Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy

Author(s): Davinder Singh, Prabhjot Kaur, Shivani Attri, Sharabjit Singh, Palvi Sharma, Pallavi Mohana, Kirandeep Kaur, Harneetpal Kaur, Gurdeep Singh, Farhana Rashid , Dilpreet Singh, Avinash Kumar, Ankita Rajput, Neena Bedi, Balbir Singh, Harpal Singh Buttar and Saroj Arora*

Volume 19, Issue 5, 2022

Published on: 22 April, 2022

Page: [560 - 586] Pages: 27

DOI: 10.2174/1567201818666211214112710

Price: $65

Abstract

The conventional anticancer chemotherapies not only cause serious toxic effects but also produce resistance in tumor cells exposed to long-term therapy. Usually, the selective killing of metastasized cancer cells requires long-term therapy with higher drug doses because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist in delivering drug molecules at the specific target site and reduce undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver a small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in drug delivery systems and their application in treating different cancer types in humans.

Keywords: Nanotubes, liposomes, supramolecules, hydrogels, micelles, anticancer agents.

[1]
Boyle, P.; Levin, B. World cancer report 2008; IARC Press, International Agency for Research on Cancer, 2008.
[2]
Sanginario, A.; Miccoli, B.; Demarchi, D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors (Basel), 2017, 7(1), 9.
[http://dx.doi.org/10.3390/bios7010009] [PMID: 28212271]
[3]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[4]
Koo, H.; Huh, M.S.; Sun, I.C.; Yuk, S.H.; Choi, K.; Kim, K.; Kwon, I.C. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res., 2011, 44(10), 1018-1028.
[http://dx.doi.org/10.1021/ar2000138] [PMID: 21851104]
[5]
Kane, A.B.; Hurt, R.H.; Gao, H. The asbestos-carbon nanotube analogy: An update. Toxicol. Appl. Pharmacol., 2018, 361, 68-80.
[http://dx.doi.org/10.1016/j.taap.2018.06.027] [PMID: 29960000]
[6]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660] [PMID: 27785021]
[7]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2010, 7(9), 239-250.
[8]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/10.1038/nature08956] [PMID: 20305636]
[9]
Hu, C.M.; Zhang, L. Therapeutic nanoparticles to combat cancer drug resistance. Curr. Drug Metab., 2009, 10(8), 836-841.
[http://dx.doi.org/10.2174/138920009790274540] [PMID: 20214578]
[10]
Mekaru, H.; Lu, J.; Tamanoi, F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv. Drug Deliv. Rev., 2015, 95, 40-49.
[http://dx.doi.org/10.1016/j.addr.2015.09.009] [PMID: 26434537]
[11]
Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine, 2010, 6(1), 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[12]
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018] [PMID: 19825408]
[13]
Alexis, F.; Rhee, J.W.; Richie, J.P.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. New frontiers in nanotechnology for cancer treatment. Urol. Oncol., 2008, 26(1), 74-85.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.017] [PMID: 18190835]
[14]
Wu, H.; Shi, H.; Zhang, H.; Wang, X.; Yang, Y.; Yu, C.; Hao, C.; Du, J.; Hu, H.; Yang, S. Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35(20), 5369-5380.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.038] [PMID: 24709520]
[15]
Tang, M.X.; Redemann, C.T.; Szoka, F.C., Jr In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem., 1996, 7(6), 703-714.
[http://dx.doi.org/10.1021/bc9600630] [PMID: 8950489]
[16]
Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(8), 1299-1308.
[http://dx.doi.org/10.1002/adhm.201300601] [PMID: 24706635]
[17]
Yavuz, B.; Pehlivan, S.B.; Vural, İ.; Ünlü, N. In vitro/in vivo evaluation of dexamethasone-PAMAM dendrimer complexes for retinal drug delivery. J. Pharm. Sci., 2015, 104(11), 3814-3823.
[http://dx.doi.org/10.1002/jps.24588] [PMID: 26227825]
[18]
Mo, R.; Jiang, T.; Gu, Z. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. Int. Ed. Engl., 2014, 53(23), 5815-5820.
[http://dx.doi.org/10.1002/anie.201400268] [PMID: 24764317]
[19]
Dicheva, B.M.; ten Hagen, T.L.; Seynhaeve, A.L.; Amin, M.; Eggermont, A.M.; Koning, G.A. Enhanced specificity and drug delivery in tumors by cRGD-anchoring thermosensitive liposomes. Pharm. Res., 2015, 32(12), 3862-3876.
[http://dx.doi.org/10.1007/s11095-015-1746-7] [PMID: 26202516]
[20]
Talelli, M.; Barz, M.; Rijcken, C.J.; Kiessling, F.; Hennink, W.E.; Lammers, T. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today, 2015, 10(1), 93-117.
[http://dx.doi.org/10.1016/j.nantod.2015.01.005] [PMID: 25893004]
[21]
Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[22]
Maleki Dizaj, S.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K.; Lotfipour, F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert Opin. Drug Deliv., 2015, 12(10), 1649-1660.
[http://dx.doi.org/10.1517/17425247.2015.1049530] [PMID: 26005036]
[23]
Zhou, J.; Zhang, W.; Hong, C.; Pan, C. Silica nanotubes decorated by pH-responsive diblock copolymers for controlled drug release. ACS Appl. Mater. Interfaces, 2015, 7(6), 3618-3625.
[http://dx.doi.org/10.1021/am507832n] [PMID: 25625307]
[24]
Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules, 2017, 23(1), 47.
[http://dx.doi.org/10.3390/molecules23010047] [PMID: 29295564]
[25]
Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[26]
Locatelli, E.; Franchini, M.C. Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system. J. Nanopart. Res., 2012, 14(12), 1-7.
[http://dx.doi.org/10.1007/s11051-012-1316-4]
[27]
Crucho, C.I. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 2015, 10(1), 24-38.
[http://dx.doi.org/10.1002/cmdc.201402290] [PMID: 25319803]
[28]
Meyer, R.A.; Green, J.J. Shaping the future of nanomedicine: Anisotropy in polymeric nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 191-207.
[http://dx.doi.org/10.1002/wnan.1348] [PMID: 25981390]
[29]
Farokhzad, O.C.; Langer, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58(14), 1456-1459.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[30]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[31]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[32]
Lee, P.W.; Peng, S.F.; Su, C.J.; Mi, F.L.; Chen, H.L.; Wei, M.C.; Lin, H.J.; Sung, H.W. The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials, 2008, 29(6), 742-751.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.034] [PMID: 18001831]
[33]
Chen, Y.; Chen, H.; Ma, M.; Chen, F.; Guo, L.; Zhang, L.; Shi, J. Double mesoporous silica shelled spherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drug delivery. J. Mater. Chem., 2011, 21(14), 5290-5298.
[http://dx.doi.org/10.1039/c0jm04024j]
[34]
Patel, T.; Zhou, J.; Piepmeier, J.M.; Saltzman, W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 701-705.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[35]
van Vlerken, L.E.; Amiji, M.M. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin. Drug Deliv., 2006, 3(2), 205-216.
[http://dx.doi.org/10.1517/17425247.3.2.205] [PMID: 16506948]
[36]
Wang, X.Q.; Zhang, Q. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2012, 82(2), 219-229.
[http://dx.doi.org/10.1016/j.ejpb.2012.07.014] [PMID: 22885229]
[37]
Tosi, G.; Costantino, L.; Ruozi, B.; Forni, F.; Vandelli, M.A. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin. Drug Deliv., 2008, 5(2), 155-174.
[http://dx.doi.org/10.1517/17425247.5.2.155] [PMID: 18248316]
[38]
Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev., 2012, 41(7), 2545-2561.
[http://dx.doi.org/10.1039/c2cs15327k] [PMID: 22334259]
[39]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[40]
Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol., 2007, 2(1), 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[41]
Damgé, C.; Maincent, P.; Ubrich, N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release, 2007, 117(2), 163-170.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.023] [PMID: 17141909]
[42]
Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2, 147-157.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[43]
Nagavarma, B.V.; Yadav, H.K.; Ayaz, A.V.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles - A review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
[44]
Tiyaboonchai, W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan Univ. J., 2003, 11(3), 51-66. [NUJST].
[45]
Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 2007, 24(12), 2198-2206.
[http://dx.doi.org/10.1007/s11095-007-9367-4] [PMID: 17577641]
[46]
Lu, Z.; Yeh, T.K.; Tsai, M.; Au, J.L.; Wientjes, M.G. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin. Cancer Res., 2004, 10(22), 7677-7684.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1443] [PMID: 15570001]
[47]
Bajpai, A.K.; Choubey, J. Release study of sulphamethoxazole controlled by swelling of gelatin nanoparticles and drug ‐Biopolymer interaction. J. Macromol. Sci. Part A Pure Appl. Chem., 2005, 42(3), 253-275.
[http://dx.doi.org/10.1081/MA-200050357]
[48]
Kaur, A.; Jain, S.; Tiwary, A.K. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: In vitro and in vivo evaluation. Acta Pharm., 2008, 58(1), 61-74.
[http://dx.doi.org/10.2478/v10007-007-0045-1] [PMID: 18337208]
[49]
Arias, J.L.; Gallardo, V.; Ruiz, M.A.; Delgado, A.V. Ftorafur loading and controlled release from poly(ethyl-2-cyanoacrylate) and poly(butylcyanoacrylate) nanospheres. Int. J. Pharm., 2007, 337(1-2), 282-290.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.023] [PMID: 17223292]
[50]
Bajpai, A.K.; Choubey, J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J. Mater. Sci. Mater. Med., 2006, 17(4), 345-358.
[http://dx.doi.org/10.1007/s10856-006-8235-9] [PMID: 16617413]
[51]
De Campos, A.M.; Sánchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm., 2001, 224(1-2), 159-168.
[http://dx.doi.org/10.1016/S0378-5173(01)00760-8] [PMID: 11472825]
[52]
Wu, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm., 2005, 295(1-2), 235-245.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.042] [PMID: 15848008]
[53]
Prabu, P.; Chaudhari, A.A.; Dharmaraj, N.; Khil, M.S.; Park, S.Y.; Kim, H.Y. Preparation, characterization, in vitro drug release and cellular uptake of poly(caprolactone) grafted dextran copolymeric nanoparticles loaded with anticancer drug. J. Biomed. Mater. Res. A, 2009, 90(4), 1128-1136.
[http://dx.doi.org/10.1002/jbm.a.32163] [PMID: 18671265]
[54]
Zheng, D.; Li, X.; Xu, H.; Lu, X.; Hu, Y.; Fan, W. Study on docetaxel-loaded nanoparticles with high antitumor efficacy against malignant melanoma. Acta Biochim. Biophys. Sin. (Shanghai), 2009, 41(7), 578-587.
[http://dx.doi.org/10.1093/abbs/gmp045] [PMID: 19578721]
[55]
Choi, C.; Chae, S.Y.; Nah, J.W. Thermosensitive poly (N-isopropylacrylamide)-b-poly (ε-caprolactone) nanoparticles for efficient drug delivery system. Polymer (Guildf.), 2006, 47(13), 4571-4580.
[http://dx.doi.org/10.1016/j.polymer.2006.05.011]
[56]
Kim, S.Y.; Lee, Y.M. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers. Biomaterials, 2001, 22(13), 1697-1704.
[http://dx.doi.org/10.1016/S0142-9612(00)00292-1] [PMID: 11396872]
[57]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(2), 241-250.
[http://dx.doi.org/10.1007/s10549-007-9591-y] [PMID: 17476588]
[58]
Shenoy, D.B.; Amiji, M.M. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 2005, 293(1-2), 261-270.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010] [PMID: 15778064]
[59]
Matsumoto, J.; Nakada, Y.; Sakurai, K.; Nakamura, T.; Takahashi, Y. Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. Int. J. Pharm., 1999, 185(1), 93-101.
[http://dx.doi.org/10.1016/S0378-5173(99)00153-2] [PMID: 10425369]
[60]
Leroux, J.C.; Allémann, E.; De Jaeghere, F.; Doelker, E.; Gurny, R. Biodegradable nanoparticles-from sustained release formulations to improved site specific drug delivery. J. Control. Release, 1996, 39(2-3), 339-350.
[http://dx.doi.org/10.1016/0168-3659(95)00164-6]
[61]
Cheng, Q.; Feng, J.; Chen, J.; Zhu, X.; Li, F. Brain transport of neurotoxin-I with PLA nanoparticles through intranasal administration in rats: A microdialysis study. Biopharm. Drug Dispos., 2008, 29(8), 431-439.
[http://dx.doi.org/10.1002/bdd.621] [PMID: 18837064]
[62]
Xing, J.; Zhang, D.; Tan, T. Studies on the oridonin-loaded poly(D,L-lactic acid) nanoparticles in vitro and in vivo. Int. J. Biol. Macromol., 2007, 40(2), 153-158.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.07.001] [PMID: 16901536]
[63]
Zambaux, M.F.; Bonneaux, F.; Gref, R.; Dellacherie, E.; Vigneron, C. Preparation and characterization of protein C-loaded PLA nanoparticles. J. Control. Release, 1999, 60(2-3), 179-188.
[http://dx.doi.org/10.1016/S0168-3659(99)00073-5] [PMID: 10425324]
[64]
Sonaje, K.; Italia, J.L.; Sharma, G.; Bhardwaj, V.; Tikoo, K.; Kumar, M.N. Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats. Pharm. Res., 2007, 24(5), 899-908.
[http://dx.doi.org/10.1007/s11095-006-9207-y] [PMID: 17377747]
[65]
Gómez-Gaete, C.; Fattal, E.; Silva, L.; Besnard, M.; Tsapis, N. Dexamethasone acetate encapsulation into trojan particles. J. Control. Release, 2008, 128(1), 41-49.
[http://dx.doi.org/10.1016/j.jconrel.2008.02.008] [PMID: 18374442]
[66]
Sheng, Y.; Yuan, Y.; Liu, C.; Tao, X.; Shan, X.; Xu, F. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: Effect of PEG content. J. Mater. Sci. Mater. Med., 2009, 20(9), 1881-1891.
[http://dx.doi.org/10.1007/s10856-009-3746-9] [PMID: 19365612]
[67]
Budhian, A.; Siegel, S.J.; Winey, K.I. Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J. Microencapsul., 2005, 22(7), 773-785.
[http://dx.doi.org/10.1080/02652040500273753] [PMID: 16421087]
[68]
Gómez-Gaete, C.; Tsapis, N.; Besnard, M.; Bochot, A.; Fattal, E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int. J. Pharm., 2007, 331(2), 153-159.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.028] [PMID: 17157461]
[69]
Yin, Y.; Chen, D.; Qiao, M.; Wei, X.; Hu, H. Lectin-conjugated PLGA nanoparticles loaded with thymopentin: Ex vivo bioadhesion and in vivo biodistribution. J. Control. Release, 2007, 123(1), 27-38.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.024] [PMID: 17728000]
[70]
Labhasetwar, V.; Song, C.; Humphrey, W.; Shebuski, R.; Levy, R.J. Arterial uptake of biodegradable nanoparticles: Effect of surface modifications. J. Pharm. Sci., 1998, 87(10), 1229-1234.
[http://dx.doi.org/10.1021/js980021f] [PMID: 9758682]
[71]
Esmaeili, F.; Ghahremani, M.H.; Ostad, S.N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M.R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target., 2008, 16(5), 415-423.
[http://dx.doi.org/10.1080/10611860802088630] [PMID: 18569286]
[72]
Teixeira, M.; Alonso, M.J.; Pinto, M.M.; Barbosa, C.M. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur. J. Pharm. Biopharm., 2005, 59(3), 491-500.
[http://dx.doi.org/10.1016/j.ejpb.2004.09.002] [PMID: 15760730]
[73]
Derakhshandeh, K.; Erfan, M.; Dadashzadeh, S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: Factorial design, characterization and release kinetics. Eur. J. Pharm. Biopharm., 2007, 66(1), 34-41.
[http://dx.doi.org/10.1016/j.ejpb.2006.09.004] [PMID: 17070678]
[74]
Sahana, D.K.; Mittal, G.; Bhardwaj, V.; Kumar, M.N. PLGA nanoparticles for oral delivery of hydrophobic drugs: Influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J. Pharm. Sci., 2008, 97(4), 1530-1542.
[http://dx.doi.org/10.1002/jps.21158] [PMID: 17722098]
[75]
Danhier, F.; Lecouturier, N.; Vroman, B.; Jérôme, C.; Marchand-Brynaert, J.; Feron, O.; Préat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control. Release, 2009, 133(1), 11-17.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.086] [PMID: 18950666]
[76]
Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83(2), 273-286.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[77]
Heegaard, P.M.; Pedersen, H.G.; Flink, J.; Boas, U. Amyloid aggregates of the prion peptide PrP106-126 are destabilised by oxidation and by the action of dendrimers. FEBS Lett., 2004, 577(1-2), 127-133.
[http://dx.doi.org/10.1016/j.febslet.2004.09.073] [PMID: 15527773]
[78]
Cheng, Y.; Wang, J.; Rao, T.; He, X.; Xu, T. Pharmaceutical applications of dendrimers: Promising nanocarriers for drug delivery. Front. Biosci., 2008, 13(4), 1447-1471.
[http://dx.doi.org/10.2741/2774] [PMID: 17981642]
[79]
Dufès, C.; Uchegbu, I.F.; Schätzlein, A.G. Dendrimers in gene delivery. Adv. Drug Deliv. Rev., 2005, 57(15), 2177-2202.
[http://dx.doi.org/10.1016/j.addr.2005.09.017] [PMID: 16310284]
[80]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[81]
Gillies, E.R.; Fréchet, J.M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[82]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[83]
Tomalia, D.A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci., 2005, 30(3-4), 294-324.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.01.007]
[84]
Noriega-Luna, B.; Godínez, L.A.; Rodríguez, F.J.; Rodríguez, A.; Zaldívar-Lelo de Larrea, G.; Sosa-Ferreyra, C.F.; Mercado-Curiel, R.F.; Manríquez, J.; Bustos, E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomater., 2014, 2014, 39.
[http://dx.doi.org/10.1155/2014/507273] [PMID: 507273]
[85]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[86]
Nguyen, T.T.C.; Nguyen, C.K.; Nguyen, T.H.; Tran, N.Q. Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs. Mater. Sci. Eng. C, 2017, 70(Pt 2), 992-999.
[http://dx.doi.org/10.1016/j.msec.2016.03.073] [PMID: 27772731]
[87]
Sandoval-Yañez, C.; Castro Rodriguez, C. Dendrimers: Amazing platforms for bioactive molecule delivery systems. Materials (Basel), 2020, 13(3), 570.
[http://dx.doi.org/10.3390/ma13030570] [PMID: 31991703]
[88]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[89]
Tomalia, D.A. Dendrimer research. Science, 1991, 252(5010), 1231.
[http://dx.doi.org/10.1126/science.252.5010.1231.c] [PMID: 17842936]
[90]
Tomalia, D.A. In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart. Res., 2009, 11(6), 1251-1310.
[http://dx.doi.org/10.1007/s11051-009-9632-z] [PMID: 21170133]
[91]
Tomalia, D.A. Interview: An architectural journey: From trees, dendrons/dendrimers to nanomedicine. Interview by Hannah Stanwix. Nanomedicine (Lond.), 2012, 7(7), 953-956.
[http://dx.doi.org/10.2217/nnm.12.81] [PMID: 22846090]
[92]
Chauhan, A.S. Dendrimers for drug delivery. Molecules, 2018, 23(4), 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[93]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[94]
Kojima, C.; Nishisaka, E.; Suehiro, T.; Watanabe, K.; Harada, A.; Goto, T.; Magata, Y.; Kono, K. The synthesis and evaluation of polymer prodrug/collagen hybrid gels for delivery into metastatic cancer cells. Nanomedicine, 2013, 9(6), 767-775.
[http://dx.doi.org/10.1016/j.nano.2013.01.004] [PMID: 23347898]
[95]
Kale, A.A.; Torchilin, V.P. Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: The effect of substitutes at the hydrazone linkage on the pH stability of PEG-PE conjugates. Bioconjug. Chem., 2007, 18(2), 363-370.
[http://dx.doi.org/10.1021/bc060228x] [PMID: 17309227]
[96]
Jain, N.K.; Tare, M.S.; Mishra, V.; Tripathi, P.K. The development, characterization and in vivo anti-ovarian cancer activity of poly(propylene imine) (PPI)-antibody conjugates containing encapsulated paclitaxel. Nanomedicine, 2015, 11(1), 207-218.
[http://dx.doi.org/10.1016/j.nano.2014.09.006] [PMID: 25262579]
[97]
Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V.G.M.; Bansal, V.; Sistla, R.; Adams, D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep., 2016, 6(1), 23179.
[http://dx.doi.org/10.1038/srep23179] [PMID: 27052896]
[98]
Kesharwani, P.; Tekade, R.K.; Jain, N.K. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm. Res., 2015, 32(4), 1438-1450.
[http://dx.doi.org/10.1007/s11095-014-1549-2] [PMID: 25330744]
[99]
Dhanikula, R.S.; Argaw, A.; Bouchard, J.F.; Hildgen, P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: Enhanced efficacy and intratumoral transport capability. Mol. Pharm., 2008, 5(1), 105-116.
[http://dx.doi.org/10.1021/mp700086j] [PMID: 18171013]
[100]
Yellepeddi, V.K.; Kumar, A.; Maher, D.M.; Chauhan, S.C.; Vangara, K.K.; Palakurthi, S. Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: Role of SMVT. Anticancer Res., 2011, 31(3), 897-906.
[PMID: 21498711]
[101]
Khandare, J.J.; Jayant, S.; Singh, A.; Chandna, P.; Wang, Y.; Vorsa, N.; Minko, T. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjug. Chem., 2006, 17(6), 1464-1472.
[http://dx.doi.org/10.1021/bc060240p] [PMID: 17105225]
[102]
Miyano, T.; Wijagkanalan, W.; Kawakami, S.; Yamashita, F.; Hashida, M. Anionic amino acid dendrimer-trastuzumab conjugates for specific internalization in HER2-positive cancer cells. Mol. Pharm., 2010, 7(4), 1318-1327.
[http://dx.doi.org/10.1021/mp100105c] [PMID: 20527783]
[103]
Newland, B.; Taplan, C.; Pette, D.; Friedrichs, J.; Steinhart, M.; Wang, W.; Voit, B.; Seib, F.P.; Werner, C. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale, 2018, 10(18), 8413-8421.
[http://dx.doi.org/10.1039/C8NR00603B] [PMID: 29714385]
[104]
Shen, X.; Wang, Y.; Xi, L.; Su, F.; Li, S. Biocompatibility and paclitaxel/cisplatin dual-loading of nanotubes prepared from poly(ethylene glycol)-polylactide-poly(ethylene glycol) triblock copolymers for combination cancer therapy. Saudi Pharm. J., 2019, 27(7), 1025-1035.
[http://dx.doi.org/10.1016/j.jsps.2019.08.005] [PMID: 31997910]
[105]
Simon, J.; Flahaut, E.; Golzio, M. Overview of carbon nanotubes for biomedical applications. Materials (Basel), 2019, 12(4), 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[106]
Torres, C.; Villarroel, I.; Rozas, R.; Contreras, L. Carbon nanotubes having haeckelite defects as potential drug carriers. Molecular dynamics simulation. Molecules, 2019, 24(23), 4281.
[http://dx.doi.org/10.3390/molecules24234281] [PMID: 31771295]
[107]
Cirillo, G.; Vittorio, O.; Kunhardt, D.; Valli, E.; Voli, F.; Farfalla, A.; Curcio, M.; Spizzirri, U.G.; Hampel, S. Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells. Materials (Basel), 2019, 12(18), 2889.
[http://dx.doi.org/10.3390/ma12182889] [PMID: 31500165]
[108]
Romano-Feinholz, S.; Salazar-Ramiro, A.; Muñoz-Sandoval, E.; Magaña-Maldonado, R.; Hernández Pedro, N.; Rangel López, E.; González Aguilar, A.; Sánchez García, A.; Sotelo, J.; Pérez de la Cruz, V.; Pineda, B. Cytotoxicity induced by carbon nanotubes in experimental malignant glioma. Int. J. Nanomedicine, 2017, 12, 6005-6026.
[http://dx.doi.org/10.2147/IJN.S139004] [PMID: 28860763]
[109]
Li, K.; Zhang, Y.; Chen, M.; Hu, Y.; Jiang, W.; Zhou, L.; Li, S.; Xu, M.; Zhao, Q.; Wan, R. Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes. Int. J. Nanomedicine, 2017, 13, 19-30.
[http://dx.doi.org/10.2147/IJN.S143928] [PMID: 29296083]
[110]
Çal, T.; Bucurgat, Ü.Ü. In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage. Daru, 2019, 27(1), 203-218.
[http://dx.doi.org/10.1007/s40199-019-00263-6] [PMID: 30941633]
[111]
Suo, N.; Wang, M.; Jin, Y.; Ding, J.; Gao, X.; Sun, X.; Zhang, H.; Cui, M.; Zheng, J.; Li, N.; Jin, X.; Jiang, S. Magnetic multiwalled carbon nanotubes with controlled release of epirubicin: An intravesical instillation system for bladder cancer. Int. J. Nanomedicine, 2019, 14, 1241-1254.
[http://dx.doi.org/10.2147/IJN.S189688] [PMID: 30863057]
[112]
Mi, Y.; Li, P.; Liu, Q.; Xu, J.; Yang, Q.; Tang, J. Multi-parametric study of the viability of in vitro skin cancer cells exposed to nanosecond pulsed electric fields combined with multi-walled carbon nanotubes. Technol. Cancer Res. Treat., 2019, 18, 1533033819876918.
[http://dx.doi.org/10.1177/1533033819876918] [PMID: 31551008]
[113]
Kafa, H.; Wang, J.T.; Rubio, N.; Klippstein, R.; Costa, P.M.; Hassan, H.A.; Sosabowski, J.K.; Bansal, S.S.; Preston, J.E.; Abbott, N.J.; Al-Jamal, K.T. Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood-brain barrier in vitro and in vivo. J. Control. Release, 2016, 225, 217-229.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.031] [PMID: 26809004]
[114]
Larner, S.F.; Wang, J.; Goodman, J.; Altman, M.B.O.; Xin, M.; Wang, K.K.W. In vitro neurotoxicity resulting from exposure of cultured neural cells to several types of nanoparticles. J. Cell Death, 2017, 10, 1179670717694523.
[http://dx.doi.org/10.1177/1179670717694523] [PMID: 28469474]
[115]
Kavosi, A.; Hosseini Ghale Noei, S.; Madani, S.; Khalighfard, S.; Khodayari, S.; Khodayari, H.; Mirzaei, M.; Kalhori, M.R.; Yavarian, M.; Alizadeh, A.M.; Falahati, M. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci. Rep., 2018, 8(1), 8375.
[http://dx.doi.org/10.1038/s41598-018-26790-x] [PMID: 29849103]
[116]
Yan, Y.; Wang, R.; Hu, Y.; Sun, R.; Song, T.; Shi, X.; Yin, S. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv., 2018, 25(1), 1607-1616.
[http://dx.doi.org/10.1080/10717544.2018.1501120] [PMID: 30348025]
[117]
Sobhani, Z.; Behnam, M.A.; Emami, F.; Dehghanian, A.; Jamhiri, I. Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes. Int. J. Nanomedicine, 2017, 12, 4509-4517.
[http://dx.doi.org/10.2147/IJN.S134661] [PMID: 28684911]
[118]
Suo, X.; Eldridge, B.N.; Zhang, H.; Mao, C.; Min, Y.; Sun, Y.; Singh, R.; Ming, X. P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl. Mater. Interfaces, 2018, 10(39), 33464-33473.
[http://dx.doi.org/10.1021/acsami.8b11974] [PMID: 30188117]
[119]
Fujita, K.; Fukuda, M.; Endoh, S.; Maru, J.; Kato, H.; Nakamura, A.; Shinohara, N.; Uchino, K.; Honda, K. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal. Toxicol., 2015, 27(4), 207-223.
[http://dx.doi.org/10.3109/08958378.2015.1026620] [PMID: 25865113]
[120]
Siegrist, K.J.; Reynolds, S.H.; Porter, D.W.; Mercer, R.R.; Bauer, A.K.; Lowry, D.; Cena, L.; Stueckle, T.A.; Kashon, M.L.; Wiley, J.; Salisbury, J.L.; Mastovich, J.; Bunker, K.; Sparrow, M.; Lupoi, J.S.; Stefaniak, A.B.; Keane, M.J.; Tsuruoka, S.; Terrones, M.; McCawley, M.; Sargent, L.M. Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells. Part. Fibre Toxicol., 2019, 16(1), 36.
[http://dx.doi.org/10.1186/s12989-019-0318-0] [PMID: 31590690]
[121]
Poonia, N.; Lather, V.; Pandita, D. Mesoporous silica nanoparticles: A smart nanosystem for management of breast cancer. Drug Discov. Today, 2018, 23(2), 315-332.
[http://dx.doi.org/10.1016/j.drudis.2017.10.022] [PMID: 29128658]
[122]
Vogt, C.; Toprak, M.S.; Muhammed, M.; Laurent, S.; Bridot, J.L.; Müller, R.N. High quality and tuneable silica shell-magnetic core nanoparticles. J. Nanopart. Res., 2010, 12(4), 1137-1147.
[http://dx.doi.org/10.1007/s11051-009-9661-7]
[123]
Slowing, I.I.; Trewyn, B.G.; Lin, V.S. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J. Am. Chem. Soc., 2007, 129(28), 8845-8849.
[http://dx.doi.org/10.1021/ja0719780] [PMID: 17589996]
[124]
Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig., 2015, 5(3), 124-133.
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[125]
Khosravian, P.; Shafiee Ardestani, M.; Khoobi, M.; Ostad, S.N.; Dorkoosh, F.A.; Akbari Javar, H.; Amanlou, M. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets Ther., 2016, 9, 7315-7330.
[http://dx.doi.org/10.2147/OTT.S113815] [PMID: 27980423]
[126]
Meng, H.; Wang, M.; Liu, H.; Liu, X.; Situ, A.; Wu, B.; Ji, Z.; Chang, C.H.; Nel, A.E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano, 2015, 9(4), 3540-3557.
[http://dx.doi.org/10.1021/acsnano.5b00510] [PMID: 25776964]
[127]
Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets, 2011, 12(8), 1166-1186.
[http://dx.doi.org/10.2174/138945011795906624] [PMID: 21443474]
[128]
Cha, B.G.; Jeong, J.H.; Kim, J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent. Sci., 2018, 4(4), 484-492.
[http://dx.doi.org/10.1021/acscentsci.8b00035] [PMID: 29721531]
[129]
Knežević, N.Ž.; Durand, J.O. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale, 2015, 7(6), 2199-2209.
[http://dx.doi.org/10.1039/C4NR06114D] [PMID: 25583539]
[130]
Kwon, D.; Cha, B.G.; Cho, Y.; Min, J.; Park, E.B.; Kang, S.J.; Kim, J. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett., 2017, 17(5), 2747-2756.
[http://dx.doi.org/10.1021/acs.nanolett.6b04130] [PMID: 28422506]
[131]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[132]
Martínez-Carmona, M.; Colilla, M.; Vallet-Regí, M. Smart mesoporous nanomaterials for antitumor therapy. Nanomaterials (Basel), 2015, 5(4), 1906-1937.
[http://dx.doi.org/10.3390/nano5041906] [PMID: 28347103]
[133]
Colilla, M.; González, B.; Vallet-Regí, M. Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater. Sci., 2013, 1(2), 114-134.
[http://dx.doi.org/10.1039/C2BM00085G] [PMID: 32481793]
[134]
Giret, S.; Wong Chi Man, M.; Carcel, C. Mesoporous-silica-functionalized nanoparticles for drug delivery. Chemistry, 2015, 21(40), 13850-13865.
[http://dx.doi.org/10.1002/chem.201500578] [PMID: 26250991]
[135]
Vallet-Regi, M.; Rámila, A.; Del Real, R.P.; Pérez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater., 2001, 13(2), 308-311.
[http://dx.doi.org/10.1021/cm0011559]
[136]
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed., 2007, 46(40), 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[137]
Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev., 2012, 41(9), 3679-3698.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[138]
Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater., 2014, 26(1), 435-451.
[http://dx.doi.org/10.1021/cm402592t]
[139]
Manzano, M.; Colilla, M.; Vallet-Regí, M. Drug delivery from ordered mesoporous matrices. Expert Opin. Drug Deliv., 2009, 6(12), 1383-1400.
[http://dx.doi.org/10.1517/17425240903304024] [PMID: 19941412]
[140]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[141]
Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater., 2013, 25(23), 3144-3176.
[http://dx.doi.org/10.1002/adma.201205292] [PMID: 23681931]
[142]
Lu, J.; Liong, M.; Li, Z.; Zink, J.I.; Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 2010, 6(16), 1794-1805.
[http://dx.doi.org/10.1002/smll.201000538] [PMID: 20623530]
[143]
Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397), 710-7122.
[http://dx.doi.org/10.1038/359710a0]
[144]
Abdous, B.; Sajjadi, S.M.; Ma’mani, L. β-Cyclodextrin modified mesoporous silica nanoparticles as a nano-carrier: Response surface methodology to investigate and optimize loading and release processes for curcumin delivery. J. Appl. Biomed., 2017, 15(3), 210-218.
[http://dx.doi.org/10.1016/j.jab.2017.02.004]
[145]
Heikkilä, T.; Salonen, J.; Tuura, J.; Hamdy, M.S.; Mul, G.; Kumar, N.; Salmi, T.; Murzin, D.Y.; Laitinen, L.; Kaukonen, A.M.; Hirvonen, J.; Lehto, V.P. Mesoporous silica material TUD-1 as a drug delivery system. Int. J. Pharm., 2007, 331(1), 133-138.
[http://dx.doi.org/10.1016/j.ijpharm.2006.09.019] [PMID: 17046183]
[146]
Suriyanon, N.; Permrungruang, J.; Kaosaiphun, J.; Wongrueng, A.; Ngamcharussrivichai, C.; Punyapalakul, P. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute. Chemosphere, 2015, 136, 222-231.
[http://dx.doi.org/10.1016/j.chemosphere.2015.05.005] [PMID: 26025186]
[147]
Kotcherlakota, R.; Barui, A.K.; Prashar, S.; Fajardo, M.; Briones, D.; Rodríguez-Diéguez, A.; Patra, C.R.; Gómez-Ruiz, S. Curcumin loaded mesoporous silica: An effective drug delivery system for cancer treatment. Biomater. Sci., 2016, 4(3), 448-459.
[http://dx.doi.org/10.1039/C5BM00552C] [PMID: 26674254]
[148]
Monkhouse, D.C.; Lach, J.L. Use of adsorbents in enhancement of drug dissolution. Int. J. Pharma Sci., 1972, 61(9), 1430-1435.
[http://dx.doi.org/10.1002/jps.2600610917] [PMID: 4341624]
[149]
Morales Lozano, R.; González Fernández, M.L.; Martinez Hernández, D.; Beneit Montesinos, J.V.; Guisado Jiménez, S.; Gonzalez Jurado, M.A. Validating the probe-to-bone test and other tests for diagnosing chronic osteomyelitis in the diabetic foot. Diabetes Care, 2010, 33(10), 2140-2145.
[http://dx.doi.org/10.2337/dc09-2309] [PMID: 20622159]
[150]
Zhu, M.; Wang, H.; Liu, J.; He, H.; Hua, X.; He, Q.; Zhang, L.; Ye, X.; Shi, J. A mesoporous silica nanoparticulate/β-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomaterials, 2011, 32(7), 1986-1995.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.025] [PMID: 21163519]
[151]
Vallet-Regí, M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry, 2006, 12(23), 5934-5943.
[http://dx.doi.org/10.1002/chem.200600226] [PMID: 16832799]
[152]
Suwalski, A.; Dabboue, H.; Delalande, A.; Bensamoun, S.F.; Canon, F.; Midoux, P.; Saillant, G.; Klatzmann, D.; Salvetat, J.P.; Pichon, C. Accelerated achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials, 2010, 31(19), 5237-5245.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.077] [PMID: 20334910]
[153]
Kim, J.K. Fat uses a TOLL-road to connect inflammation and diabetes. Cell Metab., 2006, 4(6), 417-419.
[http://dx.doi.org/10.1016/j.cmet.2006.11.008] [PMID: 17141623]
[154]
Zhao, Y.; Trewyn, B.G.; Slowing, I.I.; Lin, V.S. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J. Am. Chem. Soc., 2009, 131(24), 8398-8400.
[http://dx.doi.org/10.1021/ja901831u] [PMID: 19476380]
[155]
Moulari, B.; Pertuit, D.; Pellequer, Y.; Lamprecht, A. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials, 2008, 29(34), 4554-4560.
[http://dx.doi.org/10.1016/j.biomaterials.2008.08.009] [PMID: 18790531]
[156]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[157]
Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm., 1997, 154(2), 123-140.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[158]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[159]
Cern, A.; Golbraikh, A.; Sedykh, A.; Tropsha, A.; Barenholz, Y.; Goldblum, A. Quantitative structure-property relationship modeling of remote liposome loading of drugs. J. Control. Release, 2012, 160(2), 147-157.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.029] [PMID: 22154932]
[160]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[161]
Kang, C.; Sun, Y.; Zhu, J.; Li, W.; Zhang, A.; Kuang, T.; Xie, J.; Yang, Z. Delivery of nanoparticles for treatment of brain tumor. Curr. Drug Metab., 2016, 17(8), 745-754.
[http://dx.doi.org/10.2174/1389200217666160728152939] [PMID: 27469219]
[162]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[163]
Goyal, P.; Goyal, K.; Vijaya Kumar, S.G.; Singh, A.; Katare, O.P.; Mishra, D.N. Liposomal drug delivery systems-clinical applications. Acta Pharm., 2005, 55(1), 1-25.
[PMID: 15907221]
[164]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[165]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[166]
Xu, X.; Wang, L.; Xu, H.Q.; Huang, X.E.; Qian, Y.D.; Xiang, J. Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac. J. Cancer Prev., 2013, 14(4), 2591-2594.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2591] [PMID: 23725180]
[167]
Drummond, D.C.; Meyer, O.; Hong, K.; Kirpotin, D.B.; Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev., 1999, 51(4), 691-743.
[PMID: 10581328]
[168]
Zhou, J.; Zhao, W.Y.; Ma, X.; Ju, R.J.; Li, X.Y.; Li, N.; Sun, M.G.; Shi, J.F.; Zhang, C.X.; Lu, W.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials, 2013, 34(14), 3626-3638.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.078] [PMID: 23422592]
[169]
Ning, Y.M.; He, K.; Dagher, R.; Sridhara, R.; Farrell, A.T.; Justice, R.; Pazdur, R. Liposomal doxorubicin in combination with bortezomib for relapsed or refractory multiple myeloma. Oncology (Williston Park), 2007, 21(12), 1503-1508.
[PMID: 18077994]
[170]
Zamboni, W.C.; Ramalingam, S.; Friedland, D.M.; Edwards, R.P.; Stoller, R.G.; Strychor, S.; Maruca, L.; Zamboni, B.A.; Belani, C.P.; Ramanathan, R.K. Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin. Cancer Res., 2009, 15(4), 1466-1472.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1405] [PMID: 19190127]
[171]
Dark, G.G.; Calvert, A.H.; Grimshaw, R.; Poole, C.; Swenerton, K.; Kaye, S.; Coleman, R.; Jayson, G.; Le, T.; Ellard, S.; Trudeau, M.; Vasey, P.; Hamilton, M.; Cameron, T.; Barrett, E.; Walsh, W.; McIntosh, L.; Eisenhauer, E.A. Randomized trial of two intravenous schedules of the topoisomerase I inhibitor liposomal lurtotecan in women with relapsed epithelial ovarian cancer: A trial of the national cancer institute of Canada clinical trials group. J. Clin. Oncol., 2005, 23(9), 1859-1866.
[http://dx.doi.org/10.1200/JCO.2005.02.028] [PMID: 15699482]
[172]
Mahmud, M.; Piwoni, A.; Filipczak, N.; Janicka, M.; Gubernator, J. Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro. PLoS One, 2016, 11(12), e0167787.
[http://dx.doi.org/10.1371/journal.pone.0167787] [PMID: 27936114]
[173]
Handali, S.; Moghimipour, E.; Rezaei, M.; Ramezani, Z.; Kouchak, M.; Amini, M.; Angali, K.A.; Saremy, S.; Dorkoosh, F.A. A novel 5-Fluorouracil targeted delivery to colon cancer using folic acid conjugated liposomes. Biomed. Pharmacother., 2018, 108, 1259-1273.
[http://dx.doi.org/10.1016/j.biopha.2018.09.128] [PMID: 30372827]
[174]
Takemoto, H.; Inaba, T.; Nomoto, T.; Matsui, M.; Liu, X.; Toyoda, M.; Honda, Y.; Taniwaki, K.; Yamada, N.; Kim, J.; Tomoda, K.; Nishiyama, N. Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials, 2020, 235, 119804.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119804] [PMID: 31991339]
[175]
Shafaa, M. Preparation, characterization and evaluation of cytotoxic activity of tamoxifen bound liposomes against breast cancer cell line. Egyptian J. Biophysics Biomed. Eng., 2020, 21(1), 19-31.
[http://dx.doi.org/10.21608/ejbbe.2020.29656.1032]
[176]
de Oliveira Silva, J.; Fernandes, R.S.; Ramos Oda, C.M.; Ferreira, T.H.; Machado Botelho, A.F.; Martins Melo, M.; de Miranda, M.C.; Assis Gomes, D.; Dantas Cassali, G.; Townsend, D.M.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother., 2019, 118, 109323.
[http://dx.doi.org/10.1016/j.biopha.2019.109323] [PMID: 31400669]
[177]
Zhang, Z.; Yao, J. Preparation of irinotecan-loaded folate-targeted liposome for tumor targeting delivery and its antitumor activity. AAPS PharmSciTech, 2012, 13(3), 802-810.
[http://dx.doi.org/10.1208/s12249-012-9776-5] [PMID: 22639238]
[178]
Knight, V.; Koshkina, N.V.; Waldrep, J.C.; Giovanella, B.C.; Gilbert, B.E. Anticancer effect of 9-nitrocamptothecin liposome aerosol on human cancer xenografts in nude mice. Cancer Chemother. Pharmacol., 1999, 44(3), 177-186.
[http://dx.doi.org/10.1007/s002800050965] [PMID: 10453718]
[179]
Wu, C.; Zhang, Y.; Yang, D.; Zhang, J.; Ma, J.; Cheng, D.; Chen, J.; Deng, L. Novel SN38 derivative-based liposome as anticancer prodrug: An in vitro and in vivo study. Int. J. Nanomedicine, 2018, 14, 75-85.
[http://dx.doi.org/10.2147/IJN.S187906] [PMID: 30587986]
[180]
Torchilin, V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[181]
Nishiyama, N.; Yokoyama, M.; Aoyagi, T.; Okano, T.; Sakurai, Y.; Kataoka, K. Preparation and characterization of self-assembled polymer− metal complex micelle from cis-dichlorodiammineplatinum (II) and poly (ethylene glycol)-poly (α, β-aspartic acid) block copolymer in an aqueous medium. Langmuir, 1999, 15(2), 377-383.
[http://dx.doi.org/10.1021/la980572l]
[182]
Nakashima, K.; Bahadur, P. Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. Adv. Colloid Interface Sci., 2006, 123-126, 75-96.
[http://dx.doi.org/10.1016/j.cis.2006.05.016] [PMID: 16860770]
[183]
Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109(1-3), 169-188.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.034] [PMID: 16289422]
[184]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 340315.
[http://dx.doi.org/10.1155/2013/340315]
[185]
Kulthe, S.S.; Choudhari, Y.M.; Inamdar, N.N.; Mourya, V. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym., 2012, 15(5), 465-521.
[http://dx.doi.org/10.1080/1385772X.2012.688328]
[186]
Bansal, T.; Akhtar, N.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov. Today, 2009, 14(21-22), 1067-1074.
[http://dx.doi.org/10.1016/j.drudis.2009.07.010] [PMID: 19647803]
[187]
Elzoghby, A.; Freag, M.; Mamdouh, H.; Elkhodairy, K. Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: Focus on cancer therapy. Curr. Pharm. Des., 2017, 23(35), 5261-5271.
[http://dx.doi.org/10.2174/1381612823666170622111250] [PMID: 28641543]
[188]
Holder, S.J.; Sommerdijk, N.A. New micellar morphologies from amphiphilic block copolymers: Disks, toroids and bicontinuous micelles. Polym. Chem., 2011, 2(5), 1018-1028.
[http://dx.doi.org/10.1039/C0PY00379D]
[189]
Vasilevskaya, V.V.; Klochkov, A.A.; Lazutin, A.A.; Khalatur, P.G.; Khokhlov, A.R.H.A. (Hydrophobic/Amphiphilic) copolymer model: Coil-globule transition versus aggregation. Macromolecules, 2004, 37(14), 5444-5460.
[http://dx.doi.org/10.1021/ma0359741]
[190]
Walther, A.; Müller, A.H. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev., 2013, 113(7), 5194-5261.
[http://dx.doi.org/10.1021/cr300089t] [PMID: 23557169]
[191]
Ferguson, A.L.; Debenedetti, P.G.; Panagiotopoulos, A.Z. Solubility and molecular conformations of n-alkane chains in water. J. Phys. Chem. B, 2009, 113(18), 6405-6414.
[http://dx.doi.org/10.1021/jp811229q] [PMID: 19361179]
[192]
Deng, C.; Jiang, Y.; Cheng, R.; Meng, F.; Zhong, Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7(5), 467-480.
[http://dx.doi.org/10.1016/j.nantod.2012.08.005]
[193]
Chen, W.; Wang, Y.; Qin, M.; Zhang, X.; Zhang, Z.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano, 2018, 12(6), 5995-6005.
[http://dx.doi.org/10.1021/acsnano.8b02235] [PMID: 29786420]
[194]
Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J.; Han, G. Expanding anti‐Stokes shifting in triplet-triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem. Int. Ed. Engl., 2017, 56(46), 14400-14404.
[http://dx.doi.org/10.1002/anie.201704430] [PMID: 28875533]
[195]
Liu, Q.; Chen, F.; Hou, L.; Shen, L.; Zhang, X.; Wang, D.; Huang, L. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano, 2018, 12(8), 7812-7825.
[http://dx.doi.org/10.1021/acsnano.8b01890] [PMID: 30016071]
[196]
Wang, H.; Zhu, W.; Liu, J.; Dong, Z.; Liu, Z. pH-responsive nanoscale covalent organic polymers as a biodegradable drug carrier for combined photodynamic chemotherapy of cancer. ACS Appl. Mater. Interfaces, 2018, 10(17), 14475-14482.
[http://dx.doi.org/10.1021/acsami.8b02080] [PMID: 29648447]
[197]
Palmer, T.N.; Caride, V.J.; Caldecourt, M.A.; Twickler, J.; Abdullah, V. The mechanism of liposome accumulation in infarction. Biochimica et Biophysica Acta. (BBA), 1984, 797(3), 363-368.
[http://dx.doi.org/10.1016/0304-4165(84)90258-7]
[198]
Qu, D.; Jiao, M.; Lin, H.; Tian, C.; Qu, G.; Xue, J.; Xue, L.; Ju, C.; Zhang, C. Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment. Carbohydr. Polym., 2020, 229, 115498.
[http://dx.doi.org/10.1016/j.carbpol.2019.115498] [PMID: 31826492]
[199]
Zhang, X.; Liang, N.; Gong, X.; Kawashima, Y.; Cui, F.; Sun, S. Tumor-targeting micelles based on folic acid and α-tocopherol succinate conjugated hyaluronic acid for paclitaxel delivery. Colloids Surf. B Biointerfaces, 2019, 177, 11-18.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.044] [PMID: 30690425]
[200]
Gill, K.K.; Kamal, M.M.; Kaddoumi, A.; Nazzal, S. EGFR targeted delivery of paclitaxel and parthenolide co-loaded in PEG-Phospholipid micelles enhance cytotoxicity and cellular uptake in non-small cell lung cancer cells. J. Drug Deliv. Sci. Technol., 2016, 36, 150-155.
[http://dx.doi.org/10.1016/j.jddst.2016.10.005]
[201]
Yang, X.; Fan, R.; Wang, W.; Wang, J.; Le, Y. Design and synthesis of pH-sensitive polymeric micelles for oral delivery of poorly water-soluble drugs. J. Biomater. Sci. Polym. Ed., 2016, 27(13), 1341-1353.
[http://dx.doi.org/10.1080/09205063.2016.1200248] [PMID: 27342342]
[202]
Ma, B.; Zhuang, W.; Liu, G.; Wang, Y. A biomimetic and pH-sensitive polymeric micelle as carrier for paclitaxel delivery. Regen. Biomater., 2018, 5(1), 15-24.
[http://dx.doi.org/10.1093/rb/rbx023] [PMID: 29423264]
[203]
Kim, D.; Lee, E.S.; Oh, K.T.; Gao, Z.G.; Bae, Y.H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small, 2008, 4(11), 2043-2050.
[http://dx.doi.org/10.1002/smll.200701275] [PMID: 18949788]
[204]
Mohajer, G.; Lee, E.S.; Bae, Y.H. Enhanced intercellular retention activity of novel pH-sensitive polymeric micelles in wild and multidrug resistant MCF-7 cells. Pharm. Res., 2007, 24(9), 1618-1627.
[http://dx.doi.org/10.1007/s11095-007-9277-5] [PMID: 17385015]
[205]
Feng, H.; Chu, D.; Li, Z.; Guo, Z.; Jin, L.; Fan, B.; Zhang, J.; Li, J. A DOX-loaded polymer micelle for effectively inhibiting cancer cells. RSC Adv., 2018, 8(46), 25949-25954.
[http://dx.doi.org/10.1039/C8RA04089C]
[206]
Leroux, J.; Roux, E.; Le Garrec, D.; Hong, K.; Drummond, D.C. N-isopropylacrylamide copolymers for the preparation of pH-sensitive liposomes and polymeric micelles. J. Control. Release, 2001, 72(1-3), 71-84.
[http://dx.doi.org/10.1016/S0168-3659(01)00263-2] [PMID: 11389986]
[207]
Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew. Chem. Int. Ed., 2003, 42(38), 4640-4643.
[http://dx.doi.org/10.1002/anie.200250653] [PMID: 14533151]
[208]
Dai, J.; Lin, S.; Cheng, D.; Zou, S.; Shuai, X. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. Engl., 2011, 50(40), 9404-9408.
[http://dx.doi.org/10.1002/anie.201103806] [PMID: 21898731]
[209]
Jeong, Y.I.; Na, H.S.; Cho, K.O.; Lee, H.C.; Nah, J.W.; Cho, C.S. Antitumor activity of adriamycin-incorporated polymeric micelles of poly(γ-benzyl L-glutamate)/poly(ethylene oxide). Int. J. Pharm., 2009, 365(1-2), 150-156.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.011] [PMID: 18786625]
[210]
Pei, X.; Luo, F.; Zhang, J.; Chen, W.; Jiang, C.; Liu, J. Dehydroascorbic acids-modified polymer micelles target cancer cells to enhance anti-tumor efficacy of paclitaxel. Sci. Rep., 2017, 7(1), 975.
[http://dx.doi.org/10.1038/s41598-017-01168-7] [PMID: 28428562]
[211]
Zhang, Y.; Olofsson, K.; Fan, Y.; Sánchez, C.C.; Andrén, O.C.J.; Qin, L.; Fortuin, L.; Jonsson, E.M.; Malkoch, M. Novel therapeutic platform of micelles and nanogels from dopa-functionalized triblock copolymers. Small, 2021, 17(17), e2007305.
[http://dx.doi.org/10.1002/smll.202007305] [PMID: 33724720]
[212]
Jaiswal, M.; Kumar, M.; Pathak, K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf. B Biointerfaces, 2015, 130, 23-30.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.059] [PMID: 25889081]
[213]
Wang, Y.; Chen, L.; Tan, L.; Zhao, Q.; Luo, F.; Wei, Y.; Qian, Z. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials, 2014, 35(25), 6972-6985.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.099] [PMID: 24836952]
[214]
He, C.; Kim, S.W.; Lee, D.S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release, 2008, 127(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.005] [PMID: 18321604]
[215]
Le, P.N.; Huynh, C.K.; Tran, N.Q. Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater. Sci. Eng. C, 2018, 92, 1016-1030.
[http://dx.doi.org/10.1016/j.msec.2018.02.006] [PMID: 30184725]
[216]
Nguyen, V.T.; Nguyen, T.H.; Dang, L.H.; Vu-Quang, H.; Tran, N.Q. Folate-conjugated chitosan-pluronic P123 nanogels: Synthesis and characterizations towards dual drug delivery. J. Nanomater., 2019, 2019, 1067821.
[http://dx.doi.org/10.1155/2019/1067821]
[217]
Nguyen, M.K.; Lee, D.S. Injectable biodegradable hydrogels. Macromol. Biosci., 2010, 10(6), 563-579.
[http://dx.doi.org/10.1002/mabi.200900402] [PMID: 20196065]
[218]
Li, Y.; Rodrigues, J.; Tomás, H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 2012, 41(6), 2193-2221.
[http://dx.doi.org/10.1039/C1CS15203C] [PMID: 22116474]
[219]
Yang, J.A.; Yeom, J.; Hwang, B.W.; Hoffman, A.S.; Hahn, S.K. In situ-forming injectable hydrogels for regenerative medicine. Prog. Polym. Sci., 2014, 39(12), 1973-1986.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.006]
[220]
Norouzi, M.; Boroujeni, S.M.; Omidvarkordshouli, N.; Soleimani, M. Advances in skin regeneration: Application of electrospun scaffolds. Adv. Healthc. Mater., 2015, 4(8), 1114-1133.
[http://dx.doi.org/10.1002/adhm.201500001] [PMID: 25721694]
[221]
Mirdailami, O.; Soleimani, M.; Dinarvand, R.; Khoshayand, M.R.; Norouzi, M.; Hajarizadeh, A.; Dodel, M.; Atyabi, F. Controlled release of rhEGF and rhbFGF from electrospun scaffolds for skin regeneration. J. Biomed. Mater. Res. A, 2015, 103(10), 3374-3385.
[http://dx.doi.org/10.1002/jbm.a.35479] [PMID: 25856734]
[222]
Norouzi, M.; Shabani, I.; Atyabi, F.; Soleimani, M. EGF-loaded nanofibrous scaffold for skin tissue engineering applications. Fibers Polym., 2015, 16(4), 782-787.
[http://dx.doi.org/10.1007/s12221-015-0782-6]
[223]
Norouzi, M.; Shabani, I.; Ahvaz, H.H.; Soleimani, M. PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration. J. Biomed. Mater. Res. A, 2015, 103(7), 2225-2235.
[http://dx.doi.org/10.1002/jbm.a.35355] [PMID: 25345387]
[224]
Norouzi, M.; Soleimani, M.; Shabani, I.; Atyabi, F.; Ahvaz, H.H.; Rashidi, A. Protein encapsulated in electrospun nanofibrous scaffolds for tissue engineering applications. Polym. Int., 2013, 62(8), 1250-1256.
[http://dx.doi.org/10.1002/pi.4416]
[225]
Das, V.; Bruzzese, F.; Konečný, P.; Iannelli, F.; Budillon, A.; Hajdúch, M. Pathophysiologically relevant in vitro tumor models for drug screening. Drug Discov. Today, 2015, 20(7), 848-855.
[http://dx.doi.org/10.1016/j.drudis.2015.04.004] [PMID: 25908576]
[226]
Azfarniam, L.; Norouzi, M. Multifunctional polyester fabric using a multicomponent treatment. Fibers Polym., 2016, 17(2), 298-304.
[http://dx.doi.org/10.1007/s12221-016-5579-8]
[227]
Xiong, L.; Luo, Q.; Wang, Y.; Li, X.; Shen, Z.; Zhu, W. An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chem. Commun. (Camb.), 2015, 51(78), 14644-14647.
[http://dx.doi.org/10.1039/C5CC06025G] [PMID: 26290273]
[228]
Ta, H.T.; Dass, C.R.; Dunstan, D.E. Injectable chitosan hydrogels for localised cancer therapy. J. Control. Release, 2008, 126(3), 205-216.
[http://dx.doi.org/10.1016/j.jconrel.2007.11.018] [PMID: 18258328]
[229]
Du, Y.Q.; Yang, X.X.; Li, W.L.; Wang, J.; Huang, C.Z. A cancer-targeted drug delivery system developed with gold nanoparticle mediated DNA-doxorubicin conjugates. RSC Adv., 2014, 4(66), 34830-34835.
[http://dx.doi.org/10.1039/C4RA06298A]
[230]
Tian, R.; Chen, J.; Niu, R. The development of low-molecular weight hydrogels for applications in cancer therapy. Nanoscale, 2014, 6(7), 3474-3482.
[http://dx.doi.org/10.1039/c3nr05414d] [PMID: 24548933]
[231]
Zheng, Y.; Wang, W.; Zhao, J.; Wu, C.; Ye, C.; Huang, M.; Wang, S. Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydr. Polym., 2019, 222, 115039.
[http://dx.doi.org/10.1016/j.carbpol.2019.115039] [PMID: 31320053]
[232]
Fathi, M.; Alami-Milani, M.; Geranmayeh, M.H.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Dual thermo-and pH-sensitive injectable hydrogels of chitosan/(poly(N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int. J. Biol. Macromol., 2019, 128, 957-964.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.122] [PMID: 30685304]
[233]
Wu, R.S.; Lin, J.; Xing, Y.M.; Dai, Z.L.; Wang, L.W.; Zhang, X.P. pH-sensitive black phosphorous-incorporated hydrogel as novel implant for cancer treatment. J. Pharm. Sci., 2019, 108(8), 2542-2551.
[http://dx.doi.org/10.1016/j.xphs.2019.03.003] [PMID: 30876860]
[234]
Singh, M.; Kundu, S.; Reddy, M.A.; Sreekanth, V.; Motiani, R.K.; Sengupta, S.; Srivastava, A.; Bajaj, A. Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin. Nanoscale, 2014, 6(21), 12849-12855.
[http://dx.doi.org/10.1039/C4NR04064C] [PMID: 25227567]
[235]
Wu, X.; He, C.; Wu, Y.; Chen, X. Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials, 2016, 75, 148-162.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.016] [PMID: 26497429]
[236]
Li, L.; Gu, J.; Zhang, J.; Xie, Z.; Lu, Y.; Shen, L.; Dong, Q.; Wang, Y. Injectable and biodegradable pH-responsive hydrogels for localized and sustained treatment of human fibrosarcoma. ACS Appl. Mater. Interfaces, 2015, 7(15), 8033-8040.
[http://dx.doi.org/10.1021/acsami.5b00389] [PMID: 25838258]
[237]
Zhao, L.; Zhu, L.; Liu, F.; Liu, C.; Shan, D.; Wang, Q.; Zhang, C.; Li, J.; Liu, J.; Qu, X.; Yang, Z. pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int. J. Pharm., 2011, 410(1-2), 83-91.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.034] [PMID: 21421032]
[238]
Manchun, S.; Dass, C.R.; Cheewatanakornkool, K.; Sriamornsak, P. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydr. Polym., 2015, 126, 222-230.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.018] [PMID: 25933543]
[239]
Jahanban-Esfahlan, R.; Derakhshankhah, H.; Haghshenas, B.; Massoumi, B.; Abbasian, M.; Jaymand, M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int. J. Biol. Macromol., 2020, 156, 438-445.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.074] [PMID: 32298719]
[240]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[241]
Lee, E.S.; Na, K.; Bae, Y.H. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release, 2003, 91(1-2), 103-113.
[http://dx.doi.org/10.1016/S0168-3659(03)00239-6] [PMID: 12932642]
[242]
Du, H.; Liu, M.; Yang, X.; Zhai, G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov. Today, 2015, 20(8), 1004-1011.
[http://dx.doi.org/10.1016/j.drudis.2015.03.002] [PMID: 25769687]
[243]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[244]
Eskandari, P.; Abousalman-Rezvani, Z.; Hajebi, S.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Controlled release of anti-cancer drug from the shell and hollow cavities of poly (N-isopropylacrylamide) hydrogel particles synthesized via reversible addition-fragmentation chain transfer polymerization. Eur. Polym. J., 2020, 135, 109877.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109877]
[245]
Yang, F.; Shi, K.; Jia, Y.; Hao, Y.; Peng, J.; Yuan, L.; Chen, Y.; Pan, M.; Qian, Z. A biodegradable thermosensitive hydrogel vaccine for cancer immunotherapy. Appl. Mater. Today, 2020, 19, 100608.
[http://dx.doi.org/10.1016/j.apmt.2020.100608]
[246]
Luo, Y.; Li, J.; Hu, Y.; Gao, F.; Pak-Heng Leung, G.; Geng, F.; Fu, C.; Zhang, J. Injectable thermo-responsive nano-hydrogel loading triptolide for the anti-breast cancer enhancement via localized treatment based on “two strikes” effects. Acta Pharm. Sin. B, 2020, 10(11), 2227-2245.
[http://dx.doi.org/10.1016/j.apsb.2020.05.011] [PMID: 33304788]
[247]
Wen, Q.; Zhang, Y.; Luo, J.; Xiong, K.; Lu, Y.; Wu, Z.; Wang, B.Q.; Wu, J.; Chen, Y.; Fu, S. Therapeutic efficacy of thermosensitive pluronic hydrogel for codelivery of resveratrol microspheres and cisplatin in the treatment of liver cancer ascites. Int. J. Pharm., 2020, 582, 119334.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119334] [PMID: 32305362]
[248]
Jin, X.; Fu, Q.; Gu, Z.; Zhang, Z.; Lv, H. Injectable corilagin/low molecular weight chitosan/PLGA-PEG-PLGA thermosensitive hydrogels for localized cancer therapy and promoting drug infiltration by modulation of tumor microenvironment. Int. J. Pharm., 2020, 589, 119772.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119772] [PMID: 32800934]
[249]
Lima-Sousa, R.; de Melo-Diogo, D.; Alves, C.G.; Cabral, C.S.D.; Miguel, S.P.; Mendonça, A.G.; Correia, I.J. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mater. Sci. Eng. C, 2020, 117, 111294.
[http://dx.doi.org/10.1016/j.msec.2020.111294] [PMID: 32919655]
[250]
Elias, P.Z.; Liu, G.W.; Wei, H.; Jensen, M.C.; Horner, P.J.; Pun, S.H. A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: Synthesis and characterization of physical and toxicological properties. J. Control. Release, 2015, 208, 76-84.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.003] [PMID: 25747144]
[251]
Mano, J.F. Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater., 2008, 10(6), 515-527.
[http://dx.doi.org/10.1002/adem.200700355]
[252]
Pham, L.; Dang, L.H.; Truong, M.D.; Nguyen, T.H.; Le, L.; Le, V.T.; Nam, N.D.; Bach, L.G.; Nguyen, V.T.; Tran, N.Q. A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application. Biomed. Pharmacother., 2019, 117, 109183.
[http://dx.doi.org/10.1016/j.biopha.2019.109183] [PMID: 31261029]
[253]
Dang, L.H.; Doan, P.; Nhi, T.T.Y.; Nguyen, D.T.; Nguyen, B.T.; Nguyen, T.P.; Tran, N.Q. Multifunctional injectable pluronic-cystamine-alginate-based hydrogel as a novel cellular delivery system towards tissue regeneration. Int. J. Biol. Macromol., 2021, 185, 592-603.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.183] [PMID: 34216661]
[254]
Mirrahimi, M.; Beik, J.; Mirrahimi, M.; Alamzadeh, Z.; Teymouri, S.; Mahabadi, V.P.; Eslahi, N.; Ebrahimi Tazehmahalleh, F.; Ghaznavi, H.; Shakeri-Zadeh, A.; Moustakis, C. Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy. Int. J. Biol. Macromol., 2020, 158, 617-626.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.272] [PMID: 32387354]
[255]
Zhou, L.; Zhao, J.; Chen, Y.; Zheng, Y.; Li, J.; Zhao, J.; Zhang, J.; Liu, Y.; Liu, X.; Wang, S. MoS2-ALG-Fe/GOx hydrogel with Fenton catalytic activity for combined cancer photothermal, starvation, and chemodynamic therapy. Colloids Surf. B Biointerfaces, 2020, 195, 111243.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111243] [PMID: 32663712]
[256]
Shanmugapriya, K.; Kim, H.; Kang, H.W. Epidermal growth factor receptor conjugated fucoidan/alginates loaded hydrogel for activating EGFR/AKT signaling pathways in colon cancer cells during targeted photodynamic therapy. Int. J. Biol. Macromol., 2020, 158, 1163-1174.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.008] [PMID: 32387601]
[257]
Wei, X.; Liu, C.; Wang, Z.; Luo, Y. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. Int. J. Pharm., 2020, 580, 119219.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119219] [PMID: 32165221]
[258]
Tan, S.; Yamashita, A.; Gao, S.J.; Kurisawa, M. Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells. Acta Biomater., 2019, 94, 320-329.
[http://dx.doi.org/10.1016/j.actbio.2019.05.040] [PMID: 31125725]
[259]
Rezk, A.I.; Obiweluozor, F.O.; Choukrani, G.; Park, C.H.; Kim, C.S. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy. Int. J. Biol. Macromol., 2019, 141, 388-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.013] [PMID: 31493453]
[260]
Zhao, H.; Feng, H.; Liu, J.; Tang, F.; Du, Y.; Ji, N.; Xie, L.; Zhao, X.; Wang, Z.; Chen, Q. Dual-functional guanosine-based hydrogel integrating localized delivery and anticancer activities for cancer therapy. Biomaterials, 2020, 230, 119598.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119598] [PMID: 31722785]
[261]
Wang, M.; Chen, J.; Li, W.; Zang, F.; Liu, X.; Qin, S. Paclitaxel-nanoparticles-loaded double network hydrogel for local treatment of breast cancer after surgical resection. Mater. Sci. Eng. C, 2020, 114, 111046.
[http://dx.doi.org/10.1016/j.msec.2020.111046] [PMID: 32993992]
[262]
Chen, K.J.; Garcia, M.A.; Wang, H.; Tseng, H.R. Supramolecular nanoparticles for molecular diagnostics and therapeutics. Supramolecular Chemistry: From Molecules to Nanomaterials, 2012.
[http://dx.doi.org/10.1002/9780470661345.smc194]
[263]
Wang, L.; Li, L.L.; Fan, Y.S.; Wang, H. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv. Mater., 2013, 25(28), 3888-3898.
[http://dx.doi.org/10.1002/adma.201301202] [PMID: 24048975]
[264]
Zhou, J.; Yu, G.; Huang, F. Supramolecular chemotherapy based on host-guest molecular recognition: A novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev., 2017, 46(22), 7021-7053.
[http://dx.doi.org/10.1039/C6CS00898D] [PMID: 28980674]
[265]
Chen, Y.; Li, B.; Chen, X.; Wu, M.; Ji, Y.; Tang, G.; Ping, Y. A supramolecular co-delivery strategy for combined breast cancer treatment and metastasis prevention. Chin. Chem. Lett., 2020, 31(5), 1153-1158.
[http://dx.doi.org/10.1016/j.cclet.2019.06.022]
[266]
Davis, J.T. G-quartets 40 years later: From 5¢-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed., 2004, 43(6), 668-698.
[http://dx.doi.org/10.1002/anie.200300589] [PMID: 14755695]
[267]
Cheng, H.B.; Zhang, Y.M.; Liu, Y.; Yoon, J. Turn-on supramolecular host-guest nanosystems as theranostics for cancer. Chem, 2019, 5(3), 553-574.
[http://dx.doi.org/10.1016/j.chempr.2018.12.024]
[268]
Shen, Q.; Shen, Y.; Jin, F.; Du, Y.Z.; Ying, X.Y. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J. Liposome Res., 2020, 30(1), 12-20.
[http://dx.doi.org/10.1080/08982104.2019.1579838] [PMID: 30741058]
[269]
Gao, Y.E.; Bai, S.; Ma, X.; Zhang, X.; Hou, M.; Shi, X.; Huang, X.; Chen, J.; Wen, F.; Xue, P.; Kang, Y.; Xu, Z. Codelivery of doxorubicin and camptothecin by dual-responsive unimolecular micelle-based β-cyclodextrin for enhanced chemotherapy. Colloids Surf. B Biointerfaces, 2019, 183, 110428.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110428] [PMID: 31415956]
[270]
Ma, D.; Hettiarachchi, G.; Nguyen, D.; Zhang, B.; Wittenberg, J.B.; Zavalij, P.Y.; Briken, V.; Isaacs, L. Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nat. Chem., 2012, 4(6), 503-510.
[http://dx.doi.org/10.1038/nchem.1326] [PMID: 22614387]
[271]
Yang, X.; Zheng, J.; Song, Q.; Xie, F.; Tang, J.; Chen, J.; Wu, J.; Li, C.; Cui, W.; Tang, Y.; Xie, J.; Zheng, J. Determination methods for the anticancer drug dicycloplatin, a supramolecule assembled through hydrogen bonding. Analyst (Lond.), 2015, 140(8), 2704-2712.
[http://dx.doi.org/10.1039/C4AN02274B] [PMID: 25686082]
[272]
Karim, A.A.; Dou, Q.; Li, Z.; Loh, X.J. Emerging supramolecular therapeutic carriers based on host–guest interactions. Chem. Asian J., 2016, 11(9), 1300-1321.
[http://dx.doi.org/10.1002/asia.201501434] [PMID: 26833861]
[273]
Yang, X.Q.; Yu, J.J.; Guo, Y.; Mueller, M.D. Dicycloplatin, a platinum-based supramolecule with 4 hydrogen bonds, is a promising chemotherapy drug. Front. Clin. Drug Res. Anti-Cancer Agents., 2017, 4, 339-362.
[http://dx.doi.org/10.2174/9781681084817117040009]
[274]
Huang, Y.; Dai, W.G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm. Sin. B, 2014, 4(1), 18-25.
[http://dx.doi.org/10.1016/j.apsb.2013.11.001] [PMID: 26579360]
[275]
Tran, P.; Pyo, Y.C.; Kim, D.H.; Lee, S.E.; Kim, J.K.; Park, J.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics, 2019, 11(3), 132.
[http://dx.doi.org/10.3390/pharmaceutics11030132] [PMID: 30893899]
[276]
Tekade, A.R.; Yadav, J.N. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv. Pharm. Bull., 2020, 10(3), 359-369.
[http://dx.doi.org/10.34172/apb.2020.044] [PMID: 32665894]
[277]
Sawicki, E.; Schellens, J.H.; Beijnen, J.H.; Nuijen, B. Inventory of oral anticancer agents: Pharmaceutical formulation aspects with focus on the solid dispersion technique. Cancer Treat. Rev., 2016, 50, 247-263.
[http://dx.doi.org/10.1016/j.ctrv.2016.09.012] [PMID: 27776286]
[278]
Tran, T.T.D.; Tran, P.H.L. Molecular interactions in solid dispersions of poorly water-soluble drugs. Pharmaceutics, 2020, 12(8), 745.
[http://dx.doi.org/10.3390/pharmaceutics12080745] [PMID: 32784790]
[279]
Chowdhury, N.; Vhora, I.; Patel, K.; Bagde, A.; Kutlehria, S.; Singh, M. Development of hot melt extruded solid dispersion of tamoxifen citrate and resveratrol for synergistic effects on breast cancer cells. AAPS PharmSciTech, 2018, 19(7), 3287-3297.
[http://dx.doi.org/10.1208/s12249-018-1111-3] [PMID: 30218267]
[280]
Qusa, M.H.; Siddique, A.B.; Nazzal, S.; El Sayed, K.A. Novel olive oil phenolic (-)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int. J. Pharm., 2019, 569, 118596.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118596] [PMID: 31394181]
[281]
Hu, L.; Shi, Y.; Li, J.H.; Gao, N.; Ji, J.; Niu, F.; Chen, Q.; Yang, X.; Wang, S. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech, 2015, 16(6), 1327-1334.
[http://dx.doi.org/10.1208/s12249-014-0254-0] [PMID: 25804949]
[282]
Wu, R.; Mei, X.; Ye, Y.; Xue, T.; Wang, J.; Sun, W.; Lin, C.; Xue, R.; Zhang, J.; Xu, D. Zn(II)-curcumin solid dispersion impairs hepatocellular carcinoma growth and enhances chemotherapy by modulating gut microbiota-mediated zinc homeostasis. Pharmacol. Res., 2019, 150, 104454.
[http://dx.doi.org/10.1016/j.phrs.2019.104454] [PMID: 31526871]
[283]
Srinivasarao, M.; Low, P.S. Ligand-targeted drug delivery. Chem. Rev., 2017, 117(19), 12133-12164.
[http://dx.doi.org/10.1021/acs.chemrev.7b00013] [PMID: 28898067]
[284]
Srinivasarao, M.; Galliford, C.V.; Low, P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov., 2015, 14(3), 203-219.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[285]
Poon, K.A.; Flagella, K.; Beyer, J.; Tibbitts, J.; Kaur, S.; Saad, O.; Yi, J.H.; Girish, S.; Dybdal, N.; Reynolds, T. Preclinical safety profile of trastuzumab emtansine (T-DM1): Mechanism of action of its cytotoxic component retained with improved tolerability. Toxicol. Appl. Pharmacol., 2013, 273(2), 298-313.
[http://dx.doi.org/10.1016/j.taap.2013.09.003] [PMID: 24035823]
[286]
Van Heertum, R.L.; Scarimbolo, R.; Ford, R.; Berdougo, E.; O’Neal, M. Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials. Drug Des. Devel. Ther., 2015, 9, 5215-5223.
[http://dx.doi.org/10.2147/DDDT.S87561] [PMID: 26392755]
[287]
Nomura, N.; Pastorino, S.; Jiang, P.; Lambert, G.; Crawford, J.R.; Gymnopoulos, M.; Piccioni, D.; Juarez, T.; Pingle, S.C.; Makale, M.; Kesari, S. Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases. Cancer Cell Int., 2014, 14(1), 26.
[http://dx.doi.org/10.1186/1475-2867-14-26] [PMID: 24645697]
[288]
Rajendran, L.; Knölker, H.J.; Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov., 2010, 9(1), 29-42.
[http://dx.doi.org/10.1038/nrd2897] [PMID: 20043027]
[289]
Wolschek, M.F.; Thallinger, C.; Kursa, M.; Rössler, V.; Allen, M.; Lichtenberger, C.; Kircheis, R.; Lucas, T.; Willheim, M.; Reinisch, W.; Gangl, A.; Wagner, E.; Jansen, B. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology, 2002, 36(5), 1106-1114.
[http://dx.doi.org/10.1053/jhep.2002.36372] [PMID: 12395320]
[290]
Zhou, Y.; Yu, Q.; Qin, X.; Bhavsar, D.; Yang, L.; Chen, Q.; Zheng, W.; Chen, L.; Liu, J. Improving the anticancer efficacy of laminin receptor-specific therapeutic ruthenium nanoparticles (RuBB-loaded EGCG-RuNPs) via ROS-dependent apoptosis in SMMC-7721 cells. ACS Appl. Mater. Interfaces, 2016, 8(24), 15000-15012.
[http://dx.doi.org/10.1021/acsami.5b02261] [PMID: 26018505]
[291]
Gopal, V.; Xavier, J.; Dar, G.H.; Jafurulla, M.; Chattopadhyay, A.; Rao, N.M. Targeted liposomes to deliver DNA to cells expressing 5-HT receptors. Int. J. Pharm., 2011, 419(1-2), 347-354.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.004] [PMID: 21855617]
[292]
Su, Z.; Niu, J.; Xiao, Y.; Ping, Q.; Sun, M.; Huang, A.; You, W.; Sang, X.; Yuan, D. Effect of octreotide-polyethylene glycol(100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol. Pharm., 2011, 8(5), 1641-1651.
[http://dx.doi.org/10.1021/mp100463n] [PMID: 21770405]
[293]
Zhu, Q.L.; Zhou, Y.; Guan, M.; Zhou, X.F.; Yang, S.D.; Liu, Y.; Chen, W.L.; Zhang, C.G.; Yuan, Z.Q.; Liu, C.; Zhu, A.J.; Zhang, X.N. Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy. Biomaterials, 2014, 35(22), 5965-5976.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.088] [PMID: 24768047]
[294]
Zhang, C.G.; Zhu, Q.L.; Zhou, Y.; Liu, Y.; Chen, W.L.; Yuan, Z.Q.; Yang, S.D.; Zhou, X.F.; Zhu, A.J.; Zhang, X.N.; Jin, Y. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. Int. J. Nanomedicine, 2014, 9, 2919-2932.
[http://dx.doi.org/10.2147/IJN.S59799] [PMID: 24966673]
[295]
Malarvizhi, G.L.; Retnakumari, A.P.; Nair, S.; Koyakutty, M. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomedicine, 2014, 10(8), 1649-1659.
[http://dx.doi.org/10.1016/j.nano.2014.05.011] [PMID: 24905399]
[296]
Zhu, Z.; Xie, C.; Liu, Q.; Zhen, X.; Zheng, X.; Wu, W.; Li, R.; Ding, Y.; Jiang, X.; Liu, B. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials, 2011, 32(35), 9525-9535.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.072] [PMID: 21903260]
[297]
Shen, J.M.; Gao, F.Y.; Yin, T.; Zhang, H.X.; Ma, M.; Yang, Y.J.; Yue, F. cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol. Res., 2013, 70(1), 102-115.
[http://dx.doi.org/10.1016/j.phrs.2013.01.009] [PMID: 23376353]
[298]
Zhao, L.; Li, H.; Shi, Y.; Wang, G.; Liu, L.; Su, C.; Su, R. Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78. Int. J. Nanomedicine, 2014, 10, 245-256.
[http://dx.doi.org/10.2147/IJN.S74868] [PMID: 25565817]
[299]
Chen, J.; Wu, H.; Han, D.; Xie, C. Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett., 2006, 231(2), 169-175.
[http://dx.doi.org/10.1016/j.canlet.2005.01.024] [PMID: 16399221]
[300]
Guo, Y.; Zhang, Y.; Li, J.; Zhang, Y.; Lu, Y.; Jiang, X.; He, X.; Ma, H.; An, S.; Jiang, C. Cell microenvironment-controlled antitumor drug releasing-nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy. ACS Appl. Mater. Interfaces, 2015, 7(9), 5444-5453.
[http://dx.doi.org/10.1021/am5091462] [PMID: 25686400]
[301]
Ling, D.; Xia, H.; Park, W.; Hackett, M.J.; Song, C.; Na, K.; Hui, K.M.; Hyeon, T. pH-sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. ACS Nano, 2014, 8(8), 8027-8039.
[http://dx.doi.org/10.1021/nn502074x] [PMID: 25093274]
[302]
Li, Y.J.; Dong, M.; Kong, F.M.; Zhou, J.P. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int. J. Pharm., 2015, 489(1-2), 83-90.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.028] [PMID: 25888801]
[303]
Kumar, C.S.; Raja, M.D.; Sundar, D.S.; Gover Antoniraj, M.; Ruckmani, K. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohydr. Polym., 2015, 128, 63-74.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.010] [PMID: 26005140]
[304]
Duan, C.; Gao, J.; Zhang, D.; Jia, L.; Liu, Y.; Zheng, D.; Liu, G.; Tian, X.; Wang, F.; Zhang, Q. Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin. Biomacromolecules, 2011, 12(12), 4335-4343.
[http://dx.doi.org/10.1021/bm201270m] [PMID: 22077387]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy