Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Structure-based De Novo Design and Docking Studies of 5(S)-Methyl-L-Proline Containing Peptidomimetic Compounds as Dipeptidyl Peptidase-4 Inhibitors

Author(s): Anuradha K. Gajjar and Chirag D. Pathak*

Volume 19, Issue 2, 2022

Published on: 14 January, 2022

Article ID: e211221199189 Pages: 12

DOI: 10.2174/1570163819666211221100457

Price: $65

Abstract

Background: Diabetes affects millions of people worldwide, with predicted numbers of about 700 million adults affected by 2045. Among the several anti-diabetic drug therapies available in the market, Dipeptidyl Peptidase-4 (DPP-4) inhibitors have emerged as a promising therapeutic approach with scope for exploration in the segment of peptidomimetics.

Objective: Series of proline-containing peptidomimetic compounds were designed and investigated for their drug-likeness through Lipinski’s rule of five, lead-likeness through the rule of three, predictive pharmacokinetic studies (absorption, distribution, metabolism, and excretion), and toxicity properties through in-silico approaches. The designed compounds were evaluated for their interactions with binding sites of the enzyme DPP-4 using an extra precision docking approach.

Methods: Proline-containing peptidomimetic compounds were designed rationally. Drug-likeness and lead-likeness properties were calculated using Schrödinger Maestro v11.2 software. ADME and toxicity properties were predicted using PreADMET version 2.0. Docking study was performed using Schrödinger Maestro v11.2 software, and ligands for the study were designed using MarvinSketch software.

Results: 5(S)-methyl-L-proline containing 17 ligands were designed. All of them were found to obey Lipinski’s rule of five. Compounds were found to have good ADME profile and low toxicity predictions.

Conclusion: Four compounds were found to have good interactions with DPP-4 binding sites and hence created the scope to develop DPP-4 inhibitors containing 5(S)-methyl-L-proline moiety.

Keywords: T2DM, DPP-4, DPP-4 inhibitor, peptidomimetics, proline, docking.

Graphical Abstract

[1]
Diabetesatlasorg Worldwide toll of diabetes 2021. Available from: https://www.diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html (Accessed 20 April 2021).
[2]
Deacon CF, Holst JJ, Carr RD. Glucagon-like peptide-1: a basis for new approaches to the management of diabetes. Drugs Today 1999; 35(3): 159-70.
[http://dx.doi.org/10.1358/dot.1999.35.3.533845] [PMID: 12973381]
[3]
Holst JJ. On the physiology of GIP and GLP-1. Horm Metab Res 2004; 36(11-12): 747-54.
[http://dx.doi.org/10.1055/s-2004-826158] [PMID: 15655703]
[4]
Meier JJ, Nauck MA. Clinical endocrinology and metabolism. Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide. Best Pract Res Clin Endocrinol Metab 2004; 18(4): 587-606.
[http://dx.doi.org/10.1016/j.beem.2004.08.007] [PMID: 15533777]
[5]
Gautier JF, Fetita S, Sobngwi E, Salaün-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes Metab 2005; 31(3 Pt 1): 233-42.
[http://dx.doi.org/10.1016/S1262-3636(07)70190-8] [PMID: 16142014]
[6]
Drucker DJ. Glucagon-like peptides. Diabetes 1998; 47(2): 159-69.
[http://dx.doi.org/10.2337/diab.47.2.159] [PMID: 9519708]
[7]
Livingston JN, Schoen WR. Chapter 19: Glucagon and glucagon-like peptide-1. In:Annual Reports in Medicinal Chemistry. Elsevier 1999; pp. 189-98.
[8]
Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997; 273(5): E981-8.
[PMID: 9374685]
[9]
Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 1987; 79(2): 616-9.
[http://dx.doi.org/10.1172/JCI112855] [PMID: 3543057]
[10]
Kreymann B, Williams G, Ghatei MA, Bloom SR Sr. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; 2(8571): 1300-4.
[http://dx.doi.org/10.1016/S0140-6736(87)91194-9] [PMID: 2890903]
[11]
Ørskov C, Nielsen JH. Truncated glucagon-like peptide-1 (proglucagon 78-107 amide), an intestinal insulin-releasing peptide, has specific receptors on rat insulinoma cells (RIN 5AH). FEBS Lett 1988; 229(1): 175-8.
[http://dx.doi.org/10.1016/0014-5793(88)80821-4] [PMID: 2831085]
[12]
Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993; 38(4): 665-73.
[http://dx.doi.org/10.1007/BF01316798] [PMID: 8462365]
[13]
Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214(3): 829-35.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17986.x] [PMID: 8100523]
[14]
Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995; 136(8): 3585-96.
[http://dx.doi.org/10.1210/endo.136.8.7628397] [PMID: 7628397]
[15]
Deacon CF. Circulation and degradation of GIP and GLP-1. Horm Metab Res 2004; 36(11-12): 761-5.
[http://dx.doi.org/10.1055/s-2004-826160] [PMID: 15655705]
[16]
Ahrén B, Schmitz O. GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res 2004; 36(11-12): 867-76.
[http://dx.doi.org/10.1055/s-2004-826178] [PMID: 15655721]
[17]
Yaron A, Naider F, Scharpe S. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 1993; 28(1): 31-81.
[http://dx.doi.org/10.3109/10409239309082572] [PMID: 8444042]
[18]
Leiting B, Pryor KD, Wu JK, et al. Catalytic properties and inhibition of proline-specific dipeptidyl peptidases II, IV and VII. Biochem J 2003; 371(Pt 2): 525-32.
[http://dx.doi.org/10.1042/bj20021643] [PMID: 12529175]
[19]
Mentlein R. Dipeptidyl-peptidase IV (CD26)--role in the inactivation of regulatory peptides. Regul Pept 1999; 85(1): 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[20]
Vilsbøll T, Krarup T, Madsbad S, Holst JJ. Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 2003; 114(2-3): 115-21.
[http://dx.doi.org/10.1016/S0167-0115(03)00111-3] [PMID: 12832099]
[21]
Ogata S, Misumi Y, Ikehara Y. Primary structure of rat liver dipeptidyl peptidase IV deduced from its cDNA and identification of the NH2-terminal signal sequence as the membrane-anchoring domain. J Biol Chem 1989; 264(6): 3596-601.
[http://dx.doi.org/10.1016/S0021-9258(18)94108-6] [PMID: 2563382]
[22]
Scapin G. Structural Chemistry and Molecular Modeling in the Design of DPP4 Inhibitors. In:Multifaceted Roles of Crystallography in Modern Drug Discovery. Springer Netherlands 2015; pp. 53-67.
[http://dx.doi.org/10.1007/978-94-017-9719-1_5]
[23]
Engel M, Hoffmann T, Wagner L, et al. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci USA 2003; 100(9): 5063-8.
[http://dx.doi.org/10.1073/pnas.0230620100] [PMID: 12690074]
[24]
Bjelke JR, Christensen J, Branner S, et al. Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem 2004; 279(33): 34691-7.
[http://dx.doi.org/10.1074/jbc.M405400200] [PMID: 15175333]
[25]
Rahfeld J, Schierhorn M, Hartrodt B, Neubert K, Heins J. Are diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) inhibitors or substrates of dipeptidyl peptidase IV? Biochim Biophys Acta 1991; 1076(2): 314-6.
[http://dx.doi.org/10.1016/0167-4838(91)90284-7] [PMID: 1671823]
[26]
Rasmussen HB, Branner S, Wiberg FC, Wagtmann N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 2003; 10(1): 19-25.
[http://dx.doi.org/10.1038/nsb882] [PMID: 12483204]
[27]
Ashworth DM, Atrash B, Baker GR, et al. 2-cyanopyrrolidides as potent, stable inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett 1996; 6(10): 1163-6.
[http://dx.doi.org/10.1016/0960-894X(96)00190-4]
[28]
Villhauer EB, Brinkman JA, Naderi GB, et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003; 46(13): 2774-89.
[http://dx.doi.org/10.1021/jm030091l] [PMID: 12801240]
[29]
Pei Z, Li X, Longenecker K, et al. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors. J Med Chem 2006; 49(12): 3520-35.
[http://dx.doi.org/10.1021/jm051283e] [PMID: 16759095]
[30]
Snow RJ, Bachovchin WW. Boronic acid inhibitors of dipeptidyl peptidase IVAdvances in Medicinal Chemistry. Elsevier 1995; pp. 149-77.
[31]
Nabeno M, Akahoshi F, Kishida H, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun 2013; 434(2): 191-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.010] [PMID: 23501107]
[32]
Thoma R, Löffler B, Stihle M, Huber W, Ruf A, Hennig M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 2003; 11(8): 947-59.
[http://dx.doi.org/10.1016/S0969-2126(03)00160-6] [PMID: 12906826 ]
[33]
Magnin DR, Robl JA, Sulsky RB, et al. Synthesis of novel potent dipeptidyl peptidase IV inhibitors with enhanced chemical stability: interplay between the N-terminal amino acid alkyl side chain and the cyclopropyl group of α-aminoacyl-l-cis-4,5-methanopro- linenitrile-based inhibitors. J Med Chem 2004; 47(10): 2587-98.
[http://dx.doi.org/10.1021/jm049924d] [PMID: 15115400]
[34]
Augeri DJ, Robl JA, Betebenner DA, et al. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005; 48(15): 5025-37.
[http://dx.doi.org/10.1021/jm050261p] [PMID: 16033281]
[35]
Foley JE, Ahrén B. The vildagliptin experience - 25 years since the initiation of the novartis glucagon-like peptide-1 based therapy programme and 10 years since the first vildagliptin registration. Eur Endocrinol 2017; 13(2): 56-61.
[http://dx.doi.org/10.17925/EE.2017.13.02.56] [PMID: 29632608]
[36]
Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005; 48(1): 141-51.
[http://dx.doi.org/10.1021/jm0493156] [PMID: 15634008]
[37]
Eckhardt M, Langkopf E, Mark M, et al. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem 2007; 50(26): 6450-3.
[http://dx.doi.org/10.1021/jm701280z] [PMID: 18052023]
[38]
Biftu T, Sinha-Roy R, Chen P, et al. Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. J Med Chem 2014; 57(8): 3205-12.
[http://dx.doi.org/10.1021/jm401992e] [PMID: 24660890]
[39]
Seo S, Kim M-K, Kim R-I, Yeo Y, Kim KL, Suh W. Evogliptin, a dipeptidyl peptidase-4 inhibitor, attenuates pathological retinal angiogenesis by suppressing vascular endothelial growth factor-induced Arf6 activation. Exp Mol Med 2020; 52(10): 1744-53.
[http://dx.doi.org/10.1038/s12276-020-00512-8] [PMID: 33051573]
[40]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[41]
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 2004; 1(4): 337-41.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[42]
Congreve M, Carr R, Murray C, Jhoti HA. ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 2003; 8(19): 876-7.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9] [PMID: 14554012]
[43]
Lee SK, Lee IH, Kim HJ, Chang GS, Chung JE, No KT. The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like propertiesEuroQSAR 2002 Designing drugs and crop protectants: processes, problems and solutions. Boston, Massachusetts: Blackwell Publishing 2003; pp. 418-20.
[44]
Ammirati MJ, Liu S, Piotrowski DW. Crystal structure of dipeptidyl peptidase IV in complex with inhibitor 2009.
[http://dx.doi.org/10.2210/pdb3F8S/pdb]
[45]
Ammirati MJ, Andrews KM, Boyer DD, et al. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: a potent, selective, orally active dipeptidyl peptidase IV inhibitor. Bioorg Med Chem Lett 2009; 19(7): 1991-5.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.041] [PMID: 19275964]
[46]
Upadhyay J, Gajjar A. Analysis of crystal structures of dipeptidyl peptidase 4 (dpp 4) co-crystallized with diverse inhibitors. Int J Pharm Sci Res 2018; 9(10): 4460-71.
[47]
Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 2004; 308(3): 965-74.
[http://dx.doi.org/10.1124/jpet.103.060137] [PMID: 14634042]
[48]
Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 2005; 45(1): 477-94.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.095821] [PMID: 15822186]
[49]
Wang B, Yang L-P, Zhang X-Z, Huang S-Q, Bartlam M, Zhou S-F. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab Rev 2009; 41(4): 573-643.
[http://dx.doi.org/10.1080/03602530903118729] [PMID: 19645588]
[50]
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138(1): 103-41.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[51]
Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal drug interactions mediated by OATPs: A systematic review of preclinical and clinical findings. J Pharm Sci 2017; 106(9): 2312-25.
[http://dx.doi.org/10.1016/j.xphs.2017.04.004] [PMID: 28414144]
[52]
Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006; 440(7083): 463-9.
[http://dx.doi.org/10.1038/nature04710] [PMID: 16554806]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy