Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Celastrus orbiculatus Extract Inhibits the Epithelial-Mesenchymal Transition Process by Transforming Growth Factor-β Signaling Pathway in Gastric Cancer

Author(s): Haibo Wang *, Zewen Chu, Shiya Ou, Tengyang Ni, Xiaojun Dai, Xiaochun Zhang* and Yanqing Liu*

Volume 22, Issue 12, 2022

Published on: 18 February, 2022

Page: [2282 - 2291] Pages: 10

DOI: 10.2174/1871520621666211210145011

Price: $65

Abstract

Background: Gastric cancer is the fifth most common tumor and has the third-highest mortality rate among various malignant tumors, and the survival rate of patients is low. Celastrus orbiculatus extract (COE) has been shown to inhibit the activity of a variety of tumors. In this study, we examined the inhibition of the epithelial-mesenchymal transition (EMT) process in gastric cancer cells by COE through the transforming growth factor-β (TGF-β) signaling pathway.

Methods: COE was first diluted to various concentrations and then used to treat SGC-7901, BGC-823, MGC-803, and AGS cells. Cell proliferation was assessed by an MTT (thiazole blue) assay. Transwell assays were used to assess cell invasion and migration. The high-content imaging technology was used to further observe the effects of the drug on cell invasion and migration. Western blotting was used to assess the effects of the drug on the expression of EMT and Smad2/3 signaling pathway-related proteins.

Results: We found that COE inhibited the migration and invasion of AGS gastric cancer cells in a dose-dependent manner. Consequently, COE decreased the expression of EMT-related proteins and proteins related to the Smad2/3 signaling pathway in gastric cancer cells, inhibiting the migration and invasion of gastric cancer cells, and this effect occurred through the TGF-β signaling pathway.

Conclusion: We investigated that COE could inhibit the proliferation of gastric cancer cells and inhibit invasion and metastasis by inhibiting the EMT process at the molecular level and its effect on the TGF-β signaling pathway.

Keywords: Celastrus orbiculatus, EMT, invasion, migration, TGF-β, Smad2/3.

Graphical Abstract

[1]
Zhang, J.J.; Hu, X.; Wang, P.; Huang, B.; Sun, W.; Xiong, C.; Hu, Z.; Chen, S. Investigation on species authenticity for herbal products of and from markets using ITS2 barcoding. Molecules, 2018, 23(4), 967.
[http://dx.doi.org/10.3390/molecules23040967] [PMID: 29690494]
[2]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[3]
Pan, S.W.; Wang, P.L.; Huang, H.W.; Luo, L.; Wang, X.; Wang, T.; Liu, F.N.; Xu, H.M. A proposal of a personalized surveillance strategy for gastric cancer: A retrospective analysis of 9191 patients. Gastroenterol. Res. Pract., 2019, 2019, 3248727.
[http://dx.doi.org/10.1155/2019/3248727] [PMID: 30804994]
[4]
Li, C.; Wang, Q.; Wang, J.F. Transforming growth factor-β (TGF-β) induces the expression of chondrogenesis-related genes through TGF-β receptor II (TGFRII)-AKT-mTOR signaling in primary cultured mouse precartilaginous stem cells. Biochem. Biophys. Res. Commun., 2014, 450(1), 646-651.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.030] [PMID: 24946212]
[5]
Li, W.; Li, S.; Deng, L.; Yang, S.; Li, M.; Long, S.; Chen, S.; Lin, F.; Xiao, L. Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT. Tumour Biol., 2015, 36(9), 6883-6889.
[http://dx.doi.org/10.1007/s13277-015-3381-7] [PMID: 25851348]
[6]
Qian, Y.Y.; Li, W.Y.; Yan, Y.; Zhao, X.Y.; Yang, T.; Fang, C.C.; Hou, J.J.; Liu, Y.Q. Celastrus orbiculatus extracts inhibit human hepatocellular carcinoma growth by targeting mTOR signaling pathways. Chin. J. Integr. Med., 2019, 25(11), 845-852.
[http://dx.doi.org/10.1007/s11655-019-3035-5] [PMID: 31127506]
[7]
Zhu, Y.; Liu, L.; Hu, L.; Dong, W.; Zhang, M.; Liu, Y.; Li, P. Effect of Celastrus orbiculatus in inhibiting Helicobacter pylori induced inflammatory response by regulating epithelial mesenchymal transition and targeting miR-21/PDCD4 signaling pathway in gastric epithelial cells. BMC Complement. Altern. Med., 2019, 19(1), 91.
[http://dx.doi.org/10.1186/s12906-019-2504-x] [PMID: 31035975]
[8]
Zhu, Y.D.; Liu, Y.Q.; Qian, Y.Y.; Zhang, H.; Li, G.Q.; Yang, L. Extracts of Celastrus orbiculatus exhibit anti-proliferative and anti-invasive effects on human gastric adenocarcinoma cells. Chin. J. Integr. Med., 2014, 10, 1-9.
[http://dx.doi.org/10.1007/s11655-014-1951-y] [PMID: 25382615]
[9]
Wang, W.M.; Zhou, Y.; Yao, Q.; Xiang, L.L.; Liu, Y.Q. Extract potentiates the sensitivity of cisplatin caspase-depenent apoptosis in gastric cancer. Anticancer. Agents Med. Chem., 2018, 18(15), 2206-2211.
[http://dx.doi.org/10.2174/1871520618666180911110124] [PMID: 30205802]
[10]
Zhang, H.; Qian, Y.Y.; Liu, Y.Q.; Li, G.Q.; Cui, P.; Zhu, Y.; Ma, H.; Ji, X.; Guo, S.; Tadashi, H. Celastrus orbiculatus extractinduces mitochondrial-mediated apoptosis in human hepatocellular carcinoma cells. J. Tradit. Chin. Med., 2012, 32(4), 621-626.
[http://dx.doi.org/10.1016/s0254-6272(13)60081-3] [PMID: 23427399]
[11]
Wang, H.; Tao, L.; Ni, T.; Gu, H.; Jin, F.; Dai, X.; Feng, J.; Ding, Y.; Xiao, W.; Guo, S.; Hisamitsu, T.; Qian, Y.; Liu, Y. Anticancer efficacy of the ethyl acetate extract from the traditional Chinese medicine herb Celastrus orbiculatus against human gastric cancer. J. Ethnopharmacol., 2017, 205, 147-157.
[http://dx.doi.org/10.1016/j.jep.2017.04.030] [PMID: 28476678]
[12]
Hong, Y.; Qin, H.; Li, Y.; Zhang, Y.; Zhuang, X.; Liu, L.; Lu, K.; Li, L.; Deng, X.; Liu, F.; Shi, S.; Liu, G. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J. Cell. Physiol., 2019, 234(11), 19895-19910.
[http://dx.doi.org/10.1002/jcp.28588] [PMID: 30963578]
[13]
Gloushankova, N.A. Changes in regulation of cell-cell adhesion during tumor transformation. Biochemistry (Mosc.), 2008, 73(7), 742-750.
[http://dx.doi.org/10.1134/S000629790807002X] [PMID: 18707582]
[14]
Camand, E.; Peglion, F.; Osmani, N.; Sanson, M.; Etienne-Manneville, S. N-cadherin expression level modulates integrin-mediated polarity and strongly impacts on the speed and directionality of glial cell migration. J. Cell Sci., 2012, 125(Pt 4), 844-857.
[http://dx.doi.org/10.1242/jcs.087668] [PMID: 22275437]
[15]
Lin, H.; Huang, B.; Wang, H.; Liu, X.; Hong, Y.; Qiu, S.; Zheng, J. MTHFD2 overexpression predicts poor prognosis in renal cell carcinoma and is associated with cell proliferation and vimentin-modulated migration and invasion. Cell. Physiol. Biochem., 2018, 51(2), 991-1000.
[http://dx.doi.org/10.1159/000495402] [PMID: 30466107]
[16]
Tania, M.; Khan, M.A.; Fu, J. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol., 2014, 35(8), 7335-7342.
[http://dx.doi.org/10.1007/s13277-014-2163-y] [PMID: 24880591]
[17]
Massague, J. TGF-β in Cancer Cell; Cell; Cold Spring Harbor Laboratory Press: New York, 2008.
[18]
Derynck, R.; Miyazono, K. The TGF-β family; Cell; Cold Spring Harbor Laboratory Press: New York, 2007.
[19]
Jeong, C.H.; Kwon, H.C.; Cheng, W.N.; Kim, D.H.; Choi, Y.; Han, S.G. Aluminum exposure promotes the metastatic proclivity of human colorectal cancer cells through matrix metalloproteinases and the TGF-β/Smad signaling pathway. Food Chem. Toxicol., 2020, 141, 111402.
[http://dx.doi.org/10.1016/j.fct.2020.111402] [PMID: 32437896]
[20]
Gao, Y.; Zhao, H.; Ren, M.; Chen, Q.; Li, J.; Li, Z.; Yin, C.; Yue, W. TOP2A promotes tumorigenesis of high-grade serous ovarian cancer by regulating the TGF-β/Smad pathway. J. Cancer, 2020, 11(14), 4181-4192.
[http://dx.doi.org/10.7150/jca.42736] [PMID: 32368301]
[21]
Xue, J.; Lin, X.; Chiu, W.T.; Chen, Y.H.; Yu, G.; Liu, M.; Feng, X.H.; Sawaya, R.; Medema, R.H.; Hung, M.C.; Huang, S. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J. Clin. Invest., 2014, 124(2), 564-579.
[http://dx.doi.org/10.1172/JCI71104] [PMID: 24382352]
[22]
Shangguan, L.; Ti, X.; Krause, U.; Hai, B.; Zhao, Y.; Yang, Z.; Liu, F. Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells, 2012, 30(12), 2810-2819.
[http://dx.doi.org/10.1002/stem.1251] [PMID: 23034983]
[23]
Park, S.A.; Kim, M.J.; Park, S.Y.; Kim, J.S.; Lee, S.J.; Woo, H.A.; Kim, D.K.; Nam, J.S.; Sheen, Y.Y. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling. Cell. Mol. Life Sci., 2015, 72(10), 2023-2039.
[http://dx.doi.org/10.1007/s00018-014-1798-6] [PMID: 25487606]
[24]
Chen, H.S.; Bai, M.H.; Zhang, T.; Li, G.D.; Liu, M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int. J. Oncol., 2015, 46(4), 1730-1738.
[http://dx.doi.org/10.3892/ijo.2015.2870] [PMID: 25647396]
[25]
Chu, Z.; Wang, H.; Ni, T.; Tao, L.; Xiang, L.; Zhou, Z.; Qian, Y.; Sunagawa, M.; Liu, Y. 28-hydroxy-3-oxoolean-12-en-29-oic acid, a triterpene acid from Celastrus Orbiculatus extract, inhibits the migration and invasion of human gastric cancer cells in vitro. Molecules, 2019, 24(19), 3513.
[http://dx.doi.org/10.3390/molecules24193513] [PMID: 31569766]
[26]
Zhu, Y.D.; Hu, L.; Li, P.; Zhang, M.; Liu, Y.Q. Effects of Celastrus orbiculatus on epithelial mesenchymal transition in gastric mucosal epithelial cells by inhibiting Lgr5 expression from rats with gastric precancerous lesions. Am. J. Chin. Med., 2018, 46(5), 1129-1143.
[http://dx.doi.org/10.1142/S0192415X18500593] [PMID: 29976080]
[27]
Zhu, Y.; Liu, Y.; Qian, Y.; Dai, X.; Yang, L.; Chen, J.; Guo, S.; Hisamitsu, T. Antimetastatic effects of Celastrus orbiculatus on human gastric adenocarcinoma by inhibiting epithelial-mesenchymal transition and NF-κB/snail signaling pathway. Integr. Cancer Ther., 2015, 14(3), 271-281.
[http://dx.doi.org/10.1177/1534735415572880] [PMID: 25722220]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy