Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Effect of pH Variation on Cross-Linking of Water-Soluble and Acid- Soluble Chitosan with Sodium Tripolyphosphate and Gallium-67

Author(s): Narjes D. Kamali, Alireza Alishahi*, Marzieh Heidarieh*, Saeed Rajabifar, Hojat Mirsadeghi and Moazame Kordjazi

Volume 15, Issue 3, 2022

Published on: 12 May, 2022

Page: [249 - 255] Pages: 7

DOI: 10.2174/1874471015666211220094433

Price: $65

Abstract

Background: Chitosan is a cationic biopolymer obtained from deacetylating chitin, a natural compound present in crustacean shell, fungi and exoskeleton of insects. Chitosan involves various applications, including as drug and gene delivery systems, as wound dressing material and scaffolds for tissue engineering, agriculture, textile, food and feed nanotechnology, and in wastewater treatments. Chitosan-TPP particle has been figured out as the most important and stable nanoparticle for chitosan application in various fields.

Objective: In this study, chitosan was chemically modified by sodium tripolyphosphate (TPP). Afterward, TPP-chitosan was radiolabeled with the gallium-67 radionuclide. The effect of several factors on labeling yield, such as chitosan solubility, acidity and concentration of TPPchitosan solution, and incubation time with gallium-67, were investigated.

Methods: To prepare [67Ga] gallium-chitosan complex, chitosan (0.5 ml) was dissolved in 2.2 mCi of [67Ga] gallium chloride solution. The obtained solution was stirred for 5 min and then kept for 30 min at room temperature. The radiochemical purity and radiolabeling yield were measured via radiochromatography, which was performed by using a radio thin-layer chromatography (TLC) scanner instrument. To investigate the effect of chitosan kind and concentration on the labeling yield, two kinds of chitosan (acid-soluble chitosan and water-soluble chitosan) at two different concentrations (1% and 0.5%) and different pH were used. In addition, labeling efficiency and stability of the 67Ga-TPP-chitosan complex (acidic/water soluble chitosan) at both concentrations (0.5 and 1%) and at room temperature were assessed for 30, 45 and 60 min.

Results: The incubation time did not have any significant effect on labeling yield. The acidic soluble chitosan exhibited the highest radiolabeling yield at pH=9.3-10.4, while water-soluble chitosan showed the highest radiolabeling yield at pH > 5. Also, the prepared complex was stable in the final solution at room temperature and could even be used 24 hours after preparation for further application.

Conclusion: Taken together, the TPP-modified water-soluble chitosan at the concentration of 0.5 % depicted the highest radiochemical yield (>95 %) in the optimized condition (pH= 6.2– 7.6). Therefore, TPP modified water-soluble chitosan can prove to be an effective carrier for therapeutic radionuclides in tumor treatment.

Keywords: Chitosan, gallium-67 (67Ga), pH, TPP, radiolabeling, water-soluble.

« Previous
Graphical Abstract

[1]
Jolles, P.; Muzzarelli, R.A.A. Chitin and chitinases; BirkhauserVerlg: Basel, 1999.
[http://dx.doi.org/10.1007/978-3-0348-8757-1]
[2]
Dorkoosh, F.A.; Verhoef, J.C.; Tehrani, M.R.; Borchard, G.; Junginger, H.E. Peroral drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2003, 12, 213-220.
[3]
Nam, H.Y.; Kwon, S.M.; Chung, H.; Lee, S.Y.; Kwon, S.H.; Jeon, H.; Kim, Y.; Park, J.H.; Kim, J.; Her, S.; Oh, Y.K.; Kwon, I.C.; Kim, K.; Jeong, S.Y. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Control. Release, 2009, 135(3), 259-267.
[http://dx.doi.org/10.1016/j.jconrel.2009.01.018] [PMID: 19331853]
[4]
Prabaharan, M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int. J. Biol. Macromol., 2015, 72, 1313-1322.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.052] [PMID: 25450550]
[5]
Sarvaiya, J.; Agrawal, Y.K. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int. J. Biol. Macromol., 2015, 72(72), 454-465.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.052] [PMID: 25199867]
[6]
Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials-A short review. Carbohydr. Polym., 2010, 2010(82), 227-232.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.074]
[7]
Alishahi, A.; Mirvaghefi, A.; Rafiee, M.; Farahmand, H.; Shojaosadati, S.A.; Dorkoosh, F. Shelf life and delivery enhancement of vita-min C using chitosan nanoparticles. Food Chem., 2011, 126, 935-940. [a
[http://dx.doi.org/10.1016/j.foodchem.2010.11.086]
[8]
Alishahi, A.; Mirvaghefi, A.; Tehrani, M.R.; Farahmand, H.; Koshio, S.; Dorkoosh, F.A.; Elsabee, M.Z. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr. Polym., 2011, 86, 142-146. [b
[http://dx.doi.org/10.1016/j.carbpol.2011.04.028]
[9]
Clark, W.D.; Akurathi, G.; Valle, H.U.; Hollis, T.K. Crystal structure of tris-(di-methyl-amido-κN)-bis-(di-methyl-amine-κN)-zirconium(IV) iodide. Acta Crystallogr. E Crystallogr. Commun., 2016, 72(Pt 1), 73-75.
[http://dx.doi.org/10.1107/S2056989015023919] [PMID: 26870590]
[10]
Fairclough, M.; Ellis, B.; Boutin, H.; Jones, A.K.P.; McMahon, A.; Alzabin, S.; Gennari, A.; Prenant, C. Development of a method for the preparation of zirconium-89 radiolabelled chitosan nanoparticles as an application for leukocyte trafficking with positron emission tomography. Appl. Radiat. Isot., 2017, 130, 7-12.
[http://dx.doi.org/10.1016/j.apradiso.2017.09.004] [PMID: 28923298]
[11]
Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2005, 12(1), 41-57.
[http://dx.doi.org/10.1080/10717540590889781] [PMID: 15801720]
[12]
Du, W.L.; Niu, Sh.; Xu, Y.L.; Xu, Z.R. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metals. Carbohydr. Polym., 2009, 75(3), 385-389.
[http://dx.doi.org/10.1016/j.carbpol.2008.07.039]
[13]
Chandra Hembram, K.; Prabha, S.; Chandra, R.; Ahmed, B.; Nimesh, S. Advances in preparation and characterization of chitosan nano-particles for therapeutics. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 305-314.
[http://dx.doi.org/10.3109/21691401.2014.948548] [PMID: 25137489]
[14]
Nagpal, K.; Singh, S.K.; Mishra, D.N. Chitosan nanoparticles: a promising system in novel drug delivery. Chem. Pharm. Bull. (Tokyo), 2010, 58(11), 1423-1430.
[http://dx.doi.org/10.1248/cpb.58.1423] [PMID: 21048331]
[15]
Kitson, S.L.; Moody, T.; Watters, W. Modern Developments in Isotopic Labelling; Researchgate, 2014.
[16]
Jalilian, A.R.; Yousefnia, H.; Shafaii, K.; Novinrouz, A.; Rajamand, A.A. Preparation and biodistribution studies of a radiogallium-acetylacetonate bis (thiosemicarbazone) complex in tumor-bearing rodents. Iran. J. Pharm. Res., 2012, 11(2), 523-531.
[PMID: 24250475]
[17]
Heidarieh, M.; Daryalal, F.; Mirvaghefi, A.; Rajabifar, S.; Diallo, A.; Sadeghi, M.; Zeiai, F.; Moodi, S.; Maadi, E.; Sheikhzadeh, N.; Hei-darieh, H.; Hedyati, M. Preparation and anatomical distribution study of 67Ga-alginic acid nanoparticlesfor SPECT purposes in rainbow trout (Oncorhynchus mykiss). Nukleonika, 2014, 59(4), 153-159.
[http://dx.doi.org/10.2478/nuka-2014-0019]
[18]
Little, F.E.; Lagunas-Solar, M.C. Cyclotron production of 67Ga. Cross sections and thick-target yields for the 67Zn (p,n) and 68Zn (p,2n) reactions. Int. J. Appl. Radiat. Isot., 1983, 34(3), 631-637.
[http://dx.doi.org/10.1016/0020-708X(83)90067-4]
[19]
Akhlaghi, M.; Pourjavadi, A. Preparation and primary evaluation of 66Ga-DTPA-chitosan in fibrosarcoma bearing mice. Nukleonika, 2011, 56(1), 41-47.
[20]
Hawary, D.L.; Motaleb, M.A.; Farag, H.; Guirguis, O.W.; Elsabee, M.Z. Water-soluble derivatives of chitosan as a target delivery system of Tc-99m to some organs in vivo for nuclear imaging and biodistribution. J. Radioanal. Nucl. Chem., 2011, 290, 557-567.
[http://dx.doi.org/10.1007/s10967-011-1310-9]
[21]
Shu, X.Z.; Zhu, K.J. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int. J. Pharm., 2002, 233(1-2), 217-225.
[http://dx.doi.org/10.1016/S0378-5173(01)00943-7] [PMID: 11897426]
[22]
Sheng, Y.; He, H.; Zou, H. Poly(lactic acid) nanoparticles coated with combined WGA and water-soluble chitosan for mucosal delivery of β-galactosidase. Drug Deliv., 2014, 21(5), 370-378.
[http://dx.doi.org/10.3109/10717544.2014.905653] [PMID: 24797098]
[23]
Chassary, P.; Vincent, T.; Guibal, E. Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React. Funct. Polym., 2004, 60, 137-149.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2004.02.018]
[24]
Inoue, K.; Yoshizuka, K.; Ohto, K. Adsorptive separation of some metal ions by complexing agent types of chemically modified chi-tosan. Anal. Chim. Acta, 1999, 388, 209-218.
[http://dx.doi.org/10.1016/S0003-2670(99)00090-2]
[25]
Nagib, S.; Inoue, K.; Yamaguchi, T.; Tamaru, T. Recovery of Ni from a large excess of Al generated from spent hydrodesulfurization catalyst using picolylamine type chelating resin and complexane types of chemically modified chitosan. Hydrometallurgy, 1999, 1999(51), 73-85.
[http://dx.doi.org/10.1016/S0304-386X(98)00073-5]
[26]
Repo, E.; Warchol, J.K.; Kurniawan, T.A.; Sillanpaa, M.E.T. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chi-tosan: kinetic and equilibrium modeling. Chem. Eng. J., 2010, 161, 73-82.
[http://dx.doi.org/10.1016/j.cej.2010.04.030]
[27]
Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives. Carbohydr. Polym., 2004, 55, 77-93.
[http://dx.doi.org/10.1016/j.carbpol.2003.08.005]
[28]
Guibal, E. Interactions of metal ions with chitosan-based sorbents. Separ. Purif. Tech., 2003, 38, 43-74.
[http://dx.doi.org/10.1016/j.seppur.2003.10.004]
[29]
Tuck, D.G. The coordination and solution chemistry of aluminium, gallium, indium and thallium.Chemistry of aluminum, gallium, indi-um and thallium; Downs, A.J., Ed.; Blackie Academic and Professional: London, 1993, pp. 430-473.
[http://dx.doi.org/10.1007/978-94-011-2170-5_8]
[30]
Weiner, R.E.; Thakur, M.L. Chemistry of gallium and indium radiopharmaceuticals. Handbook of radiopharmaceuticals: radiochemistry and applications; Welch, M.J; Redvanly, C.S., Ed.; John Wiley and Sons: Chichester, 2003, pp. 363-400.
[31]
Hu, L.; Sun, Y.; Wu, Y. Advances in chitosan-based drug delivery vehicles. Nanoscale, 2013, 5(8), 3103-3111.
[http://dx.doi.org/10.1039/c3nr00338h] [PMID: 23515527]
[32]
Koppolu, B.P.; Smith, S.G.; Ravindranathan, S.; Jayanthi, S.; Suresh Kumar, T.K.; Zaharoff, D.A. Controlling chitosan-based encapsula-tion for protein and vaccine delivery. Biomaterials, 2014, 35(14), 4382-4389.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.078] [PMID: 24560459]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy