Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

An Updated Review of the Pre-Clinical Role of microRNAs and their Contribution to Colorectal Cancer

Author(s): Narges Dastmalchi, Reza Safaralizadeh* and Shahram Teimourian

Volume 22, Issue 10, 2022

Published on: 12 January, 2022

Page: [851 - 859] Pages: 9

DOI: 10.2174/1566524021666211213122619

Price: $65

conference banner
Abstract

Colorectal cancer (CRC) is one of the main causes of malignancy-related mortality worldwide. It was well-identified that microRNAs (miRNAs) decisively participate in cellular biological pathways; in a way that their deregulated expression causes CRC progression. miRNAs can control the translation and degradation of mRNAs by binding to various molecular targets involved in different biological processes, including growth, apoptosis, cell cycle, autophagy, angiogenesis, metastasis, etc. The functions of these dysregulated miRNAs may be either oncogenic or tumorsuppressive. Therefore, these miRNAs can be contributed to prognostic, diagnostic, and therapeutic approaches in CRC. In this study, we reviewed the tumor-suppressive and oncogenic functions of miRNAs in CRC and assessed their molecular activities in CRC development. However, further investigation for the involvement of dysregulated miRNAs in CRC progression is required.

Keywords: Colorectal cancer, MicroRNA, molecular function, biological pathways, chemotherapy, resveratrol.

[1]
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[2]
O’Sullivan DE, Sutherland RL, Town S, Chow K, Fan J, Forbes N. Risk factors for early-onset colorectal cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2021.
[3]
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16(1): 9-18.
[http://dx.doi.org/10.3892/ol.2018.8679] [PMID: 29928381]
[4]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microrna biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[5]
Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microRNA-mRNA interactome. Front Genet 2019; 10: 933.
[http://dx.doi.org/10.3389/fgene.2019.00933] [PMID: 31649721]
[6]
Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME. The role of micrornas in influencing body growth and development. Horm Res Paediatr 2020; 93(1): 7-15.
[http://dx.doi.org/10.1159/000504669] [PMID: 31914447]
[7]
Wang H. MicroRNAs and Apoptosis in colorectal cancer. Int J Mol Sci 2020; 21(15): E5353.
[http://dx.doi.org/10.3390/ijms21155353] [PMID: 32731413]
[8]
Wang D, Wang X, Si M, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett 2020; 474: 36-52.
[http://dx.doi.org/10.1016/j.canlet.2020.01.005] [PMID: 31931030]
[9]
Noh GT, Kwon J, Kim J, et al. Verification of the role of exosomal microRNA in colorectal tumorigenesis using human colorectal cancer cell lines. PLoS One 2020; 15(11): e0242057.
[http://dx.doi.org/10.1371/journal.pone.0242057] [PMID: 33175885]
[10]
Ding L, Lan Z, Xiong X, et al. The dual role of microRNAs in colorectal cancer progression. Int J Mol Sci 2018; 19(9): E2791.
[http://dx.doi.org/10.3390/ijms19092791] [PMID: 30227605]
[11]
Qiao PF, Yao L, Zeng ZL. Catalpol mediated microRNA 34a suppresses autophagy and malignancy by regulating SIRT1 in colorectal cancer. Oncol Rep 2020; 43(4): 1053-66.
[http://dx.doi.org/10.3892/or.2020.7494] [PMID: 32323786]
[12]
Liao D, Li T, Ye C, et al. miR-221 inhibits autophagy and targets TP53INP1 in colorectal cancer cells. Exp Ther Med 2018; 15(2): 1712-7.
[http://dx.doi.org/10.3892/etm.2017.5522] [PMID: 29434757]
[13]
Zhang R, Xu J, Zhao J, Bai J. Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis. Tumour Biol 2017; 39(6): 1010428317703984.
[http://dx.doi.org/10.1177/1010428317703984] [PMID: 28651493]
[14]
Han Y, Zhou S, Wang X, Mao E, Huang L. SNHG14 stimulates cell autophagy to facilitate cisplatin resistance of colorectal cancer by regulating miR-186/ATG14 axis. Biomedicine Pharmacother 2020; 121: 109580.
[http://dx.doi.org/10.1016/j.biopha.2019.109580] [PMID: 31704614]
[15]
Fabbri M. MicroRNAs and cancer: towards a personalized medicine. Curr Mol Med 2013; 13(5): 751-6.
[http://dx.doi.org/10.2174/1566524011313050006] [PMID: 23642056]
[16]
Xing Y, Jing H, Zhang Y, Suo J, Qian M. MicroRNA-141-3p affected proliferation, chemosensitivity, migration and invasion of colorectal cancer cells by targeting EGFR. Int J Biochem Cell Biol 2020; 118: 105643.
[http://dx.doi.org/10.1016/j.biocel.2019.105643] [PMID: 31704502]
[17]
Tian X, Chang J, Zhang N, Wu S, Liu H, Yu J. MicroRNA-429 acts as a tumor suppressor in colorectal cancer by targeting high mobility group box 3. Oncol Lett 2021; 21(4): 250.
[http://dx.doi.org/10.3892/ol.2021.12511] [PMID: 33664814]
[18]
Zhang W, Liao K, Liu D. MicroRNA 744 5p is downregulated in colorectal cancer and targets SEPT2 to suppress the malignant phenotype. Mol Med Rep 2021; 23(1): 54.
[http://dx.doi.org/10.3892/mmr.2020.11692] [PMID: 33200802]
[19]
Guo F, Xue J. MicroRNA 628 5p inhibits cell proliferation and induces apoptosis in colorectal cancer through downregulating CCND1 expression levels. Mol Med Rep 2020; 21(3): 1481-90.
[http://dx.doi.org/10.3892/mmr.2020.10945] [PMID: 32016467]
[20]
Fan M, Ma X, Wang F, et al. MicroRNA-30b-5p functions as a metastasis suppressor in colorectal cancer by targeting Rap1b. Cancer Lett 2020; 477: 144-56.
[http://dx.doi.org/10.1016/j.canlet.2020.02.021] [PMID: 32112903]
[21]
Feng H, Liu L, Xu L, Wang H, Hua Q, He P. MiR-802 suppresses colorectal cancer cell viability, migration and invasion by targeting RAN. Cancer Manag Res 2020; 12: 2291-300.
[http://dx.doi.org/10.2147/CMAR.S231709] [PMID: 32273766]
[22]
Leng Y, Chen Z, Ding H, Zhao X, Qin L, Pan Y. Overexpression of microRNA-29b inhibits epithelial-mesenchymal transition and angiogenesis of colorectal cancer through the ETV4/ERK/EGFR axis. Cancer Cell Int 2021; 21(1): 17.
[http://dx.doi.org/10.1186/s12935-020-01700-2] [PMID: 33407520]
[23]
Kim TW, Lee YS, Yun NH, et al. MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. Br J Cancer 2020; 123(7): 1123-30.
[http://dx.doi.org/10.1038/s41416-020-0940-5] [PMID: 32546833]
[24]
Li K, Zhang J, Zhang M, Wu Y, Lu X, Zhu Y. miR-378a-5p inhibits the proliferation of colorectal cancer cells by downregulating CDK1. World J Surg Oncol 2021; 19(1): 54.
[http://dx.doi.org/10.1186/s12957-021-02166-w] [PMID: 33608020]
[25]
Xu F, Ye ML, Zhang YP, et al. MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci 2020; 111(5): 1528-41.
[http://dx.doi.org/10.1111/cas.14356] [PMID: 32073706]
[26]
He Y, Zhang L, Tan F, et al. MiR-153-5p promotes sensibility of colorectal cancer cells to oxaliplatin via targeting Bcl-2-mediated autophagy pathway. Biosci Biotechnol Biochem 2020; 84(8): 1645-51.
[http://dx.doi.org/10.1080/09168451.2020.1760784] [PMID: 32380907]
[27]
Wei L, Sun C, Zhang Y, Han N, Sun S. miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-A. Gene Ther 2020.
[http://dx.doi.org/10.1038/s41434-020-0167-3] [PMID: 32533103]
[28]
Li X, Li Z, Zhu Y, et al. miR-524-5p inhibits angiogenesis through targeting WNK1 in colon cancer cells. Am J Physiol Gastrointest Liver Physiol 2020; 318(4): G827-39.
[http://dx.doi.org/10.1152/ajpgi.00369.2019] [PMID: 32174132]
[29]
Chen J, Chen S, Zhuo L, Zhu Y, Zheng H. Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis 2020; 11(3): 173.
[http://dx.doi.org/10.1038/s41419-020-2361-z] [PMID: 32144236]
[30]
Feng J, Li Z, Li L, Xie H, Lu Q, He X. Hypoxia induced circCCDC66 promotes the tumorigenesis of colorectal cancer via the miR 3140/autophagy pathway. Int J Mol Med 2020; 46(6): 1973-82.
[http://dx.doi.org/10.3892/ijmm.2020.4747] [PMID: 33125087]
[31]
Pan S, Wu W, Ren F, et al. MiR-346-5p promotes colorectal cancer cell proliferation in vitro and in vivo by targeting FBXL2 and activating the β-catenin signaling pathway. Life Sci 2020; 244: 117300.
[http://dx.doi.org/10.1016/j.lfs.2020.117300] [PMID: 31953162]
[32]
Liu Z, Ma T, Duan J, Liu X, Liu L. MicroRNA 223 induced inhibition of the FBXW7 gene affects the proliferation and apoptosis of colorectal cancer cells via the Notch and Akt/mTOR pathways. Mol Med Rep 2021; 23(2): 154.
[http://dx.doi.org/10.3892/mmr.2020.11793] [PMID: 33355365]
[33]
Pan Z, Xie R, Song W, Gao C. MicroRNA 592 promotes cell proliferation, migration and invasion in colorectal cancer by directly targeting SPARC. Mol Med Rep 2021; 23(4): 261.
[http://dx.doi.org/10.3892/mmr.2021.11900] [PMID: 33576452]
[34]
Dai W, Zhou J, Wang H, Zhang M, Yang X, Song W. miR-424-5p promotes the proliferation and metastasis of colorectal cancer by directly targeting SCN4B. Pathol Res Pract 2020; 216(1): 152731.
[http://dx.doi.org/10.1016/j.prp.2019.152731] [PMID: 31785995]
[35]
Zhao Q, Liu C, Cui Q, Luan X, Wang Q, Zhou C. miR-190b promotes colorectal cancer progression through targeting forkhead box protein P2. Exp Ther Med 2020; 19(1): 79-84.
[http://dx.doi.org/10.3892/etm.2019.8175] [PMID: 31853275]
[36]
Li S, Hou X, Wu C, Han L, Li Q, Wang J. MiR-645 promotes invasiveness, metastasis and tumor growth in colorectal cancer by targeting EFNA5. Biomedicine Pharmacother 2020; 125: 109889.
[http://dx.doi.org/10.1016/j.biopha.2020.109889]
[37]
Xin H, Wang C, Chi Y, Liu Z. MicroRNA-196b-5p promotes malignant progression of colorectal cancer by targeting ING5. Cancer Cell Int 2020; 20: 119.
[http://dx.doi.org/10.1186/s12935-020-01200-3] [PMID: 32308564]
[38]
Ge T, Xiang P, Mao H, Tang S, Zhou J, Zhang Y. Inhibition of miR-96 enhances the sensitivity of colorectal cancer cells to oxaliplatin by targeting TPM1. Exp Ther Med 2020; 20(3): 2134-40.
[http://dx.doi.org/10.3892/etm.2020.8936] [PMID: 32765688]
[39]
Zhou Y, He A, Zhang L, Yi G. MiR-744 mediates the Oxaliplatin chemoresistance in colorectal cancer through inhibiting BIN1. Neoplasma 2020; 67(2): 296-303.
[http://dx.doi.org/10.4149/neo_2019_190508N411] [PMID: 31884801]
[40]
Lee Y, Kim SJ, Choo J, et al. miR-23a-3p is a key regulator of IL-17C-Induced tumor angiogenesis in colorectal cancer. Cells 2020; 9(6): E1363.
[http://dx.doi.org/10.3390/cells9061363] [PMID: 32492770]
[41]
Shang A, Wang X, Gu C, et al. Exosomal miR-183-5p promotes angiogenesis in colorectal cancer by regulation of FOXO1. Aging (Albany NY) 2020; 12(9): 8352-71.
[http://dx.doi.org/10.18632/aging.103145] [PMID: 32364530]
[42]
Sawicki T, Ruszkowska M, Danielewicz A. Niedźwiedzka E, Arłukowicz T, Przybyłowicz KE. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers (Basel) 2021; 13(9): 2025.
[http://dx.doi.org/10.3390/cancers13092025] [PMID: 33922197]
[43]
Mueller T, Voigt W. Fermented wheat germ extract--nutritional supplement or anticancer drug? Nutr J 2011; 10: 89.
[http://dx.doi.org/10.1186/1475-2891-10-89] [PMID: 21892933]
[44]
Nautiyal J, Kanwar SS, Yu Y, Majumdar AP. Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells. J Mol Signal 2011; 6: 7.
[http://dx.doi.org/10.1186/1750-2187-6-7] [PMID: 21774804]
[45]
Del Cornò M, Donninelli G, Conti L, Gessani S. Linking diet to colorectal cancer: the emerging role of microRNA in the communication between plant and animal kingdoms. Front Microbiol 2017; 8: 597.
[http://dx.doi.org/10.3389/fmicb.2017.00597] [PMID: 28424679]
[46]
Yuan C, Steer CJ, Subramanian S. Host microRNA microbiota interactions in colorectal cancer. Genes (Basel) 2019; 10(4): E270.
[http://dx.doi.org/10.3390/genes10040270] [PMID: 30987065]
[47]
Yuan C, Burns MB, Subramanian S, Blekhman R. Interaction between host microRNAs and the gut microbiota in colorectal cancer. mSystems 2018; 3(3): e00205-17.
[http://dx.doi.org/10.1128/mSystems.00205-17] [PMID: 29795787]
[48]
Bi K, Zhang X, Chen W, Diao H. MicroRNAs regulate intestinal immunity and gut microbiota for gastrointestinal health: a comprehensive review. Genes (Basel) 2020; 11(9): E1075.
[http://dx.doi.org/10.3390/genes11091075] [PMID: 32932716]
[49]
Wu M, Jolicoeur N, Li Z, et al. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 2008; 29(9): 1710-6.
[http://dx.doi.org/10.1093/carcin/bgn073] [PMID: 18356149]
[50]
Pomerantz MM, Ahmadiyeh N, Jia L, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41(8): 882-4.
[http://dx.doi.org/10.1038/ng.403] [PMID: 19561607]
[51]
Bos CL, Kodach LL, van den Brink GR, et al. Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene 2006; 25(49): 6447-56.
[http://dx.doi.org/10.1038/sj.onc.1209658] [PMID: 16878161]
[52]
Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM. Molecular pathological epidemiology of epigenetics: Emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013; 26(4): 465-84.
[http://dx.doi.org/10.1038/modpathol.2012.214] [PMID: 23307060]
[53]
Link A, Shin SK, Nagasaka T, et al. JC virus mediates invasion and migration in colorectal metastasis. PLoS One 2009; 4(12): e8146.
[http://dx.doi.org/10.1371/journal.pone.0008146] [PMID: 19997600]
[54]
Ogino S, Nowak JA, Hamada T, Milner DA Jr, Nishihara R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol 2019; 14: 83-103.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012818] [PMID: 30125150]
[55]
Fang Y, Liang X, Xu J, Cai X. miR-424 targets AKT3 and PSAT1 and has a tumor-suppressive role in human colorectal cancer. Cancer Manag Res 2018; 10: 6537-47.
[http://dx.doi.org/10.2147/CMAR.S185789] [PMID: 30555259]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy