Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Hepatic Lipid Metabolism Disorder and Atherosclerosis

Author(s): Sen Zhang, Fenfang Hong, Chen Ma and Shulong Yang*

Volume 22, Issue 6, 2022

Published on: 08 April, 2022

Page: [590 - 600] Pages: 11

DOI: 10.2174/1871530322666211220110810

Price: $65

Abstract

Lipid metabolism disorder plays a fundamental role in the pathogenesis of atherosclerosis. As the largest metabolic organ of the human body, the liver has a key role in lipid metabolism by influencing fat production, fat decomposition, and the intake and secretion of serum lipoproteins. Numerous clinical and experimental studies have indicated that the dysfunction of hepatic lipid metabolism is closely related to the onset of atherosclerosis. However, the identity and functional role of hepatic lipid metabolism responsible for these associations remain unknown. This review presented that cholesterol synthesis, cholesterol transport, and the metabolism of triglycerides, lipoproteins, and fatty acids are all associated with hepatic lipid metabolism and atherosclerosis. Moreover, the roles of gut microbiota, inflammatory response, and oxidative stress in the pathological association between hepatic lipid metabolism and atherosclerosis are also discussed. This significant evidence strongly supports that hepatic lipid metabolism disorders may increase the risk of atherosclerosis.

Keywords: Hepatic lipid metabolism, atherosclerosis, reverse cholesterol transport, lipoprotein, gut microbiota, enterohepatic axis.

Graphical Abstract

[1]
Weber, C.; Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med., 2011, 17(11), 1410-1422.
[http://dx.doi.org/10.1038/nm.2538] [PMID: 22064431]
[2]
Cui, Y.; Liu, J.; Huang, C.; Zhao, B. Moxibustion at CV4 alleviates atherosclerotic lesions through activation of the LXRα/ABCA1 pathway in apolipoprotein-E-deficient mice. Acupunct. Med., 2019, 37(4), 237-243.
[http://dx.doi.org/10.1136/acupmed-2016-011317] [PMID: 31140825]
[3]
Kiamehr, M.; Viiri, L.E.; Vihervaara, T.; Koistinen, K.M.; Hilvo, M.; Ekroos, K.; Käkelä, R.; Aalto-Setälä, K. Lipidomic profiling of patient-specific iPSC-derived hepatocyte-like cells. Dis. Model. Mech., 2017, 10(9), 1141-1153.
[PMID: 28733363]
[4]
Xu, Y.Y.; Du, F.; Meng, B.; Xie, G.H.; Cao, J.; Fan, D.; Yu, H. Hepatic overexpression of methionine sulfoxide reductase A reduces atherosclerosis in apolipoprotein E-deficient mice. J. Lipid Res., 2015, 56(10), 1891-1900.
[http://dx.doi.org/10.1194/jlr.M058776] [PMID: 26318157]
[5]
Browning, J.D.; Horton, J.D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest., 2004, 114(2), 147-152.
[http://dx.doi.org/10.1172/JCI200422422] [PMID: 15254578]
[6]
Bonomini, F.; Filippini, F.; Hayek, T.; Aviram, M.; Keidar, S.; Rodella, L.F.; Coleman, R.; Rezzani, R. Apolipoprotein E and its role in aging and survival. Exp. Gerontol., 2010, 45(2), 149-157.
[http://dx.doi.org/10.1016/j.exger.2009.11.006] [PMID: 19941948]
[7]
Ma, J.; Hwang, S.J.; Pedley, A.; Massaro, J.M.; Hoffmann, U.; Chung, R.T.; Benjamin, E.J.; Levy, D.; Fox, C.S.; Long, M.T. Bi-directional analysis between fatty liver and cardiovascular disease risk factors. J. Hepatol., 2017, 66(2), 390-397.
[http://dx.doi.org/10.1016/j.jhep.2016.09.022] [PMID: 27729222]
[8]
Gupte, A.A.; Liu, J.Z.; Ren, Y.; Minze, L.J.; Wiles, J.R.; Collins, A.R.; Lyon, C.J.; Pratico, D.; Finegold, M.J.; Wong, S.T.; Webb, P.; Baxter, J.D.; Moore, D.D.; Hsueh, W.A. Rosiglitazone attenuates age- and diet-associated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology, 2010, 52(6), 2001-2011.
[http://dx.doi.org/10.1002/hep.23941] [PMID: 20938947]
[9]
Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(6), 330-344.
[http://dx.doi.org/10.1038/nrgastro.2013.41] [PMID: 23507799]
[10]
Moreno-Del Castillo, M.C.; Sanchez-Rodriguez, A.; Hernandez-Buen Abad, J.J.; Aguirre-Valadez, J.; Ruiz, I.; Garcia-Buen Abad, R.; Oliva, K.; Piccolo, J.; De Icaza-Del Rio, E.; Mena-Ramirez, J.R.; Mendizabal-Rodriguez, M.E.; Atkinson-Ginsburg, N.M.; Salazar-Segovia, J.; Ríos-Zertuche Caceres, A.; Garcia-Juarez, I. Importance of evaluating cardiovascular risk and hepatic fibrosis in patients with newly diagnosed nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol., 2019, 17(5), 997-999.
[http://dx.doi.org/10.1016/j.cgh.2018.07.039] [PMID: 30077785]
[11]
Pastore, M.; Grimaudo, S.; Pipitone, R.M.; Lori, G.; Raggi, C.; Petta, S.; Marra, F. Role of myeloid-epithelial-reproductive tyrosine kinase and macrophage polarization in the progression of atherosclerotic lesions associated with nonalcoholic fatty liver disease. Front. Pharmacol., 2019, 10, 604.
[http://dx.doi.org/10.3389/fphar.2019.00604] [PMID: 31191323]
[12]
Yin, J.; Wang, J.; Li, F.; Yang, Z.; Yang, X.; Sun, W.; Xia, B.; Li, T.; Song, W.; Guo, S. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Food Funct., 2019, 10(8), 5124-5139.
[http://dx.doi.org/10.1039/C9FO00619B] [PMID: 31364648]
[13]
Wang, Y.; Ding, W-X.; Li, T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(7), 726-733.
[http://dx.doi.org/10.1016/j.bbalip.2018.04.005] [PMID: 29653253]
[14]
Nemes, K.; Åberg, F.; Gylling, H.; Isoniemi, H. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications. World J. Hepatol., 2016, 8(22), 924-932.
[http://dx.doi.org/10.4254/wjh.v8.i22.924] [PMID: 27574546]
[15]
Ding, Y.; Xiao, C.; Wu, Q.; Xie, Y.; Li, X.; Hu, H.; Li, L. The mechanisms underlying the hypolipidaemic effects of grifola frondosa in the liver of rats. Front. Microbiol., 2016, 7, 1186.
[http://dx.doi.org/10.3389/fmicb.2016.01186] [PMID: 27536279]
[16]
Ling, C.J.; Min, Q.Q.; Yang, J.R.; Zhang, Z.; Yang, H.H.; Xu, J.Y.; Qin, L.Q. Lactoferrin alleviates the progression of atherosclerosis in ApoE-/- mice fed with high-fat/cholesterol diet through cholesterol homeostasis. J. Med. Food, 2019, 22(10), 1000-1008.
[http://dx.doi.org/10.1089/jmf.2018.4389] [PMID: 31460816]
[17]
Yu, X.H.; Zhang, D.W.; Zheng, X.L.; Tang, C.K. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res., 2019, 73, 65-91.
[http://dx.doi.org/10.1016/j.plipres.2018.12.002] [PMID: 30528667]
[18]
Cheng, T.J.; Lin, S.W.; Chen, C.W.; Guo, H.R.; Wang, Y.J. Arsenic trioxide suppresses liver X receptor β and enhances cholesteryl ester transfer protein expression without affecting the liver X receptor α in HepG2 cells. Chem. Biol. Interact., 2016, 258, 288-296.
[http://dx.doi.org/10.1016/j.cbi.2016.09.009] [PMID: 27622732]
[19]
Chen, C.H.; Shyue, S.K.; Hsu, C.P.; Lee, T.S. Atypical antipsychotic drug olanzapine deregulates hepatic lipid metabolism and aortic inflammation and aggravates atherosclerosis. Cell. Physiol. Biochem., 2018, 50(4), 1216-1229.
[http://dx.doi.org/10.1159/000494573] [PMID: 30355932]
[20]
Li, Y.; Xu, Y.; Jadhav, K.; Zhu, Y.; Yin, L.; Zhang, Y. Hepatic forkhead box protein A3 regulates ApoA-I (Apolipoprotein A-I) expression, cholesterol efflux, and atherogenesis. Arterioscler. Thromb. Vasc. Biol., 2019, 39(8), 1574-1587.
[http://dx.doi.org/10.1161/ATVBAHA.119.312610] [PMID: 31291759]
[21]
Yang, Z.; Yin, J.; Wang, Y.; Wang, J.; Xia, B.; Li, T.; Yang, X.; Hu, S.; Ji, C.; Guo, S. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. Int. J. Biol. Macromol., 2019, 134, 759-769.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.070] [PMID: 31100394]
[22]
de Alwis, N.M.; Day, C.P. Non-alcoholic fatty liver disease: the mist gradually clears. J. Hepatol., 2008, 48(Suppl. 1), S104-S112.
[http://dx.doi.org/10.1016/j.jhep.2008.01.009] [PMID: 18304679]
[23]
Zhou, M.; Ma, C.; Liu, W.; Liu, H.; Wang, N.; Kang, Q.; Li, P. Valsartan promoting atherosclerotic plaque stabilization by upregulating renalase: a potential-related gene of atherosclerosis. J. Cardiovasc. Pharmacol. Ther., 2015, 20(5), 509-519.
[http://dx.doi.org/10.1177/1074248415575967] [PMID: 25818930]
[24]
Rodger, E.J.; Porteous, C.M.; Jones, G.T.; Legge, M.; Kleffmann, T.; McCormick, S.P.A. Proteomic analysis of liver from human lipoprotein(a) transgenic mice shows an oxidative stress and lipid export response. BioMed Res. Int., 2018, 2018, 4963942.
[http://dx.doi.org/10.1155/2018/4963942] [PMID: 30596094]
[25]
Generoso, G.; Janovsky, C.C.P.S.; Bittencourt, M.S. Triglycerides and triglyceride-rich lipoproteins in the development and progression of atherosclerosis. Curr. Opin. Endocrinol. Diabetes Obes., 2019, 26(2), 109-116.
[http://dx.doi.org/10.1097/MED.0000000000000468] [PMID: 30694827]
[26]
Guo, C.; Zhao, Z.; Deng, X.; Chen, Z.; Tu, Z.; Yuan, G. Regulation of angiopoietin-like protein 8 expression under different nutritional and metabolic status. Endocr. J., 2019, 66(12), 1039-1046.
[http://dx.doi.org/10.1507/endocrj.EJ19-0263] [PMID: 31631098]
[27]
Olivecrona, G. Role of lipoprotein lipase in lipid metabolism. Curr. Opin. Lipidol., 2016, 27(3), 233-241.
[http://dx.doi.org/10.1097/MOL.0000000000000297] [PMID: 27031275]
[28]
Lu, S.H.; Guan, J.H.; Huang, Y.L.; Pan, Y.W.; Yang, W.; Lan, H.; Huang, S.; Hu, J.; Zhao, G.P. Experimental study of antiatherosclerosis effects with hederagenin in rats. Evid. Based Complement. Alternat. Med., 2015, 2015, 456354.
[http://dx.doi.org/10.1155/2015/456354] [PMID: 26557859]
[29]
Akbar, S.; Pinçon, A.; Lanhers, M.C.; Claudepierre, T.; Corbier, C.; Gregory-Pauron, L.; Malaplate-Armand, C.; Visvikis, A.; Oster, T.; Yen, F.T. Expression profile of hepatic genes related to lipid homeostasis in LSR heterozygous mice contributes to their increased response to high-fat diet. Physiol. Genomics, 2016, 48(12), 928-935.
[http://dx.doi.org/10.1152/physiolgenomics.00077.2016] [PMID: 27789735]
[30]
Moghadasian, M.H.; Nguyen, L.B.; Shefer, S.; Salen, G.; Batta, A.K.; Frohlich, J.J. Hepatic cholesterol and bile acid synthesis, low-density lipoprotein receptor function, and plasma and fecal sterol levels in mice: effects of apolipoprotein E deficiency and probucol or phytosterol treatment. Metabolism, 2001, 50(6), 708-714.
[http://dx.doi.org/10.1053/meta.2001.23303] [PMID: 11398149]
[31]
Gluba-Brzózka, A.; Franczyk, B.; Banach, M.; Rysz-Górzyńska, M. Do HDL and LDL subfractions play a role in atherosclerosis in end-stage renal disease (ESRD) patients? Int. Urol. Nephrol., 2017, 49(1), 155-164.
[http://dx.doi.org/10.1007/s11255-016-1466-x] [PMID: 27942970]
[32]
Favari, E.; Thomas, M.J.; Sorci-Thomas, M.G. High-density lipoprotein functionality as a new pharmacological target on cardiovascular disease: unifying mechanism that explains high-density lipoprotein protection toward the progression of atherosclerosis. J. Cardiovasc. Pharmacol., 2018, 71(6), 325-331.
[http://dx.doi.org/10.1097/FJC.0000000000000573] [PMID: 29528874]
[33]
Yang, Z.; Liu, G.; Wang, Y.; Yin, J.; Wang, J.; Xia, B.; Li, T.; Yang, X.; Hou, P.; Hu, S.; Song, W.; Guo, S. Fucoidan A2 from the brown seaweed ascophyllum nodosum lowers lipid by improving reverse cholesterol transport in C57BL/6J mice fed a high-fat diet. J. Agric. Food Chem., 2019, 67(20), 5782-5791.
[http://dx.doi.org/10.1021/acs.jafc.9b01321] [PMID: 31055921]
[34]
Escola-gil, J.C.; Cedó, L.; Plana, N.; Metso, J.; García-León, A.; Sabaté, S.; Heras, M.; Santos, D.; Rivas-Urbina, A.; Lee-Rueckert, M.; Sánchez-Quesada, J.L.; Kovanen, P.T.; Jauhiainen, M.; Masana, L.; Blanco-Vaca, F. Defective HDL remodeling and macrophage cholesterol efflux in adult and adolescent familial hypercholesterolemic patients. Atherosclerosis, 2018, 275, e167-e168.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.06.505]
[35]
Rahmati-Ahmadabad, S.; Shirvani, H.; Ghanbari-Niaki, A.; Rostamkhani, F. The effects of high-intensity interval training on reverse cholesterol transport elements: A way of cardiovascular protection against atherosclerosis. Life Sci., 2018, 209, 377-382.
[http://dx.doi.org/10.1016/j.lfs.2018.08.036] [PMID: 30125578]
[36]
Cohen, D.E.; Fisher, E.A. Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Semin. Liver Dis., 2013, 33(4), 380-388.
[http://dx.doi.org/10.1055/s-0033-1358519] [PMID: 24222095]
[37]
Cullough, M.; Stephen, F.P.; Dasarathy, J. HDL flux is higher in patients with nonalcoholic fatty liver disease. Am. J. Physiol. Endocrinol. Metab., 2019, 5(317), E852-E862.
[38]
Verwer, B.J.; Scheffer, P.G.; Vermue, R.P.; Pouwels, P.J.; Diamant, M.; Tushuizen, M.E. NAFLD is related to post-prandial triglyceride-enrichment of HDL particles in association with endothelial and HDL dysfunction. Liver Int., 2020, 40(10), 2439-2444.
[http://dx.doi.org/10.1111/liv.14597] [PMID: 32652824]
[39]
Deng, J.N.; Li, Q.; Sun, K.; Pan, C.S.; Li, H.; Fan, J.Y.; Li, G.; Hu, B.H.; Chang, X.; Han, J.Y. Cardiotonic pills plus recombinant human prourokinase ameliorates atherosclerotic lesions in LDLR-/- mice. Front. Physiol., 2019, 10, 1128.
[http://dx.doi.org/10.3389/fphys.2019.01128] [PMID: 31551808]
[40]
Gong, M.; Cao, C.; Chen, F.; Li, Q.; Bi, X.; Sun, Y.; Zhan, Z. Electroacupuncture attenuates hepatic lipid accumulation via AMP-activated protein kinase (AMPK) activation in obese rats. Acupunct. Med., 2016, 34(3), 209-214.
[http://dx.doi.org/10.1136/acupmed-2015-010798] [PMID: 26619891]
[41]
Fernández-Friera, L.; Fuster, V.; López-Melgar, B.; Oliva, B.; García-Ruiz, J.M.; Mendiguren, J.; Bueno, H.; Pocock, S.; Ibáñez, B.; Fernández-Ortiz, A.; Sanz, J. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol., 2017, 70(24), 2979-2991.
[http://dx.doi.org/10.1016/j.jacc.2017.10.024] [PMID: 29241485]
[42]
Hwang, H.W.; Yu, J.H.; Jin, Y.J.; Suh, Y.J.; Lee, J.W. Correlation between the small dense LDL level and nonalcoholic fatty liver disease: Possibility of a new biomarker. Medicine (Baltimore), 2020, 99(28), e21162.
[http://dx.doi.org/10.1097/MD.0000000000021162] [PMID: 32664153]
[43]
Stahl, E.P.; Dhindsa, D.S.; Lee, S.K.; Sandesara, P.B.; Chalasani, N.P.; Sperling, L.S. nonalcoholic fatty liver disease and the heart: jacc state-of-the-art review. J. Am. Coll. Cardiol., 2019, 73(8), 948-963.
[http://dx.doi.org/10.1016/j.jacc.2018.11.050] [PMID: 30819364]
[44]
Gentile, M.; Panico, S.; Mattiello, A.; Ubaldi, S.; Iannuzzo, G.; De Michele, M.; Iannuzzi, A.; Rubba, P. Association between small dense LDL and early atherosclerosis in a sample of menopausal women. Clin. Chim. Acta, 2013, 426, 1-5.
[http://dx.doi.org/10.1016/j.cca.2013.08.010] [PMID: 23994569]
[45]
Wang, W.; Chen, Y.; Bai, L.; Zhao, S.; Wang, R.; Liu, B.; Zhang, Y.; Fan, J.; Liu, E. Transcriptomic analysis of the liver of cholesterol-fed rabbits reveals altered hepatic lipid metabolism and inflammatory response. Sci. Rep., 2018, 8(1), 6437.
[http://dx.doi.org/10.1038/s41598-018-24813-1] [PMID: 29692426]
[46]
Cao, Y.X.; Liu, H.H.; Sun, D.; Jin, J.L.; Xu, R.X.; Guo, Y.L.; Wu, N.Q.; Zhu, C.G.; Li, S.; Zhang, Y.; Sun, J.; Li, J.J. The different relations of PCSK9 and Lp(a) to the presence and severity of atherosclerotic lesions in patients with familial hypercholesterolemia. Atherosclerosis, 2018, 277, 7-14.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.07.030] [PMID: 30170223]
[47]
Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.J.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; Kastelein, J.J.P.; Investigators, O. ORION-9 Investigators. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N. Engl. J. Med., 2020, 382(16), 1520-1530.
[http://dx.doi.org/10.1056/NEJMoa1913805] [PMID: 32197277]
[48]
Dyrbuś, K.; Gąsior, M.; Penson, P.; Ray, K.K.; Banach, M. Inclisiran-New hope in the management of lipid disorders? J. Clin. Lipidol., 2020, 14(1), 16-27.
[http://dx.doi.org/10.1016/j.jacl.2019.11.001] [PMID: 31879073]
[49]
Wright, R.S.; Collins, M.G.; Stoekenbroek, R.M.; Robson, R.; Wijngaard, P.L.J.; Landmesser, U.; Leiter, L.A.; Kastelein, J.J.P.; Ray, K.K.; Kallend, D. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of inclisiran: an analysis of the ORION-7 and ORION-1 Studies. Mayo Clin. Proc., 2020, 95(1), 77-89.
[http://dx.doi.org/10.1016/j.mayocp.2019.08.021] [PMID: 31630870]
[50]
Stoekenbroek, R.M.; Kallend, D.; Wijngaard, P.L.; Kastelein, J.J. Inclisiran for the treatment of cardiovascular disease: the ORION clinical development program. Future Cardiol., 2018, 14(6), 433-442.
[http://dx.doi.org/10.2217/fca-2018-0067] [PMID: 30375244]
[51]
Parolini, C.; Bjorndal, B.; Busnelli, M.; Manzini, S.; Ganzetti, G.S.; Dellera, F.; Ramsvik, M.; Bruheim, I.; Berge, R.K.; Chiesa, G. Effect of dietary components from antarctic krill on atherosclerosis in apoe-deficient mice. Mol. Nutr. Food Res., 2017, 61(12), 1700098.
[http://dx.doi.org/10.1002/mnfr.201700098] [PMID: 28812326]
[52]
Wang, C.C.; Cheng, P.N.; Kao, J.H. Systematic review: chronic viral hepatitis and metabolic derangement. Aliment. Pharmacol. Ther., 2020, 51(2), 216-230.
[http://dx.doi.org/10.1111/apt.15575] [PMID: 31746482]
[53]
Tamura, S.; Koike, Y.; Takeda, H.; Koike, T.; Izumi, Y.; Nagasaka, R.; Tsunoda, T.; Tori, M.; Ogawa, K.; Bamba, T.; Shiomi, M. Ameliorating effects of D-47, a newly developed compound, on lipid metabolism in an animal model of familial hypercholesterolemia (WHHLMI rabbits). Eur. J. Pharmacol., 2018, 822, 147-153.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.013] [PMID: 29355561]
[54]
Nordestgaard, B.G.; Langlois, M.R.; Langsted, A.; Chapman, M.J.; Aakre, K.M.; Baum, H.; Borén, J.; Bruckert, E.; Catapano, A.; Cobbaert, C.; Collinson, P.; Descamps, O.S.; Duff, C.J.; von Eckardstein, A.; Hammerer-Lercher, A.; Kamstrup, P.R.; Kolovou, G.; Kronenberg, F.; Mora, S.; Pulkki, K.; Remaley, A.T.; Rifai, N.; Ros, E.; Stankovic, S.; Stavljenic-Rukavina, A.; Sypniewska, G.; Watts, G.F.; Wiklund, O.; Laitinen, P. European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) joint consensus initiative. Quantifying atherogenic lipoproteins for lipid-lowering strategies: Consensus-based recommendations from EAS and EFLM. Atherosclerosis, 2020, 294, 46-61.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.12.005] [PMID: 31928713]
[55]
Beltrán-López, J.I.; Romero-Maldonado, A.; Monreal-Escalante, E.; Bañuelos-Hernández, B.; Paz-Maldonado, L.M.; Rosales-Mendoza, S. Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies. Plant Cell Rep., 2016, 35(5), 1133-1141.
[http://dx.doi.org/10.1007/s00299-016-1946-6] [PMID: 26886711]
[56]
Julius, U. Current role of lipoprotein apheresis in the treatment of high-risk patients. J. Cardiovasc. Dev. Dis., 2018, 5(2), E27.
[http://dx.doi.org/10.3390/jcdd5020027] [PMID: 29747383]
[57]
Faria E Souza, B.S.; Carvalho, H.O.; Taglialegna, T.; Barros, A.S.A.; da Cunha, E.L.; Ferreira, I.M.; Keita, H.; Navarrete, A.; Carvalho, J.C.T. Effect of euterpe oleracea mart. (açaí) oil on dyslipidemia caused by Cocos nucifera l. saturated fat in wistar rats. J. Med. Food, 2017, 20(9), 830-837.
[http://dx.doi.org/10.1089/jmf.2017.0027] [PMID: 28731787]
[58]
Lei, S.; Sun, R.Z.; Wang, D.; Gong, M.Z.; Su, X.P.; Yi, F.; Peng, Z.W. Increased hepatic fatty acids uptake and oxidation by lrpprcdriven oxidative phosphorylation reduces blood lipid levels. Front. Physiol., 2016, 7, 270.
[http://dx.doi.org/10.3389/fphys.2016.00270] [PMID: 27462273]
[59]
Vergani, L.; Vecchione, G.; Baldini, F.; Grasselli, E.; Voci, A.; Portincasa, P.; Ferrari, P.F.; Aliakbarian, B.; Casazza, A.A.; Perego, P. Polyphenolic extract attenuates fatty acid-induced steatosis and oxidative stress in hepatic and endothelial cells. Eur. J. Nutr., 2018, 57(5), 1793-1805.
[http://dx.doi.org/10.1007/s00394-017-1464-5] [PMID: 28526925]
[60]
Çimen, Ismail; Kocatürk, Begüm; Koyuncu, Seda; Tufanlı, Ö. Prevention of atherosclerosis by bioactive palmitoleate through suppression of organelle stress and inflammasome activation. Sci. Transl. Med., 2016, 8(358), 358ra126.
[61]
Li, M.; Xu, C.; Shi, J.; Ding, J.; Wan, X.; Chen, D.; Gao, J.; Li, C.; Zhang, J.; Lin, Y.; Tu, Z.; Kong, X.; Li, Y.; Yu, C. Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut, 2018, 67(12), 2169-2180.
[http://dx.doi.org/10.1136/gutjnl-2017-313778] [PMID: 28877979]
[62]
Santinha, D.; Klopot, A.; Marques, I.; Ellis, E.; Jorns, C.; Johansson, H.; Melo, T.; Antonson, P.; Jakobsson, T.; Félix, V.; Gustafsson, J.A.; Domingues, M.R.; Mode, A.; Helguero, L.A. Lipidomic analysis of human primary hepatocytes following LXR activation with GW3965 identifies AGXT2L1 as a main target associated to changes in phosphatidylethanolamine. J. Steroid Biochem. Mol. Biol., 2020, 198, 105558.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105558] [PMID: 31783151]
[63]
Csak, T.; Ganz, M.; Pespisa, J.; Kodys, K.; Dolganiuc, A.; Szabo, G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology, 2011, 54(1), 133-144.
[http://dx.doi.org/10.1002/hep.24341] [PMID: 21488066]
[64]
Du, Y.; Li, X.; Su, C.; Xi, M.; Zhang, X.; Jiang, Z.; Wang, L.; Hong, B. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br. J. Pharmacol., 2020, 177(8), 1754-1772.
[http://dx.doi.org/10.1111/bph.14933] [PMID: 31769014]
[65]
Astbury, S.; Atallah, E.; Vijay, A.; Aithal, G.P.; Grove, J.I.; Valdes, A.M. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes, 2020, 11(3), 569-580.
[http://dx.doi.org/10.1080/19490976.2019.1681861] [PMID: 31696774]
[66]
Karlsson, F.H.; Fåk, F.; Nookaew, I.; Tremaroli, V.; Fagerberg, B.; Petranovic, D.; Bäckhed, F.; Nielsen, J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 2012, 3, 1245.
[http://dx.doi.org/10.1038/ncomms2266] [PMID: 23212374]
[67]
Lahti, L.; Salonen, A.; Kekkonen, R.A.; Salojärvi, J.; Jalanka-Tuovinen, J.; Palva, A.; Orešič, M.; de Vos, W.M. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. Peer J., 2013, 1, e32.
[http://dx.doi.org/10.7717/peerj.32] [PMID: 23638368]
[68]
Velagapudi, V.R.; Hezaveh, R.; Reigstad, C.S.; Gopalacharyulu, P.; Yetukuri, L.; Islam, S.; Felin, J.; Perkins, R.; Borén, J.; Oresic, M.; Bäckhed, F. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res., 2010, 51(5), 1101-1112.
[http://dx.doi.org/10.1194/jlr.M002774] [PMID: 20040631]
[69]
Kasahara, K.; Tanoue, T.; Yamashita, T.; Yodoi, K.; Matsumoto, T.; Emoto, T.; Mizoguchi, T.; Hayashi, T.; Kitano, N.; Sasaki, N.; Atarashi, K.; Honda, K.; Hirata, K.I. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J. Lipid Res., 2017, 58(3), 519-528.
[http://dx.doi.org/10.1194/jlr.M072165] [PMID: 28130274]
[70]
Lang, S.; Schnabl, B. Microbiota and fatty liver disease-the known, the unknown, and the future. Cell Host Microbe, 2020, 28(2), 233-244.
[http://dx.doi.org/10.1016/j.chom.2020.07.007] [PMID: 32791115]
[71]
Kindt, A.; Liebisch, G.; Clavel, T.; Haller, D.; Hörmannsperger, G.; Yoon, H.; Kolmeder, D.; Sigruener, A.; Krautbauer, S.; Seeliger, C.; Ganzha, A.; Schweizer, S.; Morisset, R.; Strowig, T.; Daniel, H.; Helm, D.; Küster, B.; Krumsiek, J.; Ecker, J. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun., 2018, 9(1), 3760.
[http://dx.doi.org/10.1038/s41467-018-05767-4] [PMID: 30218046]
[72]
Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; Takahashi, T.; Miyauchi, S.; Shioi, G.; Inoue, H.; Tsujimoto, G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun., 2013, 4, 1829.
[http://dx.doi.org/10.1038/ncomms2852] [PMID: 23652017]
[73]
Mistry, R.H.; Verkade, H.J.; Tietge, U.J. Reverse cholesterol transport is increased in germ-free mice-brief report. Arterioscler. Thromb. Vasc. Biol., 2017, 37(3), 419-422.
[http://dx.doi.org/10.1161/ATVBAHA.116.308306] [PMID: 28062491]
[74]
Park, J.S.; Seo, J.H.; Youn, H.S. Gut microbiota and clinical disease: obesity and nonalcoholic Fatty liver disease. Pediatr. Gastroenterol. Hepatol. Nutr., 2013, 16(1), 22-27.
[http://dx.doi.org/10.5223/pghn.2013.16.1.22] [PMID: 24010102]
[75]
Yoo, S.R.; Kim, Y.J.; Park, D.Y.; Jung, U.J.; Jeon, S.M.; Ahn, Y.T.; Huh, C.S.; McGregor, R.; Choi, M.S. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring), 2013, 21(12), 2571-2578.
[http://dx.doi.org/10.1002/oby.20428] [PMID: 23512789]
[76]
Wichmann, A.; Allahyar, A.; Greiner, T.U.; Plovier, H.; Lundén, G.O.; Larsson, T.; Drucker, D.J.; Delzenne, N.M.; Cani, P.D.; Bäckhed, F. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe, 2013, 14(5), 582-590.
[http://dx.doi.org/10.1016/j.chom.2013.09.012] [PMID: 24237703]
[77]
den Besten, G.; Lange, K.; Havinga, R.; van Dijk, T.H.; Gerding, A.; van Eunen, K.; Müller, M.; Groen, A.K.; Hooiveld, G.J.; Bakker, B.M.; Reijngoud, D.J. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol., 2013, 305(12), G900-G910.
[http://dx.doi.org/10.1152/ajpgi.00265.2013] [PMID: 24136789]
[78]
Cox, L.M.; Blaser, M.J. Pathways in microbe-induced obesity. Cell Metab., 2013, 17(6), 883-894.
[http://dx.doi.org/10.1016/j.cmet.2013.05.004] [PMID: 23747247]
[79]
Zhanguo, G.; Zhanguo, G.; Jun., Y.; Jin., Z.; E., W. R.; J., M. R. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 2009, 7(58), 1509-1517.
[80]
Fushimi, T.; Suruga, K.; Oshima, Y.; Fukiharu, M.; Tsukamoto, Y.; Goda, T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br. J. Nutr., 2006, 95(5), 916-924.
[http://dx.doi.org/10.1079/BJN20061740] [PMID: 16611381]
[81]
Weitkunat, K.; Schumann, S.; Nickel, D.; Kappo, K.A.; Petzke, K.J.; Kipp, A.P.; Blaut, M.; Klaus, S. Importance of propionate for the repression of hepatic lipogenesis and improvement of insulin sensitivity in high-fat diet-induced obesity. Mol. Nutr. Food Res., 2016, 60(12), 2611-2621.
[http://dx.doi.org/10.1002/mnfr.201600305] [PMID: 27467905]
[82]
Chiang, J.Y.L.; Ferrell, J.M. Bile acid metabolism in liver pathobiology. Gene Expr., 2018, 18(2), 71-87.
[http://dx.doi.org/10.3727/105221618X15156018385515] [PMID: 29325602]
[83]
Wahlström, A.; Sayin, S.I.; Marschall, H.U.; Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab., 2016, 24(1), 41-50.
[http://dx.doi.org/10.1016/j.cmet.2016.05.005] [PMID: 27320064]
[84]
Cariello, M.; Piccinin, E.; Garcia-Irigoyen, O.; Sabbà, C.; Moschetta, A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4 Pt B), 1308-1318.
[http://dx.doi.org/10.1016/j.bbadis.2017.09.019] [PMID: 28965883]
[85]
Jiang, C.; Xie, C.; Li, F.; Zhang, L.; Nichols, R.G.; Krausz, K.W.; Cai, J.; Qi, Y.; Fang, Z.Z.; Takahashi, S.; Tanaka, N.; Desai, D.; Amin, S.G.; Albert, I.; Patterson, A.D.; Gonzalez, F.J. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest., 2015, 125(1), 386-402.
[http://dx.doi.org/10.1172/JCI76738] [PMID: 25500885]
[86]
Jones, M.L.; Tomaro-Duchesneau, C.; Prakash, S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol., 2014, 22(6), 306-308.
[http://dx.doi.org/10.1016/j.tim.2014.04.010] [PMID: 24836108]
[87]
Zhu, L.; Baker, R.D.; Zhu, R.; Baker, S.S. Bile acids and the gut microbiome as potential targets for NAFLD treatment. J. Pediatr. Gastroenterol. Nutr., 2018, 67(1), 3-5.
[http://dx.doi.org/10.1097/MPG.0000000000002010] [PMID: 29697548]
[88]
Chow, M.D.; Lee, Y.H.; Guo, G.L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol. Aspects Med., 2017, 56, 34-44.
[http://dx.doi.org/10.1016/j.mam.2017.04.004] [PMID: 28442273]
[89]
Chen, Y.; Weng, Z.; Liu, Q.; Shao, W.; Guo, W.; Chen, C.; Jiao, L.; Wang, Q.; Lu, Q.; Sun, H.; Gu, A.; Hu, H.; Jiang, Z. FMO3 and its metabolite TMAO contribute to the formation of gallstones. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(10), 2576-2585.
[http://dx.doi.org/10.1016/j.bbadis.2019.06.016] [PMID: 31251986]
[90]
Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord., 2019, 20(4), 461-472.
[http://dx.doi.org/10.1007/s11154-019-09512-0] [PMID: 31707624]
[91]
Tang, W.H.; Hazen, S.L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest., 2014, 124(10), 4204-4211.
[http://dx.doi.org/10.1172/JCI72331] [PMID: 25271725]
[92]
Brown, J.M.; Hazen, S.L. Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J. Biol. Chem., 2017, 292(21), 8560-8568.
[http://dx.doi.org/10.1074/jbc.R116.765388] [PMID: 28389555]
[93]
Schugar, R.C.; Shih, D.M.; Warrier, M.; Helsley, R.N.; Burrows, A.; Ferguson, D.; Brown, A.L.; Gromovsky, A.D.; Heine, M.; Chatterjee, A.; Li, L.; Li, X.S.; Wang, Z.; Willard, B.; Meng, Y.; Kim, H.; Che, N.; Pan, C.; Lee, R.G.; Crooke, R.M.; Graham, M.J.; Morton, R.E.; Langefeld, C.D.; Das, S.K.; Rudel, L.L.; Zein, N.; McCullough, A.J.; Dasarathy, S.; Tang, W.H.W.; Erokwu, B.O.; Flask, C.A.; Laakso, M.; Civelek, M.; Naga Prasad, S.V.; Heeren, J.; Lusis, A.J.; Hazen, S.L.; Brown, J.M. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep., 2017, 19(12), 2451-2461.
[http://dx.doi.org/10.1016/j.celrep.2017.05.077] [PMID: 28636934]
[94]
Fennema, D.; Phillips, I.R.; Shephard, E.A. Trimethylamine and trimethylamine n-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos., 2016, 44(11), 1839-1850.
[http://dx.doi.org/10.1124/dmd.116.070615] [PMID: 27190056]
[95]
Warrier, M.; Shih, D.M.; Burrows, A.C.; Ferguson, D.; Gromovsky, A.D.; Brown, A.L.; Marshall, S.; McDaniel, A.; Schugar, R.C.; Wang, Z.; Sacks, J.; Rong, X.; Vallim, T.A.; Chou, J.; Ivanova, P.T.; Myers, D.S.; Brown, H.A.; Lee, R.G.; Crooke, R.M.; Graham, M.J.; Liu, X.; Parini, P.; Tontonoz, P.; Lusis, A.J.; Hazen, S.L.; Temel, R.E.; Brown, J.M. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep., 2015, 10(3), 326-338.
[http://dx.doi.org/10.1016/j.celrep.2014.12.036] [PMID: 25600868]
[96]
Li, L.; Bebek, G.; Previs, S.F.; Smith, J.D.; Sadygov, R.G.; McCullough, A.J.; Willard, B.; Kasumov, T. Proteome dynamics reveals pro-inflammatory remodeling of plasma proteome in a mouse model of NAFLD. J. Proteome Res., 2016, 15(9), 3388-3404.
[http://dx.doi.org/10.1021/acs.jproteome.6b00601] [PMID: 27439437]
[97]
Xu, C.; Zhang, C.; Ji, J.; Wang, C.; Yang, J.; Geng, B.; Zhao, T.; Zhou, H.; Mu, X.; Pan, J.; Hu, S.; Lv, Y.; Chen, X.; Wen, H.; You, Q. CD36 deficiency attenuates immune-mediated hepatitis in mice by modulating the proapoptotic effects of CXC chemokine ligand 10. Hepatology, 2018, 67(5), 1943-1955.
[http://dx.doi.org/10.1002/hep.29716] [PMID: 29220536]
[98]
Sivasubramaniyam, T.; Schroer, S.A.; Li, A.; Luk, C.T.; Shi, S.Y.; Besla, R.; Dodington, D.W.; Metherel, A.H.; Kitson, A.P.; Brunt, J.J.; Lopes, J.; Wagner, K.U.; Bazinet, R.P.; Bendeck, M.P.; Robbins, C.S.; Woo, M. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1. JCI Insight, 2017, 2(14), 93735.
[http://dx.doi.org/10.1172/jci.insight.93735] [PMID: 28724798]
[99]
Zhou, J.M.; Wang, H.M.; Lv, Y.Z.; Wang, Z.Z.; Xiao, W. Anti-atherosclerotic effect of longxuetongluo capsule in high cholesterol diet induced atherosclerosis model rats. Biomed. Pharmacother., 2018, 97, 793-801.
[http://dx.doi.org/10.1016/j.biopha.2017.08.141] [PMID: 29112932]
[100]
Jiang, S.; Park, D.W.; Tadie, J.M.; Gregoire, M.; Deshane, J.; Pittet, J.F.; Abraham, E.; Zmijewski, J.W. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. J. Immunol., 2014, 192(10), 4795-4803.
[http://dx.doi.org/10.4049/jimmunol.1302764] [PMID: 24719460]
[101]
Haller, J.F.; Mintah, I.J.; Shihanian, L.M.; Stevis, P.; Buckler, D.; Alexa-Braun, C.A.; Kleiner, S.; Banfi, S.; Cohen, J.C.; Hobbs, H.H.; Yancopoulos, G.D.; Murphy, A.J.; Gusarova, V.; Gromada, J. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J. Lipid Res., 2017, 58(6), 1166-1173.
[http://dx.doi.org/10.1194/jlr.M075689] [PMID: 28413163]
[102]
Vatner, D.F.; Goedeke, L.; Camporez, J.G.; Lyu, K.; Nasiri, A.R.; Zhang, D.; Bhanot, S.; Murray, S.F.; Still, C.D.; Gerhard, G.S.; Shulman, G.I.; Samuel, V.T. Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia, 2018, 61(6), 1435-1446.
[http://dx.doi.org/10.1007/s00125-018-4579-1] [PMID: 29497783]
[103]
Chi, X.; Britt, E.C.; Shows, H.W.; Hjelmaas, A.J.; Shetty, S.K.; Cushing, E.M.; Li, W.; Dou, A.; Zhang, R.; Davies, B.S.J. ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase. Mol. Metab., 2017, 6(10), 1137-1149.
[http://dx.doi.org/10.1016/j.molmet.2017.06.014] [PMID: 29031715]
[104]
Lee, J.; Hong, S.W.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Oh, K.W.; Park, S.W.; Lee, W.Y. AMP-activated protein kinase suppresses the expression of LXR/SREBP-1 signaling-induced ANGPTL8 in HepG2 cells. Mol. Cell. Endocrinol., 2015, 414, 148-155.
[http://dx.doi.org/10.1016/j.mce.2015.07.031] [PMID: 26254015]
[105]
Tseng, Y.H.; Ke, P.Y.; Liao, C.J.; Wu, S.M.; Chi, H.C.; Tsai, C.Y.; Chen, C.Y.; Lin, Y.H.; Lin, K.H. Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy, 2014, 10(1), 20-31.
[http://dx.doi.org/10.4161/auto.26126] [PMID: 24262987]
[106]
Jeong, Y.S.; Kim, D.; Lee, Y.S.; Kim, H.J.; Han, J.Y.; Im, S.S.; Chong, H.K.; Kwon, J.K.; Cho, Y.H.; Kim, W.K.; Osborne, T.F.; Horton, J.D.; Jun, H.S.; Ahn, Y.H.; Ahn, S.M.; Cha, J.Y. Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS One, 2011, 6(7), e22544.
[http://dx.doi.org/10.1371/journal.pone.0022544] [PMID: 21811631]
[107]
Quagliarini, F.; Wang, Y.; Kozlitina, J.; Grishin, N.V.; Hyde, R.; Boerwinkle, E.; Valenzuela, D.M.; Murphy, A.J.; Cohen, J.C.; Hobbs, H.H. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc. Natl. Acad. Sci. USA, 2012, 109(48), 19751-19756.
[http://dx.doi.org/10.1073/pnas.1217552109] [PMID: 23150577]
[108]
Zhang, Y.; Du, Y.; Le, W.; Wang, K.; Kieffer, N.; Zhang, J. Redox control of the survival of healthy and diseased cells. Antioxid. Redox Signal., 2011, 15(11), 2867-2908.
[http://dx.doi.org/10.1089/ars.2010.3685] [PMID: 21457107]
[109]
Xu, J.; Peng, Y.; Zeng, Y.; Hua, Y.Q.; Xu, X.L. 2, 3, 4′, 5-tetrahydroxystilbene-2-0-β-d glycoside attenuates age- and diet-associated non-alcoholic steatohepatitis and atherosclerosis in LDL receptor knockout mice and its possible mechanisms. Int. J. Mol. Sci., 2019, 20(7), E1617.
[http://dx.doi.org/10.3390/ijms20071617] [PMID: 30939745]
[110]
Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(5), 721-733.
[http://dx.doi.org/10.1016/j.bbamcr.2018.02.010] [PMID: 29499228]
[111]
Evangelista, I.; Nuti, R.; Picchioni, T.; Dotta, F.; Palazzuoli, A. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int. J. Mol. Sci., 2019, 20(13), E3264.
[http://dx.doi.org/10.3390/ijms20133264] [PMID: 31269778]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy