18951790]
[127]
Methot, J.L.; Hoffman, D.M.; Witter, D.J.; Stanton, M.G.; Harrington, P.; Hamblett, C.; Siliphaivanh, P.; Wilson, K.; Hubbs, J.; Heidebre-cht, R.; Kral, A.M.; Ozerova, N.; Fleming, J.C.; Wang, H.; Szewczak, A.A.; Middleton, R.E.; Hughes, B.; Cruz, J.C.; Haines, B.B.; Chenard, M.; Kenific, C.M.; Harsch, A.; Secrist, J.P.; Miller, T.A. Delayed and prolonged histone hyperacetylation with a selective HDAC1/HDAC2 inhibitor. ACS Med. Chem. Lett., 2014, 5(4), 340-345.
[http://dx.doi.org/10.1021/ml4004233] [PMID: 24900838]
[128]
Kemp, M.M.; Wang, Q.; Fuller, J.H.; West, N.; Martinez, N.M.; Morse, E.M.; Weïwer, M.; Schreiber, S.L.; Bradner, J.E.; Koehler, A.N. A novel HDAC inhibitor with a hydroxy-pyrimidine scaffold. Bioorg. Med. Chem. Lett., 2011, 21(14), 4164-4169.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.098] [PMID: 21696956]
[129]
Muraglia, E.; Altamura, S.; Branca, D.; Cecchetti, O.; Ferrigno, F.; Orsale, M.V.; Palumbi, M.C.; Rowley, M.; Scarpelli, R.; Steinkühler, C.; Jones, P. 2-Trifluoroacetylthiophene oxadiazoles as potent and selective class II human histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(23), 6083-6087.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.076] [PMID: 18930398]
[130]
Hentschel, F.; Sasse, F.; Lindel, T. Fluorescent analogs of the marine natural product psammaplin A: synthesis and biological activity. Org. Biomol. Chem., 2012, 10(35), 7120-7133.
[http://dx.doi.org/10.1039/c2ob25909e] [PMID: 22872318]
[131]
Baba, R.; Hori, Y.; Mizukami, S.; Kikuchi, K. Development of a fluorogenic probe with a transesterification switch for detection of histone deacetylase activity. J. Am. Chem. Soc., 2012, 134(35), 14310-14313.
[http://dx.doi.org/10.1021/ja306045j] [PMID: 22917182]
[132]
Seidel, C.; Schnekenburger, M.; Zwergel, C.; Gaascht, F.; Mai, A.; Dicato, M.; Kirsch, G.; Valente, S.; Diederich, M. Novel inhibitors of human histone deacetylases: Design, synthesis and bioactivity of 3-alkenoylcoumarines. Bioorg. Med. Chem. Lett., 2014, 24(16), 3797-3801.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.067] [PMID: 25042254]
[133]
Kamal, A.; Srikanth, Y.V.; Ramaiah, M.J.; Khan, M.N.A.; Kashi Reddy, M.; Ashraf, M.; Lavanya, A.; Pushpavalli, S.N.; Pal-Bhadra, M. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem. Lett., 2012, 22(1), 571-578.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.080] [PMID: 22104151]
[134]
Paquin, I.; Raeppel, S.; Leit, S.; Gaudette, F.; Zhou, N.; Moradei, O.; Saavedra, O.; Bernstein, N.; Raeppel, F.; Bouchain, G.; Fréchette, S.; Woo, S.H.; Vaisburg, A.; Fournel, M.; Kalita, A.; Robert, M.F.; Lu, A.; Trachy-Bourget, M.C.; Yan, P.T.; Liu, J.; Rahil, J.; MacLeod, A.R.; Besterman, J.M.; Li, Z.; Delorme, D. Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(3), 1067-1071.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.009] [PMID: 18160287]
[135]
Nepali, K.; Chang, T-Y.; Lai, M-J.; Hsu, K-C.; Yen, Y.; Lin, T.E.; Lee, S-B.; Liou, J-P. Purine/purine isoster based scaffolds as new deri-vatives of benzamide class of HDAC inhibitors. Eur. J. Med. Chem., 2020, 196, 112291.
[http://dx.doi.org/10.1016/j.ejmech.2020.112291] [PMID: 32325365]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy