Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Agomelatine: An Astounding Sui-generis Antidepressant?

Author(s): Muhammad Naveed, Lian-Di Li, Gang Sheng, Zi-Wei Du, Ya-Ping Zhou, Sun Nan, Ming-Yi Zhu, Jing Zhang* and Qi-Gang Zhou*

Volume 15, Issue 7, 2022

Published on: 31 March, 2022

Article ID: e091221198708 Pages: 19

DOI: 10.2174/1874467214666211209142546

Price: $65

Abstract

Major depressive disorder (MDD) is one of the foremost causes of disability and premature death worldwide. Although the available antidepressants are effective and well tolerated, they also have many limitations. Therapeutic advances in developing a new drug's ultimate relation between MDD and chronobiology, which targets the circadian rhythm, led to a renewed focus on psychiatric disorders. In order to provide a critical analysis about antidepressant properties of agomelatine, a detailed PubMed (Medline), Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, Google Scholar, and PsycInfo search was performed using the following keywords: melatonin analog, agomelatine, safety, efficacy, adverse effects, pharmacokinetics, pharmacodynamics, circadian rhythm, sleep disorders, neuroplasticity, MDD, bipolar disorder, anhedonia, anxiety, generalized anxiety disorder (GAD), and mood disorders. Agomelatine is a unique melatonin analog with antidepressant properties and a large therapeutic index that improves clinical safety. Published articles revealed that agomelatine is a melatonin receptors (MT1 and MT2) agonist and 5HT2C receptor antagonist. The effects receptors' on melatonin receptors enable the resynchronization of irregular circadian rhythms with beneficial effects on sleep architectures. In this way, agomelatine is accredited for its unique mode of action, which helps to exert antidepressant effects and resynchronize the sleep-wake cycle. To sum up, an agomelatine has not only antidepressant properties but also has anxiolytic effects.

Keywords: Melatonin analog, agomelatine, mode of action, circadian rhythm, sleep disorders, cognitive function, anxiety, depression, anhedonia.

Graphical Abstract

[1]
Zhou, Q.; Liu, M. Doubt about antidepressant-like effect. J. Biomed. Res., 2013, 27(3), 245-248.
[PMID: 23720683]
[2]
Yin, C-Y.; Li, L-D.; Xu, C.; Du, Z-W.; Wu, J-M.; Chen, X.; Xia, T.; Huang, S-Y.; Meng, F.; Zhang, J.; Xu, P-J.; Hua, F.Z.; Muhammad, N.; Han, F.; Zhou, Q.G. A novel method for automatic pharmacological evaluation of sucrose preference change in depression mice. Pharmacol. Res., 2021, 168, 105601.
[http://dx.doi.org/10.1016/j.phrs.2021.105601] [PMID: 33838294]
[3]
World Health O. The global burden of disease: 2004 updated. In: World Health Organization; Geneva, Switzerland, 2008.
[4]
Naveed, M.; Zhou, Q-G.; Xu, C.; Taleb, A.; Meng, F.; Ahmed, B.; Zhang, Y.; Fukunaga, K.; Han, F. Gut-brain axis: A matter of concern in neuropsychiatric disorders.! Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110051.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110051] [PMID: 32758517]
[5]
Li, L-D.; Naveed, M.; Du, Z-W.; Ding, H.; Gu, K.; Wei, L-L.; Zhou, Y-P.; Meng, F.; Wang, C.; Han, F.; Zhou, Q-G.; Zhang, J. Abnormal expression profile of plasma-derived exosomal microRNAs in patients with treatment-resistant depression. Hum. Genomics, 2021, 15(1), 55.
[http://dx.doi.org/10.1186/s40246-021-00354-z] [PMID: 34419170]
[6]
Mazo, G.; Neznanov, N.; Krizhanovskii, A. Models for evaluating therapeutic resistance of depression. Neurosci. Behav. Physiol., 2016, 5, 539-543.
[http://dx.doi.org/10.1007/s11055-016-0280-3]
[7]
Hasson-Ohayon, I.; Tuval-Mashiach, R.; Morag-Yaffe, M.; Gaziel, M.; Schapir, L.; Zalsman, G.; Shoval, G. Parents of adolescents with psychiatric disorders: insight into the disorder, self-stigma and parental stress. Compr. Psychiatry, 2014, 55(5), 1106-1110.
[http://dx.doi.org/10.1016/j.comppsych.2014.03.003] [PMID: 24742719]
[8]
Cipriani, A.; Furukawa, T.A.; Salanti, G.; Geddes, J.R.; Higgins, J.P.; Churchill, R.; Watanabe, N.; Nakagawa, A.; Omori, I.M.; McGuire, H.; Tansella, M.; Barbui, C. Comparative efficacy and acceptability of 12 new-generation antidepressants: A multiple-treatments meta-analysis. Lancet, 2009, 373(9665), 746-758.
[http://dx.doi.org/10.1016/S0140-6736(09)60046-5] [PMID: 19185342]
[9]
Chavda, V. A review on antidepressant activity of agomelatine. Ind. J. Res. Pharmacy Biotechnol., 2016, 4(1), 22-24.
[10]
Dragioti, E.; Solmi, M.; Favaro, A.; Fusar-Poli, P.; Dazzan, P.; Thompson, T.; Stubbs, B.; Firth, J.; Fornaro, M.; Tsartsalis, D.; Carvalho, A.F.; Vieta, E.; McGuire, P.; Young, A.H.; Shin, J.I.; Correll, C.U.; Evangelou, E. Association of antidepressant use with adverse health outcomes: A systematic umbrella review. JAMA Psychiatry, 2019, 76(12), 1241-1255.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.2859] [PMID: 31577342]
[11]
Fleurence, R.; Williamson, R.; Jing, Y.; Kim, E.; Tran, Q-V.; Pikalov, A.S.; Thase, M.E. A systematic review of augmentation strategies for patients with major depressive disorder. Psychopharmacol. Bull., 2009, 42(3), 57-90.
[PMID: 19752841]
[12]
Demyttenaere, K. Agomelatine: A narrative review. Eur Neuropsychopharmacol, 2011, 21Suppl 4, S703-S709.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.004]
[13]
Krivoy, A.; Balicer, R.D.; Feldman, B.; Hoshen, M.; Zalsman, G.; Weizman, A.; Shoval, G. Adherence to antidepressants is associated with lower mortality: A 4-year population-based cohort study. J. Clin. Psychiatry, 2016, 77(5), e566-e572.
[http://dx.doi.org/10.4088/JCP.14m09531] [PMID: 27136668]
[14]
Quera Salva, M.A.; Hartley, S. Mood disorders, circadian rhythms, melatonin and melatonin agonists. J. Cent. Nerv. Syst. Dis., 2012, 4, 15-26.
[PMID: 23650464]
[15]
Winokur, A.; Gary, K. Depression, sleep physiology, and antidepressant drugs. Depress. Anxiety, 2001, 14, 19-28.
[http://dx.doi.org/10.1002/da.1043]
[16]
Ballester, P.; Martínez, M.J.; Inda, M.D.; Javaloyes, A.; Richdale, A.L.; Muriel, J.; Belda, C.; Toral, N.; Morales, D.; Fernández, E.; Peiró, A.M. Evaluation of agomelatine for the treatment of sleep problems in adults with autism spectrum disorder and co-morbid intellectual disability. J. Pharm. Pshychopharmacol., 2019, 33(11), 1395-1406.
[http://dx.doi.org/10.1177/0269881119864968]
[17]
Rascati, K. Drug utilization review of concomitant use of specific serotonin reuptake inhibitors or clomipramine with antianxiety/sleep medications. Clin. Ther., 1995, 17(4), 786-790.
[http://dx.doi.org/10.1016/0149-2918(95)80055-7] [PMID: 8565041]
[18]
Hickie, I.B.; Rogers, N.L. Novel melatonin-based therapies: Potential advances in the treatment of major depression. Lancet, 2011, 378(9791), 621-631.
[http://dx.doi.org/10.1016/S0140-6736(11)60095-0] [PMID: 21596429]
[19]
Kennedy, S.H. Agomelatine: Efficacy at each phase of antidepressant treatment. CNS Drugs, 2009, 23(Suppl. 2), 41-47.
[http://dx.doi.org/10.2165/11318660-000000000-00000] [PMID: 19708725]
[20]
Huang, R-C. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine. Biomed. J., 2018, 41(1), 5-8.
[http://dx.doi.org/10.1016/j.bj.2018.02.003] [PMID: 29673553]
[21]
Cardinali, D. Melatonin and the “diseases of the soul”: The stone of madness returns.Ma Vie en Noir; Ma Vie en Noir; Buenos Aires, Argentina, 2016, pp. 155-169.
[22]
Zaki, N.F.W.; Spence, D.W.; BaHammam, A.S.; Pandi-Perumal, S.R.; Cardinali, D.P.; Brown, G.M. Chronobiological theories of mood disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2018, 268(2), 107-118.
[http://dx.doi.org/10.1007/s00406-017-0835-5] [PMID: 28894915]
[23]
Filippova, N; Barylnik, Y; Shuldyakov, A; Antonova, A. Agomelatine in the treatment of major depressive disorder: Assessment of the efficacy and tolerability. Zhurnal nevrologii i psikhiatrii im SS Korsakova, 2019, 119, 154.
[24]
Dubovsky, S.L.; Warren, C. Agomelatine, a melatonin agonist with antidepressant properties. Expert Opin. Investig. Drugs, 2009, 18(10), 1533-1540.
[http://dx.doi.org/10.1517/13543780903292634] [PMID: 19758108]
[25]
Altınyazar, V.; Kiylioglu, N. Insomnia and dementia: Is agomelatine treatment helpful? Case report and review of the literature. Ther. Adv. Psychopharmacol., 2016, 6(4), 263-268.
[http://dx.doi.org/10.1177/2045125316646064] [PMID: 27536345]
[26]
De Berardis, D.; Di Iorio, G.; Acciavatti, T.; Conti, C.; Serroni, N.; Olivieri, L.; Cavuto, M.; Martinotti, G.; Janiri, L.; Moschetta, F.S.; Conti, P.; Di Giannantonio, M. The emerging role of melatonin agonists in the treatment of major depression: Focus on agomelatine. CNS Neurol. Disord. Drug Targets, 2011, 10(1), 119-132.
[http://dx.doi.org/10.2174/187152711794488674] [PMID: 20874703]
[27]
de Bodinat, C.; Guardiola-Lemaitre, B.; Mocaër, E.; Renard, P.; Muñoz, C.; Millan, M.J. Agomelatine, the first melatonergic antidepressant: Discovery, characterization and development. Nat. Rev. Drug Discov., 2010, 9(8), 628-642.
[http://dx.doi.org/10.1038/nrd3140] [PMID: 20577266]
[28]
Abramova, L.; Panteleeva, G.; Nikiforova, I.; Novozhenova, T. Differentiated approach and indications for optimization of agomelatine therapy for endogenous depression. Neurology, Neuropsychiatry. Psychosomatics, 2019, 11, 71-77.
[29]
Plesničar, B.K. Efficacy and tolerability of agomelatine in the treatment of depression. Patient Prefer. Adherence, 2014, 8, 603-612.
[http://dx.doi.org/10.2147/PPA.S42789] [PMID: 24833894]
[30]
Swiecicki, Ł.; Stefanowski, B. Agomelatine in the management of depression. Psychiatria i Psychologia Kliniczna, 2018, 18, 81-85.
[http://dx.doi.org/10.15557/PiPK.2018.0011]
[31]
Abousheishaa, A.; Francis, B.; Ng, C. The use of agomelatine in anxiety disorders: A review. Curr. Top. Pharmacol., 2020, 23, 103-112.
[32]
De Berardis, D.; Nicola, S.; Cavuto, M.; Fornaro, M.; Martinotti, G.; Moschetta, F.; Giannantonio, M. The role of agomelatine in the treatment of anxiety disorders. In: Melatonin and Melatonergic Drugs in Clinical Practice; Venkataramanujam, S.; Brzezinski, A.; Oter, S.; Shillcutt, S.D., Eds.; Springer: India, 2013; pp. 297-305.
[33]
Nussbaumer-Streit, B.; Greenblatt, A.; Kaminski-Hartenthaler, A.; Van Noord, M.G.; Forneris, C.A.; Morgan, L.C.; Gaynes, B.N.; Wipplinger, J.; Lux, L.J.; Winkler, D.; Gartlehner, G. Melatonin and agomelatine for preventing seasonal affective disorder. Cochrane Database Syst. Rev., 2019, 6(6), CD011271.
[http://dx.doi.org/10.1002/14651858.CD011271.pub3] [PMID: 31206585]
[34]
Pjrek, E.; Winkler, D.; Konstantinidis, A.; Willeit, M.; Praschak-Rieder, N.; Kasper, S. Agomelatine in the treatment of seasonal affective disorder. Psychopharmacology (Berl.), 2007, 190(4), 575-579.
[http://dx.doi.org/10.1007/s00213-006-0645-3] [PMID: 17171557]
[35]
Jain, N.; Singal, K.; Manchanda, B. Agomelatine: A drug review. Global J. Pharm, 2018, 2, 6-8.
[36]
Cardinali, D.P.; Srinivasan, V.; Brzezinski, A.; Brown, G.M. Melatonin and its analogs in insomnia and depression. J. Pineal Res., 2012, 52(4), 365-375.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00962.x] [PMID: 21951153]
[37]
Lyseng-Williamson, K.A. Melatonin prolonged release: In the treatment of insomnia in patients aged ≥55 years. Drugs Aging, 2012, 29(11), 911-923.
[http://dx.doi.org/10.1007/s40266-012-0018-z] [PMID: 23044640]
[38]
Lemoine, P.; Nir, T.; Laudon, M.; Zisapel, N. Prolonged-release melatonin improves sleep quality and morning alertness in insomnia patients aged 55 years and older and has no withdrawal effects. J. Sleep Res., 2007, 16(4), 372-380.
[http://dx.doi.org/10.1111/j.1365-2869.2007.00613.x] [PMID: 18036082]
[39]
Luthringer, R.; Muzet, M.; Zisapel, N.; Staner, L. The effect of prolonged-release melatonin on sleep measures and psychomotor performance in elderly patients with insomnia. Int. Clin. Psychopharmacol., 2009, 24(5), 239-249.
[http://dx.doi.org/10.1097/YIC.0b013e32832e9b08] [PMID: 19584739]
[40]
Miyamoto, M.; Nishikawa, H.; Doken, Y.; Hirai, K.; Uchikawa, O.; Ohkawa, S. The sleep-promoting action of ramelteon (TAK-375) in freely moving cats. Sleep, 2004, 27(7), 1319-1325.
[http://dx.doi.org/10.1093/sleep/27.7.1319] [PMID: 15586784]
[41]
Yukuhiro, N.; Kimura, H.; Nishikawa, H.; Ohkawa, S.; Yoshikubo, S.; Miyamoto, M. Effects of ramelteon (TAK-375) on nocturnal sleep in freely moving monkeys. Brain Res., 2004, 1027(1-2), 59-66.
[http://dx.doi.org/10.1016/j.brainres.2004.08.035] [PMID: 15494157]
[42]
Fisher, S.P.; Davidson, K.; Kulla, A.; Sugden, D. Acute sleep-promoting action of the melatonin agonist, ramelteon, in the rat. J. Pineal Res., 2008, 45(2), 125-132.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00565.x] [PMID: 18298466]
[43]
Zammit, G.; Schwartz, H.; Roth, T.; Wang-Weigand, S.; Sainati, S.; Zhang, J. The effects of ramelteon in a first-night model of transient insomnia. Sleep Med., 2009, 10(1), 55-59.
[http://dx.doi.org/10.1016/j.sleep.2008.04.010] [PMID: 18691937]
[44]
Erman, M.; Seiden, D.; Zammit, G.; Sainati, S.; Zhang, J. An efficacy, safety, and dose-response study of Ramelteon in patients with chronic primary insomnia. Sleep Med., 2006, 7(1), 17-24.
[http://dx.doi.org/10.1016/j.sleep.2005.09.004] [PMID: 16309958]
[45]
Roth, T.; Seiden, D.; Wang-Weigand, S.; Zhang, J. A 2-night, 3-period, crossover study of ramelteon’s efficacy and safety in older adults with chronic insomnia. Curr. Med. Res. Opin., 2007, 23(5), 1005-1014.
[http://dx.doi.org/10.1185/030079907X178874] [PMID: 17519067]
[46]
Vachharajani, N.N.; Yeleswaram, K.; Boulton, D.W. Preclinical pharmacokinetics and metabolism of BMS-214778, a novel melatonin receptor agonist. J. Pharm. Sci., 2003, 92(4), 760-772.
[http://dx.doi.org/10.1002/jps.10348] [PMID: 12661062]
[47]
Rajaratnam, S.M.W.; Polymeropoulos, M.H.; Fisher, D.M.; Roth, T.; Scott, C.; Birznieks, G.; Klerman, E.B. Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: Two randomised controlled multicentre trials. Lancet, 2009, 373(9662), 482-491.
[http://dx.doi.org/10.1016/S0140-6736(08)61812-7] [PMID: 19054552]
[48]
Nickelsen, T.; Samel, A.; Vejvoda, M.; Wenzel, J.; Smith, B.; Gerzer, R. Chronobiotic effects of the melatonin agonist LY 156735 following a simulated 9h time shift: Results of a placebo- controlled trial. Chronobiol. Int., 2002, 19(5), 915-936.
[http://dx.doi.org/10.1081/CBI-120014108] [PMID: 12405554]
[49]
Mulchahey, J.J.; Goldwater, D.R.; Zemlan, F.P. A single blind, placebo controlled, across groups dose escalation study of the safety, tolerability, pharmacokinetics and pharmacodynamics of the melatonin analog β-methyl-6-chloromelatonin. Life Sci., 2004, 75(15), 1843-1856.
[http://dx.doi.org/10.1016/j.lfs.2004.03.023] [PMID: 15302228]
[50]
Zemlan, F.P.; Mulchahey, J.J.; Scharf, M.B.; Mayleben, D.W.; Rosenberg, R.; Lankford, A. The efficacy and safety of the melatonin agonist beta-methyl-6-chloromelatonin in primary insomnia: A randomized, placebo-controlled, crossover clinical trial. J. Clin. Psychiatry, 2005, 66(3), 384-390.
[http://dx.doi.org/10.4088/JCP.v66n0316] [PMID: 15766306]
[51]
Wang, X.L.; Du, A.H.; Zhang, D.; Meng, L.J.; Liu, M.; Zhang, L.N.; Zhao, H.N.; Liu, H.C. Inter- and intra-individual variability in the pharmacokinetics of agomelatine tablets in chinese healthy male subjects. Drug Res. (Stuttg.), 2015, 65(10), 552-554.
[PMID: 25383559]
[52]
Li, C.; Xu, J.; Zheng, Y.; Chen, G.; Wang, J.; Ma, L.; Qiao, Y.; Niu, J.; Wu, M.; Zhang, H.; Li, X.; Chen, H.; Zhu, X.; Liu, C.; Ding, Y. Bioequivalence and pharmacokinetic profiles of agomelatine 25-mg tablets in healthy chinese subjects: A four-way replicate crossover study demonstrating high intra- and inter-individual variations. Chem. Pharm. Bull. (Tokyo), 2017, 65(6), 524-529.
[http://dx.doi.org/10.1248/cpb.c16-00866] [PMID: 28392509]
[53]
Krivoy, A.; Balicer, R.D.; Feldman, B.; Hoshen, M.; Zalsman, G.; Weizman, A.; Shoval, G. The impact of age and gender on adherence to antidepressants: A 4-year population-based cohort study. Psychopharmacology (Berl.), 2015, 232(18), 3385-3390.
[http://dx.doi.org/10.1007/s00213-015-3988-9] [PMID: 26093655]
[54]
Norman, T.R.; Olver, J.S. Agomelatine for depression: Expanding the horizons? Expert Opin. Pharmacother., 2019, 20(6), 647-656.
[http://dx.doi.org/10.1080/14656566.2019.1574747] [PMID: 30759026]
[55]
Fornaro, M.; Prestia, D.; Colicchio, S.; Perugi, G. A systematic, updated review on the antidepressant agomelatine focusing on its melatonergic modulation. Curr. Neuropharmacol., 2010, 8(3), 287-304.
[http://dx.doi.org/10.2174/157015910792246227] [PMID: 21358978]
[56]
Wu, Z.Y.; Huang, S.D.; Zou, J.J.; Wang, Q.X.; Naveed, M.; Bao, H.N.; Wang, W.; Fukunaga, K.; Han, F. Autism spectrum disorder (ASD): Disturbance of the melatonin system and its implications. Biomed. Pharmacother., 2020, 130, 110496.
[http://dx.doi.org/10.1016/j.biopha.2020.110496] [PMID: 32682113]
[57]
Onaolapo, O.J.; Onaolapo, A.Y.; Olowe, O.A.; Udoh, M.O.; Udoh, D.O.; Nathaniel, T.I. Melatonin and melatonergic influence on neuronal transcription factors: Implications for the development of novel therapies for neurodegenerative disorders. Curr. Neuropharmacol., 2020, 18(7), 563-577.
[http://dx.doi.org/10.2174/1570159X18666191230114339] [PMID: 31885352]
[58]
San, L; Arranz, B. Agomelatine: A novel mechanism of antidepressant action involving the melatonergic and the serotonergic system. Eur Psychiatry, 2008, 23(6), 396-402.
[http://dx.doi.org/10.1016/j.eurpsy.2008.04.002]
[59]
Chenu, F; El Mansari, M; Blier, P. Electrophysiological effects of repeated administration of agomelatine on the dopamine, norepinephrine, and serotonin systems in the rat brain. Neuropsychopharmacology., 2013, 38(2), 275-284.
[http://dx.doi.org/10.1038/npp.2012.140]
[60]
Fasipe, O.J. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep., 2019, 6, 95-110.
[http://dx.doi.org/10.1016/j.ibror.2019.01.001] [PMID: 31211282]
[61]
Srinivasan, V.; De Berardis, D.; Fornaro, M.; López-Muñoz, F.; Zakaria, R.; Yaacob, M.J.; Othman, Z. Melatonergic antidepressant agomelatine and its efficacy in depressive disorders. In: Melatonin, Neuroprotective Agents and Antidepressant Therapy; Springer: India, 2016; pp. 219-228.
[http://dx.doi.org/10.1007/978-81-322-2803-5_17]
[62]
Srinivasan, V.; Zakaria, R.; Othman, Z.; Lauterbach, E.C.; Acuña- Castroviejo, D. Agomelatine in depressive disorders: Its novel mechanisms of action. J. Neuropsychiatry Clin. Neurosci., 2012, 24(3), 290-308.
[http://dx.doi.org/10.1176/appi.neuropsych.11090216] [PMID: 23037643]
[63]
Yang, J.; Jin, H.J.; Mocaër, E.; Seguin, L.; Zhao, H.; Rusak, B. Agomelatine affects rat suprachiasmatic nucleus neurons via melatonin and serotonin receptors. Life Sci., 2016, 155, 147-154.
[http://dx.doi.org/10.1016/j.lfs.2016.04.035] [PMID: 27269050]
[64]
Pandi-Perumal, S.R.; Moscovitch, A.; Srinivasan, V.; Spence, D.W.; Cardinali, D.P.; Brown, G.M. Bidirectional communication between sleep and circadian rhythms and its implications for depression: Lessons from agomelatine. Prog. Neurobiol., 2009, 88(4), 264-271.
[http://dx.doi.org/10.1016/j.pneurobio.2009.04.007] [PMID: 19454302]
[65]
Tchekalarova, J.; Kortenska, L.; Ivanova, N.; Atanasova, M.; Marinov, P. Agomelatine treatment corrects impaired sleep-wake cycle and sleep architecture and increases MT1 receptor as well as BDNF expression in the hippocampus during the subjective light phase of rats exposed to chronic constant light. Psychopharmacology (Berl.), 2020, 237(2), 503-518.
[http://dx.doi.org/10.1007/s00213-019-05385-y] [PMID: 31720718]
[66]
Lu, Y.; Ho, C.S.; McIntyre, R.S.; Wang, W.; Ho, R.C. Agomelatine-induced modulation of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. Life Sci., 2018, 210, 177-184.
[http://dx.doi.org/10.1016/j.lfs.2018.09.003] [PMID: 30193943]
[67]
Monteiro, B.C.; Monteiro, S.; Candida, M.; Adler, N.; Paes, F.; Rocha, N.; Nardi, A.E.; Murillo-Rodriguez, E.; Machado, S. Relationship between brain-derived neurotrofic factor (bdnf) and sleep on depression: A critical review. Clin. Pract. Epidemiol. Ment. Health, 2017, 13, 213-219.
[http://dx.doi.org/10.2174/1745017901713010213] [PMID: 29299044]
[68]
Tchekalarova, J.; Ivanova, N.; Kortenska, L. Therapeutic effects of agomelatine on desynchronized diurnal rhythms of sleep/wake cycle and home cage motor activity in an experimental model of melatonin deficit. IBRO Rep., 2019, 6, S230.
[http://dx.doi.org/10.1016/j.ibror.2019.07.719]
[69]
Molteni, R.; Calabrese, F.; Pisoni, S.; Gabriel, C.; Mocaer, E.; Racagni, G.; Riva, M.A. Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration. World J. Biol. Psychiatry, 2010, 11(2), 148-153.
[http://dx.doi.org/10.3109/15622970903447659] [PMID: 20109111]
[70]
Soumier, A.; Banasr, M.; Lortet, S.; Masmejean, F.; Bernard, N.; Kerkerian-Le-Goff, L.; Gabriel, C.; Millan, M.J.; Mocaer, E.; Daszuta, A. Mechanisms contributing to the phase-dependent regulation of neurogenesis by the novel antidepressant, agomelatine, in the adult rat hippocampus. Neuropsychopharmacology, 2009, 34(11), 2390-2403.
[http://dx.doi.org/10.1038/npp.2009.72] [PMID: 19571795]
[71]
Stahl, S.M. Mechanism of action of agomelatine: A novel antidepressant exploiting synergy between monoaminergic and melatonergic properties. CNS Spectr., 2014, 19(3), 207-212.
[http://dx.doi.org/10.1017/S1092852914000248] [PMID: 24901504]
[72]
Di Giovanni, G.; De Deurwaerdére, P.; Di Mascio, M.; Di Matteo, V.; Esposito, E.; Spampinato, U. Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: A combined in vivo electrophysiological and microdialysis study. Neuroscience, 1999, 91(2), 587-597.
[http://dx.doi.org/10.1016/S0306-4522(98)00655-1] [PMID: 10366016]
[73]
Manvich, D.F.; Kimmel, H.L.; Cooper, D.A.; Howell, L.L. The serotonin 2C receptor antagonist SB 242084 exhibits abuse-related effects typical of stimulants in squirrel monkeys. J. Pharmacol. Exp. Ther., 2012, 342(3), 761-769.
[http://dx.doi.org/10.1124/jpet.112.195156] [PMID: 22685342]
[74]
Millan, M.J. Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie, 2005, 60(5), 441-460.
[http://dx.doi.org/10.2515/therapie:2005065] [PMID: 16433010]
[75]
Musazzi, L.; Milanese, M.; Farisello, P.; Zappettini, S.; Tardito, D.; Barbiero, V.S.; Bonifacino, T.; Mallei, A.; Baldelli, P.; Racagni, G.; Raiteri, M.; Benfenati, F.; Bonanno, G.; Popoli, M. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One, 2010, 5(1), e8566-e8566.
[http://dx.doi.org/10.1371/journal.pone.0008566] [PMID: 20052403]
[76]
Li, J.Z.; Bunney, B.G.; Meng, F.; Hagenauer, M.H.; Walsh, D.M.; Vawter, M.P.; Evans, S.J.; Choudary, P.V.; Cartagena, P.; Barchas, J.D.; Schatzberg, A.F.; Jones, E.G.; Myers, R.M.; Watson, S.J., Jr; Akil, H.; Bunney, W.E. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl. Acad. Sci. USA, 2013, 110(24), 9950-9955.
[http://dx.doi.org/10.1073/pnas.1305814110] [PMID: 23671070]
[77]
Lopes, M.; Quera-Salva, M-A.; Guilleminault, C. Cycling alternating pattern in the nrem sleep of patients within major depressive disorder: Baseline results and change overtime with a new antidepressant. Sleep Med., 2005, 6, 87-88.
[78]
Tardito, D.; Musazzi, L.; Tiraboschi, E.; Mallei, A.; Racagni, G.; Popoli, M. Early induction of CREB activation and CREB-regulating signalling by antidepressants. Int. J. Neuropsychopharmacol., 2009, 12(10), 1367-1381.
[http://dx.doi.org/10.1017/S1461145709000376] [PMID: 19400982]
[79]
Alboni, S.; Benatti, C.; Capone, G.; Corsini, D.; Caggia, F.; Tascedda, F.; Mendlewicz, J.; Brunello, N. Time-dependent effects of escitalopram on brain derived neurotrophic factor (BDNF) and neuroplasticity related targets in the central nervous system of rats. Eur. J. Pharmacol., 2010, 643(2-3), 180-187.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.028] [PMID: 20599917]
[80]
Musazzi, L.; Seguini, M.; Mallei, A.; Treccani, G.; Pelizzari, M.; Tornese, P.; Racagni, G.; Tardito, D. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: Modulation by agomelatine. BMC Neurosci., 2014, 15, 119-119.
[http://dx.doi.org/10.1186/s12868-014-0119-1] [PMID: 25332063]
[81]
Gumuslu, E.; Mutlu, O.; Sunnetci, D.; Ulak, G.; Celikyurt, I.K.; Çine, N.; Akar, F.; Savlı, H.; Erden, F. The antidepressant agomelatine improves memory deterioration and upregulates creb and bdnf gene expression levels in unpredictable chronic mild stress (ucms)-exposed mice. Drug Target Insights, 2014, 8, 11-21.
[http://dx.doi.org/10.4137/DTI.S13870] [PMID: 24634580]
[82]
Racagni, G.; Riva, M.A.; Molteni, R.; Musazzi, L.; Calabrese, F.; Popoli, M.; Tardito, D. Mode of action of agomelatine: Synergy between melatonergic and 5-HT2C receptors. World J. Biol. Psychiatry, 2011, 12(8), 574-587.
[http://dx.doi.org/10.3109/15622975.2011.595823] [PMID: 21999473]
[83]
Rainer, Q.; Xia, L.; Guilloux, J-P.; Gabriel, C.; Mocaër, E.; Hen, R.; Enhamre, E.; Gardier, A.M.; David, D.J. Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int. J. Neuropsychopharmacol., 2012, 15(3), 321-335.
[http://dx.doi.org/10.1017/S1461145711000356] [PMID: 21473810]
[84]
Milanese, M.; Tardito, D.; Musazzi, L.; Treccani, G.; Mallei, A.; Bonifacino, T.; Gabriel, C.; Mocaer, E.; Racagni, G.; Popoli, M.; Bonanno, G. Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes. BMC Neurosci., 2013, 14, 75-75.
[http://dx.doi.org/10.1186/1471-2202-14-75] [PMID: 23895555]
[85]
Reagan, L.P.; Reznikov, L.R.; Evans, A.N.; Gabriel, C.; Mocaër, E.; Fadel, J.R. The antidepressant agomelatine inhibits stress-mediated changes in amino acid efflux in the rat hippocampus and amygdala. Brain Res., 2012, 1466, 91-98.
[http://dx.doi.org/10.1016/j.brainres.2012.05.039] [PMID: 22647752]
[86]
Reznikov, L.R.; Reagan, L.P.; Fadel, J.R. Effects of acute and repeated restraint stress on GABA efflux in the rat basolateral and central amygdala. Brain Res., 2009, 1256, 61-68.
[http://dx.doi.org/10.1016/j.brainres.2008.12.022] [PMID: 19124010]
[87]
Zink, M.; Vollmayr, B.; Gebicke-Haerter, P.J.; Henn, F.A. Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology, 2010, 58(2), 465-473.
[http://dx.doi.org/10.1016/j.neuropharm.2009.09.005] [PMID: 19747495]
[88]
Uezato, A.; Meador-Woodruff, J.H.; McCullumsmith, R.E. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord., 2009, 11(7), 711-725.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00752.x] [PMID: 19839996]
[89]
Varcoe, T.; Salkeld, M.; Mocaer, E.; Seguin, L.; Kennaway, D. P.2.D.019 effects of chronic agomelatine administration on the expression of a panel of genes in various brain areas of rats. Eur. Neuropsychopharmacol., 2009, 19.
[http://dx.doi.org/10.1016/S0924-977X(09)70685-6]
[90]
Morley-Fletcher, S.; Mairesse, J.; Soumier, A.; Banasr, M.; Fagioli, F.; Gabriel, C.; Mocaer, E.; Daszuta, A.; McEwen, B.; Nicoletti, F.; Maccari, S. Chronic agomelatine treatment corrects behavioral, cellular, and biochemical abnormalities induced by prenatal stress in rats. Psychopharmacology (Berl.), 2011, 217(3), 301-313.
[http://dx.doi.org/10.1007/s00213-011-2280-x] [PMID: 21503609]
[91]
Guzowski, J.F.; Lyford, G.L.; Stevenson, G.D.; Houston, F.P.; McGaugh, J.L.; Worley, P.F.; Barnes, C.A. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci., 2000, 20(11), 3993-4001.
[http://dx.doi.org/10.1523/JNEUROSCI.20-11-03993.2000] [PMID: 10818134]
[92]
Li, Y.; Pehrson, A.L.; Waller, J.A.; Dale, E.; Sanchez, C.; Gulinello, M. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front. Neurosci., 2015, 9, 279-279.
[http://dx.doi.org/10.3389/fnins.2015.00279] [PMID: 26321903]
[93]
Calabrese, F.; Molteni, R.; Gabriel, C.; Mocaer, E.; Racagni, G.; Riva, M.A. Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine. Psychopharmacology (Berl.), 2011, 215(2), 267-275.
[http://dx.doi.org/10.1007/s00213-010-2129-8] [PMID: 21181122]
[94]
Ladurelle, N.; Gabriel, C.; Viggiano, A.; Mocaër, E.; Baulieu, E.E.; Bianchi, M. Agomelatine (S20098) modulates the expression of cytoskeletal microtubular proteins, synaptic markers and BDNF in the rat hippocampus, amygdala and PFC. Psychopharmacology (Berl.), 2012, 221(3), 493-509.
[http://dx.doi.org/10.1007/s00213-011-2597-5] [PMID: 22160164]
[95]
Naveed, M.; Zhou, Q-G.; Han, F. Cerebrovascular inflammation: A critical trigger for neurovascular injury? Neurochem. Int., 2019, 126, 165-177.
[http://dx.doi.org/10.1016/j.neuint.2019.03.011] [PMID: 30890409]
[96]
Halaris, A. Inflammation and depression but where does the inflammation come from? Curr. Opin. Psychiatry, 2019, 32(5), 422-428.
[http://dx.doi.org/10.1097/YCO.0000000000000531] [PMID: 31192815]
[97]
Eyre, H.A.; Lavretsky, H.; Kartika, J.; Qassim, A.; Baune, B.T. Modulatory effects of antidepressant classes on the innate and adaptive immune system in depression. Pharmacopsychiatry, 2016, 49(3), 85-96.
[http://dx.doi.org/10.1055/s-0042-103159] [PMID: 26951496]
[98]
Molteni, R.; Macchi, F.; Zecchillo, C.; Dell’agli, M.; Colombo, E.; Calabrese, F.; Guidotti, G.; Racagni, G.; Riva, M.A. Modulation of the inflammatory response in rats chronically treated with the antidepressant agomelatine. Eur. Neuropsychopharmacol., 2013, 23(11), 1645-1655.
[http://dx.doi.org/10.1016/j.euroneuro.2013.03.008] [PMID: 23622958]
[99]
Inanir, S.; Copoglu, U.S.; Kokacya, H.; Dokuyucu, R.; Erbas, O.; Inanir, A. The agomelatine protection in lps-induced psychosis-relevant behavior model. Med. Sci. Monit., 2015, 21, 3834-3839.
[http://dx.doi.org/10.12659/MSM.895505] [PMID: 26647355]
[100]
Rossetti, A.C.; Paladini, M.S.; Racagni, G.; Riva, M.A.; Cattaneo, A.; Molteni, R. Genome-wide analysis of LPS-induced inflammatory response in the rat ventral hippocampus: Modulatory activity of the antidepressant agomelatine. World J. Biol. Psychiatry, 2018, 19(5), 390-401.
[http://dx.doi.org/10.1080/15622975.2017.1298839] [PMID: 28337940]
[101]
Gupta, K; Gupta, R Effect of agomelatine and fluoxetine on ham-d score, serum brain-derived neurotrophic factor, and tumor necrosis factor-α level in patients with major depressive disorder with severe depression. 2017, 57(12), 1519-1526.
[102]
De Berardis, D.; Fornaro, M.; Orsolini, L.; Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A.; Serroni, N.; De Lauretis, I.; Girinelli, G.; Mazza, M.; Valchera, A.; Carano, A.; Vellante, F.; Matarazzo, I.; Perna, G.; Martinotti, G.; Di Giannantonio, M. Effect of agomelatine treatment on C-reactive protein levels in patients with major depressive disorder: An exploratory study in “real-world,” everyday clinical practice. CNS Spectr., 2017, 22(4), 342-347.
[http://dx.doi.org/10.1017/S1092852916000572] [PMID: 27702411]
[103]
Zhang, J.; Yue, Y.; Thapa, A.; Fang, J.; Zhao, S.; Shi, W.; Yang, Z.; Li, Y.; Yuan, Y. Baseline serum C-reactive protein levels may predict antidepressant treatment responses in patients with major depressive disorder. J. Affect. Disord., 2019, 250, 432-438.
[http://dx.doi.org/10.1016/j.jad.2019.03.001] [PMID: 30878656]
[104]
Islam, M; Karmoker, J Evaluation of serum interleukin-6 and c-reactive protein levels in drug-naïve major depressive disorder patients. 2019, 11(1), e3868.
[105]
Cingi, C; Emre, IE; Muluk, NB Jetlag related sleep problems and their management: A review. Travel Med. Infect Dis, 2018, 24, 59-64.
[http://dx.doi.org/10.1016/j.tmaid.2018.05.008]
[106]
Hastings, M.H.; Reddy, A.B.; Maywood, E.S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci., 2003, 4(8), 649-661.
[http://dx.doi.org/10.1038/nrn1177] [PMID: 12894240]
[107]
Satyanarayanan, S.K.; Su, H.; Lin, Y-W.; Su, K-P. Circadian rhythm and melatonin in the treatment of depression. Curr. Pharm. Des., 2018, 24(22), 2549-2555.
[http://dx.doi.org/10.2174/1381612824666180803112304] [PMID: 30073921]
[108]
Koresh, O.; Kozlovsky, N.; Kaplan, Z.; Zohar, J.; Matar, M.A.; Cohen, H. The long-term abnormalities in circadian expression of Period 1 and Period 2 genes in response to stress is normalized by agomelatine administered immediately after exposure. Eur. Neuropsychopharmacol., 2012, 22(3), 205-221.
[http://dx.doi.org/10.1016/j.euroneuro.2011.07.012] [PMID: 21925847]
[109]
Moon, J-H.; Cho, C-H.; Son, G.H.; Geum, D.; Chung, S.; Kim, H.; Kang, S-G.; Park, Y-M.; Yoon, H-K.; Kim, L.; Jee, H-J.; An, H.; Kripke, D.F.; Lee, H.J. Advanced circadian phase in mania and delayed circadian phase in mixed mania and depression returned to normal after treatment of bipolar disorder. EBioMedicine, 2016, 11, 285-295.
[http://dx.doi.org/10.1016/j.ebiom.2016.08.019] [PMID: 27543154]
[110]
Bunney, B.G.; Li, J.Z.; Walsh, D.M.; Stein, R.; Vawter, M.P.; Cartagena, P.; Barchas, J.D.; Schatzberg, A.F.; Myers, R.M.; Watson, S.J.; Akil, H.; Bunney, W.E. Circadian dysregulation of clock genes: Clues to rapid treatments in major depressive disorder. Mol. Psychiatry, 2015, 20(1), 48-55.
[http://dx.doi.org/10.1038/mp.2014.138] [PMID: 25349171]
[111]
Hickie, I.; Davenport, T.; Wakefield, D.; Vollmer-Conna, U.; Cameron, B.; Vernon, S.D.; Reeves, W.C.; Lloyd, A. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ, 2006, 333(7568), 575-575.
[http://dx.doi.org/10.1136/bmj.38933.585764.AE] [PMID: 16950834]
[112]
Milano, W.; De Rosa, M.; Milano, L.; Riccio, A.; Sanseverino, B.; Capasso, A. Successful treatment with agomelatine in nes: A series of five cases. Open Neurol. J., 2013, 7, 32-37.
[http://dx.doi.org/10.2174/1874205X20130626001] [PMID: 24133551]
[113]
Tchekalarova, J.; Stoynova, T.; Ilieva, K.; Mitreva, R.; Atanasova, M. Agomelatine treatment corrects symptoms of depression and anxiety by restoring the disrupted melatonin circadian rhythms of rats exposed to chronic constant light. Pharmacol. Biochem. Behav., 2018, 171, 1-9.
[http://dx.doi.org/10.1016/j.pbb.2018.05.016] [PMID: 29807067]
[114]
Laux, G. Treatment of depression with agomelatine in psychiatric practice: Results of the vivaldi study. Psychopharmakotherapie, 2011, 18, 18-26.
[115]
Dridi, D.; Zouiten, A.; Ben Mansour, H. Depression: Chronophysiology and chronotherapy. Biol. Rhythm Res., 2014, 45, 77-91.
[116]
Cohen, H.; Zohar, J.; Carmi, L. Effects of agomelatine on behaviour, circadian expression of period 1 and period 2 clock genes and neuroplastic markers in the predator scent stress rat model of PTSD. World J. Biol. Psychiatry, 2020, 21(4), 255-273.
[http://dx.doi.org/10.1080/15622975.2018.1523560] [PMID: 30230406]
[117]
Martinet, L.; Guardiola-Lemaitre, B.; Mocaer, E. Entrainment of circadian rhythms by S-20098, a melatonin agonist, is dose and plasma concentration dependent. Pharmacol. Biochem. Behav., 1996, 54(4), 713-718.
[http://dx.doi.org/10.1016/0091-3057(95)02221-X] [PMID: 8853194]
[118]
Castanho, A.; Bothorel, B.; Seguin, L.; Mocaër, E.; Pévet, P. Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms. Chronobiol. Int., 2014, 31(3), 371-381.
[http://dx.doi.org/10.3109/07420528.2013.860457] [PMID: 24328729]
[119]
Ying, S-W.; Rusak, B.; Delagrange, P.; Mocaër, E.; Renard, P.; Guardiola-Lemaître, B. Melatonin analogues as agonists and antagonists in the circadian system and other brain areas. Eur. J. Pharmacol., 1996, 296(1), 33-42.
[http://dx.doi.org/10.1016/0014-2999(95)00684-2] [PMID: 8720474]
[120]
Ying, S-W.; Rusak, B.; Mocaër, E. Chronic exposure to melatonin receptor agonists does not alter their effects on suprachiasmatic nucleus neurons. Eur. J. Pharmacol., 1998, 342(1), 29-37.
[http://dx.doi.org/10.1016/S0014-2999(97)01443-X] [PMID: 9544789]
[121]
Van Reeth, O.; Weibel, L.; Olivares, E.; Maccari, S.; Mocaer, E.; Turek, F.W. Melatonin or a melatonin agonist corrects age-related changes in circadian response to environmental stimulus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 280(5), R1582-R1591.
[http://dx.doi.org/10.1152/ajpregu.2001.280.5.R1582] [PMID: 11294784]
[122]
Redman, J.R.; Guardiola-Lemaitre, B.; Brown, M.; Delagrange, P.; Armstrong, S.M. Dose dependent effects of S-20098, a melatonin agonist, on direction of re-entrainment of rat circadian activity rhythms. Psychopharmacology (Berl.), 1995, 118(4), 385-390.
[http://dx.doi.org/10.1007/BF02245938] [PMID: 7568624]
[123]
Redman, J.R.; Francis, A.J.P. Entrainment of rat circadian rhythms by the melatonin agonist S-20098 requires intact suprachiasmatic nuclei but not the pineal. J. Biol. Rhythms, 1998, 13(1), 39-51.
[http://dx.doi.org/10.1177/074873098128999907] [PMID: 9486842]
[124]
Le Strat, Y.; Gorwood, P. Agomelatine, an innovative pharmacological response to unmet needs. J. Psychopharmacol., 2008, 22(7)(Suppl.), 4-8.
[http://dx.doi.org/10.1177/0269881108092593] [PMID: 18753276]
[125]
Priya, S.; S, N.; K, H. A study on the effects of agomelatine on food intake and body weight in restraint stress model in adult swiss albino mice. Asian J. Pharm. Clin. Res., 2017, 10, 141.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i9.19506]
[126]
Cardinali, D.P.; Vigo, D.E. Melatonin, mitochondria, and the metabolic syndrome. Cell. Mol. Life Sci., 2017, 74(21), 3941-3954.
[http://dx.doi.org/10.1007/s00018-017-2611-0] [PMID: 28819865]
[127]
Cardinali, D; Cano-Barquilla, P; Jiménez-Ortega, V; Esquifino, A Melatonin and the metabolic syndrome: Physiopathologic and therapeutical implications. Neuroendocrinology, 2011, 93, 133-142.
[128]
Descamps, A.; Rousset, C.; Millan, M.J.; Spedding, M.; Delagrange, P.; Cespuglio, R. Influence of the novel antidepressant and melatonin agonist/serotonin2C receptor antagonist, agomelatine, on the rat sleep-wake cycle architecture. Psychopharmacology (Berl.), 2009, 205(1), 93-106.
[http://dx.doi.org/10.1007/s00213-009-1519-2] [PMID: 19370342]
[129]
Mairesse, J.; Silletti, V.; Laloux, C.; Zuena, A.R.; Giovine, A.; Consolazione, M.; van Camp, G.; Malagodi, M.; Gaetani, S.; Cianci, S.; Catalani, A.; Mennuni, G.; Mazzetta, A.; van Reeth, O.; Gabriel, C.; Mocaër, E.; Nicoletti, F.; Morley-Fletcher, S.; Maccari, S. Chronic agomelatine treatment corrects the abnormalities in the circadian rhythm of motor activity and sleep/wake cycle induced by prenatal restraint stress in adult rats. Int. J. Neuropsychopharmacol., 2013, 16(2), 323-338.
[http://dx.doi.org/10.1017/S1461145711001970] [PMID: 22310059]
[130]
Weibel, L.; Turek, F.W.; Mocaer, E.; Van Reeth, O. A melatonin agonist facilitates circadian resynchronization in old hamsters after abrupt shifts in the light-dark cycle. Brain Res., 2000, 880(1-2), 207-211.
[http://dx.doi.org/10.1016/S0006-8993(00)02806-7] [PMID: 11033009]
[131]
Leproult, R.; Van Onderbergen, A.; L’hermite-Balériaux, M.; Van Cauter, E.; Copinschi, G. Phase-shifts of 24-h rhythms of hormonal release and body temperature following early evening administration of the melatonin agonist agomelatine in healthy older men. Clin. Endocrinol. (Oxf.), 2005, 63(3), 298-304.
[http://dx.doi.org/10.1111/j.1365-2265.2005.02341.x] [PMID: 16117817]
[132]
Quera Salva, M.A.; Vanier, B.; Laredo, J.; Hartley, S.; Chapotot, F.; Moulin, C.; Lofaso, F.; Guilleminault, C. Major depressive disorder, sleep EEG and agomelatine: An open-label study. Int. J. Neuropsychopharmacol., 2007, 10(5), 691-696.
[PMID: 17477886]
[133]
Lopes, M.C.; Quera-Salva, M-A.; Guilleminault, C. Non-REM sleep instability in patients with major depressive disorder: Subjective improvement and improvement of non-REM sleep instability with treatment (Agomelatine). Sleep Med., 2007, 9(1), 33-41.
[http://dx.doi.org/10.1016/j.sleep.2007.01.011] [PMID: 17826314]
[134]
Tardito, D.; Perez, J.; Tiraboschi, E.; Musazzi, L.; Racagni, G.; Popoli, M. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: A critical overview. Pharmacol. Rev., 2006, 58(1), 115-134.
[http://dx.doi.org/10.1124/pr.58.1.7] [PMID: 16507885]
[135]
Serafini, G. Neuroplasticity and major depression, the role of modern antidepressant drugs. World J. Psychiatry, 2012, 2(3), 49-57.
[http://dx.doi.org/10.5498/wjp.v2.i3.49] [PMID: 24175168]
[136]
Can, Ö.D.; Üçel, U.İ.; Demir Özkay, Ü.; Ulupınar, E. The effect of agomelatine treatment on diabetes-induced cognitive impairments in rats: Concomitant alterations in the hippocampal neuron numbers. Int. J. Mol. Sci., 2018, 19(8), 2461.
[http://dx.doi.org/10.3390/ijms19082461] [PMID: 30127276]
[137]
Boulle, F.; Velthuis, H.; Koedam, K.; Steinbusch, H.W.; van den Hove, D.L.A.; Kenis, G.; Gabriel, C.; Mocaer, E.; Franc, B.; Rognan, D.; Mongeau, R.; Lanfumey, L. Behavioral and neurochemical characterization of TrkB-dependent mechanisms of agomelatine in glucocorticoid receptor-impaired mice. Eur. Neuropsychopharmacol., 2016, 26(1), 65-77.
[http://dx.doi.org/10.1016/j.euroneuro.2015.11.003] [PMID: 26653128]
[138]
Cirulli, F.; Alleva, E. The NGF saga: From animal models of psychosocial stress to stress-related psychopathology. Front. Neuroendocrinol., 2009, 30(3), 379-395.
[http://dx.doi.org/10.1016/j.yfrne.2009.05.002] [PMID: 19442684]
[139]
Katoh-Semba, R.; Tsuzuki, M.; Miyazaki, N.; Matsuda, M.; Nakagawa, C.; Ichisaka, S.; Sudo, K.; Kitajima, S.; Hamatake, M.; Hata, Y.; Nagata, K. A phase advance of the light-dark cycle stimulates production of BDNF, but not of other neurotrophins, in the adult rat cerebral cortex: Association with the activation of CREB. J. Neurochem., 2008, 106(5), 2131-2142.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05565.x] [PMID: 18636983]
[140]
Banasr, M.; Soumier, A.; Hery, M.; Mocaër, E.; Daszuta, A. Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol. Psychiatry, 2006, 59(11), 1087-1096.
[http://dx.doi.org/10.1016/j.biopsych.2005.11.025] [PMID: 16499883]
[141]
Demir Özkay, Ü.; Söztutar, E.; Can, Ö.D.; Üçel, U.İ.; Öztürk, Y.; Ulupinar, E. Effects of long-term agomelatine treatment on the cognitive performance and hippocampal plasticity of adult rats. Behav. Pharmacol., 2015, 26(5), 469-480.
[http://dx.doi.org/10.1097/FBP.0000000000000153] [PMID: 26110225]
[142]
Patrício, P; Mateus-Pinheiro, A; Irmler, M; Alves, ND; Machado-Santos, AR; Morais, M; Correia, JS; Korostynski, M; Piechota, M; Stoffel, R; Beckers, J. Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus. Neuropsychopharmacology., 2015, 40(2), 338-349.
[143]
Dagytė, G.; Trentani, A.; Postema, F.; Luiten, P.G.; Den Boer, J.A.; Gabriel, C.; Mocaër, E.; Meerlo, P.; Van der Zee, E.A. The novel antidepressant agomelatine normalizes hippocampal neuronal activity and promotes neurogenesis in chronically stressed rats. CNS Neurosci. Ther., 2010, 16(4), 195-207.
[http://dx.doi.org/10.1111/j.1755-5949.2009.00125.x] [PMID: 20236141]
[144]
Ionov, I.D.; Pushinskaya, I.I.; Gorev, N.P.; Frenkel, D.D. Antidepressants upregulate c-Fos expression in the lateral entorhinal cortex and hippocampal dorsal subiculum: Study in rats. Brain Res. Bull., 2019, 153, 102-108.
[http://dx.doi.org/10.1016/j.brainresbull.2019.08.015] [PMID: 31445055]
[145]
Sumner, B.E.; Cruise, L.A.; Slattery, D.A.; Hill, D.R.; Shahid, M.; Henry, B. Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs. Psychopharmacology (Berl.), 2004, 171(3), 306-321.
[http://dx.doi.org/10.1007/s00213-003-1579-7] [PMID: 13680075]
[146]
Boulle, F.; Massart, R.; Stragier, E.; Païzanis, E.; Zaidan, L.; Marday, S.; Gabriel, C.; Mocaer, E.; Mongeau, R.; Lanfumey, L. Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine. Transl. Psychiatry, 2014, 4(11), e485-e485.
[http://dx.doi.org/10.1038/tp.2014.125] [PMID: 25423137]
[147]
Martin, V.; Allaïli, N.; Euvrard, M.; Marday, T.; Riffaud, A.; Franc, B.; Mocaër, E.; Gabriel, C.; Fossati, P.; Lehericy, S.; Lanfumey, L. Effect of agomelatine on memory deficits and hippocampal gene expression induced by chronic social defeat stress in mice. Sci. Rep., 2017, 8(1), 45907.
[http://dx.doi.org/10.1038/srep45907] [PMID: 28374847]
[148]
Yucel, A.; Yucel, N.; Ozkanlar, S.; Polat, E.; Kara, A.; Ozcan, H.; Gulec, M. Effect of agomelatine on adult hippocampus apoptosis and neurogenesis using the stress model of rats. Acta Histochem., 2016, 118(3), 299-304.
[http://dx.doi.org/10.1016/j.acthis.2016.02.007] [PMID: 26970810]
[149]
Martinotti, G.; Pettorruso, M.; De Berardis, D.; Varasano, P.A.; Lucidi Pressanti, G.; De Remigis, V.; Valchera, A.; Ricci, V.; Di Nicola, M.; Janiri, L.; Biggio, G.; Di Giannantonio, M. Agomelatine increases bdnf serum levels in depressed patients in correlation with the improvement of depressive symptoms. Int. J. Neuropsychopharmacol., 2016, 19(5), pyw003.
[http://dx.doi.org/10.1093/ijnp/pyw003] [PMID: 26775293]
[150]
Popoli, M. Agomelatine: Innovative pharmacological approach in depression. CNS Drugs, 2009, 23(2), 27-34.
[http://dx.doi.org/10.2165/11318640-000000000-00000] [PMID: 19708723]
[151]
Canpolat, S.; Ülker, N.; Yardimci, A.; Bulmus, O.; Ozdemir, G.; Sahin, Z.; Ercan, Z.; Serhatlioğlu, I.; Kacar, E.; Ozcan, M.; Türk, G.; Ozkan, Y.; Atmaca, M.; Yilmaz, B.; Kelestimur, H. Studies on the reproductive effects of chronic treatment with agomelatine in the rat. Eur. J. Pharmacol., 2016, 770, 33-39.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.054] [PMID: 26643170]
[152]
Norman, T.R.; Cranston, I.; Irons, J.A.; Gabriel, C.; Dekeyne, A.; Millan, M.J.; Mocaër, E. Agomelatine suppresses locomotor hyperactivity in olfactory bulbectomised rats: A comparison to melatonin and to the 5-HT(2c) antagonist, S32006. Eur. J. Pharmacol., 2012, 674(1), 27-32.
[http://dx.doi.org/10.1016/j.ejphar.2011.10.010] [PMID: 22040921]
[153]
Bertaina-Anglade, V.; la Rochelle, C.D.; Boyer, P-A.; Mocaër, E. Antidepressant-like effects of agomelatine (S 20098) in the learned helplessness model. Behav. Pharmacol., 2006, 17(8), 703-713.
[http://dx.doi.org/10.1097/FBP.0b013e3280116e5c] [PMID: 17110796]
[154]
Lapmanee, S; Charoenphandhu, J Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats. 2017, 12(11), e0187671.
[155]
Schmelting, B.; Corbach-Söhle, S.; Kohlhause, S.; Schlumbohm, C.; Flügge, G.; Fuchs, E. Agomelatine in the tree shrew model of depression: effects on stress-induced nocturnal hyperthermia and hormonal status. Eur. Neuropsychopharmacol., 2014, 24(3), 437-447.
[http://dx.doi.org/10.1016/j.euroneuro.2013.07.010] [PMID: 23978391]
[156]
Papp, M.; Gruca, P.; Boyer, P-A.; Mocaër, E. Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology, 2003, 28(4), 694-703.
[http://dx.doi.org/10.1038/sj.npp.1300091] [PMID: 12655314]
[157]
Guardiola-Lemaitre, B.; De Bodinat, C.; Delagrange, P.; Millan, M.J.; Munoz, C.; Mocaër, E. Agomelatine: Mechanism of action and pharmacological profile in relation to antidepressant properties. Br. J. Pharmacol., 2014, 171(15), 3604-3619.
[http://dx.doi.org/10.1111/bph.12720] [PMID: 24724693]
[158]
Dekeyne, A.; Mannoury la Cour, C.; Gobert, A.; Brocco, M.; Lejeune, F.; Serres, F.; Sharp, T.; Daszuta, A.; Soumier, A.; Papp, M.; Rivet, J-M.; Flik, G.; Cremers, T.I.; Muller, O.; Lavielle, G.; Millan, M.J. S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology (Berl.), 2008, 199(4), 549-568.
[http://dx.doi.org/10.1007/s00213-008-1177-9] [PMID: 18523738]
[159]
Tardito, D.; Molteni, R.; Popoli, M.; Racagni, G. Synergistic mechanisms involved in the antidepressant effects of agomelatine. Eur. Neuropsychopharmacol., 2012, 22(Suppl. 3), S482-S486.
[http://dx.doi.org/10.1016/j.euroneuro.2012.06.016] [PMID: 22867907]
[160]
Barden, N.; Shink, E.; Labbé, M.; Vacher, R.; Rochford, J.; Mocaër, E. Antidepressant action of agomelatine (S 20098) in a transgenic mouse model. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(6), 908-916.
[http://dx.doi.org/10.1016/j.pnpbp.2005.04.032] [PMID: 16005135]
[161]
Millan, M.J.; Gobert, A.; Lejeune, F.; Dekeyne, A.; Newman-Tancredi, A.; Pasteau, V.; Rivet, J-M.; Cussac, D. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J. Pharmacol. Exp. Ther., 2003, 306(3), 954-964.
[http://dx.doi.org/10.1124/jpet.103.051797] [PMID: 12750432]
[162]
El Yacoubi, M.; Bouali, S.; Popa, D.; Naudon, L.; Leroux-Nicollet, I.; Hamon, M.; Costentin, J.; Adrien, J.; Vaugeois, J-M. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6227-6232.
[http://dx.doi.org/10.1073/pnas.1034823100] [PMID: 12732720]
[163]
Mutschler, J.; Rüsch, N.; Schönfelder, H.; Herwig, U.; Brühl, A.B.; Grosshans, M.; Rössler, W.; Russmann, H. Agomelatine for depression in schizophrenia: A case-series. Psychopharmacol. Bull., 2012, 45(1), 35-43.
[PMID: 27738367]
[164]
Englisch, S.; Jung, H.S.; Lewien, A.; Becker, A.; Nowak, U.; Braun, H.; Thiem, J.; Eisenacher, S.; Meyer-Lindenberg, A.; Zink, M. Agomelatine for the treatment of major depressive episodes in schizophrenia-spectrum disorders: An open-prospective proof-of- concept study. J. Clin. Psychopharmacol., 2016, 36(6), 597-607.
[http://dx.doi.org/10.1097/JCP.0000000000000587] [PMID: 27805978]
[165]
Montgomery, S.A.; Kasper, S. Severe depression and antidepressants: Focus on a pooled analysis of placebo-controlled studies on agomelatine. Int. Clin. Psychopharmacol., 2007, 22(5), 283-291.
[http://dx.doi.org/10.1097/YIC.0b013e3280c56b13] [PMID: 17690597]
[166]
Taylor, D.; Sparshatt, A.; Varma, S.; Olofinjana, O. Antidepressant efficacy of agomelatine: Meta-analysis of published and unpublished studies. BMJ, 2014, 348, g1888.
[167]
Koesters, M.; Guaiana, G.; Cipriani, A.; Becker, T.; Barbui, C. Agomelatine efficacy and acceptability revisited: Systematic review and meta-analysis of published and unpublished randomised trials. Br. J. Psychiatry, 2013, 203(3), 179-187.
[http://dx.doi.org/10.1192/bjp.bp.112.120196] [PMID: 23999482]
[168]
Pecenak, J.; Novotny, V. Agomelatine as monotherapy for major depression: An outpatient, open-label study. Neuropsychiatr. Dis. Treat., 2013, 9, 1595-1604.
[http://dx.doi.org/10.2147/NDT.S49062] [PMID: 24174876]
[169]
Ambresin, G.; Gunn, J. Does agomelatine have a place in the treatment of depression? BMJ, 2014, 348, g2157.
[http://dx.doi.org/10.1136/bmj.g2157] [PMID: 24650658]
[170]
Akpınar, E.; Cerit, C.; Talas, A.; Tural, Ü. Agomelatine versus sertraline: An observational, open-labeled and 12 weeks follow-up study on efficacy and tolerability. Clin. Psychopharmacol. Neurosci., 2016, 14(4), 351-356.
[http://dx.doi.org/10.9758/cpn.2016.14.4.351] [PMID: 27776387]
[171]
Kennedy, S.H.; Rizvi, S.J. Agomelatine in the treatment of major depressive disorder: potential for clinical effectiveness. CNS Drugs, 2010, 24(6), 479-499.
[http://dx.doi.org/10.2165/11534420-000000000-00000] [PMID: 20192279]
[172]
Huang, K.L.; Lu, W.C.; Wang, Y.Y.; Hu, G.C.; Lu, C.H.; Lee, W.Y.; Hsu, C.C. Comparison of agomelatine and selective serotonin reuptake inhibitors/serotonin-norepinephrine reuptake inhibitors in major depressive disorder: A meta-analysis of head-to-head randomized clinical trials. Aust. N. Z. J. Psychiatry, 2014, 48(7), 663-671.
[http://dx.doi.org/10.1177/0004867414525837] [PMID: 24604920]
[173]
Holper, L. Optimal doses of antidepressants in dependence on age: Combined covariate actions in Bayesian network meta-analysis. EClini. Medi., 2020, 18, 100219.
[http://dx.doi.org/10.1016/j.eclinm.2019.11.012] [PMID: 31993575]
[174]
Gorwood, P.; Benichou, J.; Moore, N.; Wattez, M.; Secouard, M.C.; Desobry, X.; Picarel-Blanchot, F. Agomelatine in standard medical practice in depressed patients: Results of a 1-year multicentre observational study in france. Cochrane Central Reg. Controll Trials, 2020, 40(11), 1009-1020.
[175]
Sikharulidze, G. Efficacy of agomelatine in depressive disorders with anxiety. Zh Nevrol Psikhiatr Im S S Korsakova, 2014, 113(11 Pt 2), 53-58.
[176]
Sharma, A.; Punhani, T.; Fone, K.C. Distribution of the 5-hydroxytryptamine2C receptor protein in adult rat brain and spinal cord determined using a receptor-directed antibody: effect of 5,7-dihydroxytryptamine. Synapse, 1997, 27(1), 45-56.
[http://dx.doi.org/10.1002/(SICI)1098-2396(199709)27:1<45::AID-SYN5>3.0.CO;2-D] [PMID: 9268064]
[177]
López-Giménez, J.F.; Tecott, L.H.; Palacios, J.M.; Mengod, G.; Vilaró, M.T. Serotonin 5- HT (2C) receptor knockout mice: Autoradiographic analysis of multiple serotonin receptors. J. Neurosci. Res., 2002, 67(1), 69-85.
[http://dx.doi.org/10.1002/jnr.10072] [PMID: 11754082]
[178]
Millan, M.J.; Brocco, M.; Gobert, A.; Dekeyne, A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: Role of 5-HT2C receptor blockade. Psychopharmacology (Berl.), 2005, 177(4), 448-458.
[http://dx.doi.org/10.1007/s00213-004-1962-z] [PMID: 15289999]
[179]
Loiseau, F.; Le Bihan, C.; Hamon, M.; Thiebot, MH. Effects of melatonin and agomelatine in anxiety-related procedures in rats: Interaction with diazepam. Eur. Neuropsychopharmacol., 2006, 16(6), 417-428.
[180]
Laux, G.; Barthel, B. Agomelatine in depressed patients with comorbid anxiety: Subgroup-analysis of the vivaldi-studies. Eur. Neuropsychopharmacol., 2019, 29, S376.
[http://dx.doi.org/10.1016/j.euroneuro.2018.11.575]
[181]
Buoli, M.; Grassi, S.; Serati, M.; Altamura, A.C. Agomelatine for the treatment of generalized anxiety disorder. Expert Opin. Pharmacother., 2017, 18(13), 1373-1379.
[http://dx.doi.org/10.1080/14656566.2017.1359257] [PMID: 28730851]
[182]
Mochcovitch, M.D.; da Rocha Freire, R.C.; Garcia, R.F.; Nardi, A.E. Can long-term pharmacotherapy prevent relapses in generalized anxiety disorder? A systematic review. Clin. Drug Investig., 2017, 37(8), 737-743.
[http://dx.doi.org/10.1007/s40261-017-0528-x] [PMID: 28432583]
[183]
Levitan, M.N.; Papelbaum, M.; Nardi, A.E. Profile of agomelatine and its potential in the treatment of generalized anxiety disorder. Neuropsychiatr. Dis. Treat., 2015, 11, 1149-1155.
[http://dx.doi.org/10.2147/NDT.S67470] [PMID: 25999720]
[184]
Stein, D.J.; Ahokas, A.; Jarema, M.; Avedisova, A.S.; Vavrusova, L.; Chaban, O.; Gruget, C.; Olivier, V.; Picarel-Blanchot, F.; de Bodinat, C. Efficacy and safety of agomelatine (10 or 25 mg/day) in non-depressed out-patients with generalized anxiety disorder: A 12-week, double-blind, placebo-controlled study. Eur. Neuropsychopharmaco., 2017, 27(5), 526-537.
[185]
Slee, A.; Nazareth, I.; Bondaronek, P.; Liu, Y.; Cheng, Z.; Freemantle, N. Pharmacological treatments for generalised anxiety disorder: A systematic review and network meta-analysis. Lancet, 2019, 393(10173), 768-777.
[http://dx.doi.org/10.1016/S0140-6736(18)31793-8] [PMID: 30712879]
[186]
Wang, SM; Woo, YS Agomelatine for the treatment of generalized anxiety disorder: A meta-analysis. 2020, 18(3), 423-433.
[187]
Stein, D.J.; Ahokas, A.A.; de Bodinat, C. Efficacy of agomelatine in generalized anxiety disorder: A randomized, double-blind, placebo-controlled study. J. Clin. Psychopharmacol., 2008, 28(5), 561-566.
[http://dx.doi.org/10.1097/JCP.0b013e318184ff5b] [PMID: 18794654]
[188]
Yoldi, M.; Palars, C.; Carvajal-Lohr, A.; Montserrat, R-R.; Alejandra, M-M. Agomelatine for bipolar depression: A chronotherapeutic agent? Curr. Psychopharmacol., 2015, 4, 1-1.
[189]
Geoffroy, P.A.; Etain, B.; Franchi, J.A.; Bellivier, F.; Ritter, P. Melatonin and melatonin agonists as adjunctive treatments in bipolar disorders. Curr. Pharm. Des., 2015, 21(23), 3352-3358.
[http://dx.doi.org/10.2174/1381612821666150619093448] [PMID: 26088111]
[190]
Delaveau, P.; Jabourian, M.; Lemogne, C.; Allaïli, N.; Choucha, W.; Girault, N.; Lehericy, S.; Laredo, J.; Fossati, P. Antidepressant short-term and long-term brain effects during self-referential processing in major depression. Psychiatry Res. Neuroimaging, 2016, 247, 17-24.
[http://dx.doi.org/10.1016/j.pscychresns.2015.11.007] [PMID: 26655583]
[191]
Cao, B.; Zhu, J.; Zuckerman, H.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Subramanieapillai, M.; Park, C.; Lee, Y.; McIntyre, R.S. Pharmacological interventions targeting anhedonia in patients with major depressive disorder: A systematic review. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 92, 109-117.
[http://dx.doi.org/10.1016/j.pnpbp.2019.01.002] [PMID: 30611836]
[192]
Martinotti, G.; Sepede, G.; Di Nicola, M.; Di Iorio, G.; Gambi, F.; De Risio, L.; Janiri, L.; Di Giannantonio, M. O-35 - agomelatine versus venlafaxine in the treatment of anhedonia in major depressive subjects: A pilot study. Eur. Psychiatry, 2012, 27, 1.
[http://dx.doi.org/10.1016/S0924-9338(12)74135-4]
[193]
Gargoloff, P.D.; Corral, R.; Herbst, L.; Marquez, M.; Martinotti, G.; Gargoloff, P.R. Effectiveness of agomelatine on anhedonia in depressed patients: An outpatient, open-label, real-world study. Hum. Psychopharmacol., 2016, 31(6), 412-418.
[http://dx.doi.org/10.1002/hup.2557] [PMID: 27859669]
[194]
Di Giannantonio, M.; Martinotti, G. Anhedonia and major depression: The role of agomelatine. Eur. Neuropsychopharmacol., 2012, 22(Suppl. 3), S505-S510.
[http://dx.doi.org/10.1016/j.euroneuro.2012.07.004] [PMID: 22959116]
[195]
Di Giannantonio, M.; Di Iorio, G.; Guglielmo, R.; De Berardis, D.; Conti, C.M.; Acciavatti, T.; Cornelio, M.; Martinotti, G. Major depressive disorder, anhedonia and agomelatine: An open-label study. J. Biol. Regul. Homeost. Agents, 2011, 25(1), 109-114.
[PMID: 21382280]
[196]
Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; Egger, M.; Takeshima, N.; Hayasaka, Y.; Imai, H.; Shinohara, K.; Tajika, A.; Ioannidis, J.P.A.; Geddes, J.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet, 2018, 391(10128), 1357-1366.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[197]
Shao, M.; Lin, X.; Jiang, D.; Tian, H.; Xu, Y.; Wang, L.; Ji, F.; Zhou, C.; Song, X.; Zhuo, C. Depression and cardiovascular disease: Shared molecular mechanisms and clinical implications. Psychiatry Res., 2020, 285, 112802.
[http://dx.doi.org/10.1016/j.psychres.2020.112802] [PMID: 32036152]
[198]
Chen, Z.; Wu, Y.; Duan, J.; Yang, L. The cholinergic anti-inflammatory pathway could be an important mechanism underling the comorbidity of depression and cardiovascular disease: A comment to Shao et al. Psychiatry Res., 2020, 286, 112881.
[http://dx.doi.org/10.1016/j.psychres.2020.112881] [PMID: 32097776]
[199]
Goodwin, G.M.; Emsley, R.; Rembry, S.; Rouillon, F. Agomelatine prevents relapse in patients with major depressive disorder without evidence of a discontinuation syndrome: A 24-week randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry, 2009, 70(8), 1128-1137.
[http://dx.doi.org/10.4088/JCP.08m04548] [PMID: 19689920]
[200]
Medvedev, V.E. Agomelatine in the treatment of mild-to-moderate depression in patients with cardiovascular disease: results of the national multicenter observational study PULSE. Neuropsychiatr. Dis. Treat., 2017, 13, 1141-1151.
[http://dx.doi.org/10.2147/NDT.S129793] [PMID: 28461750]
[201]
Yeh, T.C.; Kao, L.C.; Tzeng, N.S.; Kuo, T.B.; Huang, S.Y.; Chang, C.C.; Chang, H.A. Heart rate variability in major depressive disorder and after antidepressant treatment with agomelatine and paroxetine: Findings from the Taiwan Study of Depression and Anxiety (TAISDA). Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 60-67.
[http://dx.doi.org/10.1016/j.pnpbp.2015.07.007] [PMID: 26216863]
[202]
Chang, CC; Tzeng, NS; Yeh, CB; Kuo, TBJ; Huang, SY; Chang, HA Effects of depression and melatonergic antidepressant treatment alone and in combination with sedative-hypnotics on heart rate variability: Implications for cardiovascular risk. World J. Biol. Psychiatry, 2018, 19(5), 368-378.
[203]
Montgomery, S.A.; Kennedy, S.H.; Burrows, G.D.; Lejoyeux, M.; Hindmarch, I. Absence of discontinuation symptoms with agomelatine and occurrence of discontinuation symptoms with paroxetine: A randomized, double-blind, placebo-controlled discontinuation study. Int. Clin. Psychopharmacol., 2004, 19(5), 271-280.
[http://dx.doi.org/10.1097/01.yic.0000137184.64610.c8] [PMID: 15289700]
[204]
Chernova, E.V.; Kozhechkina, O.V.; Ter-Israelyan, A.Y.; Medvedev, V.E. Agomelatine (valdoxan) in treatment of endogenous depression in day patient department. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2016, 116(10), 43-46.
[http://dx.doi.org/10.17116/jnevro201611610143-46] [PMID: 27845315]
[205]
Krause, M; Gutsmiedl, K; Bighelli, I; Schneider-Thoma, J; Chaimani, A; Leucht, S Efficacy and tolerability of pharmacological and non-pharmacological interventions in older patients with major depressive disorder: A systematic review, pairwise and network meta-analysis. European., 2019, 29(9), 1003-1022.
[http://dx.doi.org/10.1016/j.euroneuro.2019.07.130]
[206]
Potměšil, P. What combinations of agomelatine with other antidepressants could be successful during the treatment of major depressive disorder or anxiety disorders in clinical practice? Ther. Adv. Psychopharmacol., 2019, 9, 2045125319855206.
[http://dx.doi.org/10.1177/2045125319855206] [PMID: 31312426]
[207]
Poleszak, E.; Wośko, S.; Sławińska, K.; Wyska, E.; Szopa, A.; Świąder, K.; Wróbel, A.; Doboszewska, U.; Wlaź, P.; Wlaź, A.; Serefko, A. Influence of the CB1 and CB2 cannabinoid receptor ligands on the activity of atypical antidepressant drugs in the behavioural tests in mice. Pharmacol. Biochem. Behav., 2020, 188, 172833.
[http://dx.doi.org/10.1016/j.pbb.2019.172833] [PMID: 31785246]
[208]
Shbiro, L.; Hen-Shoval, D.; Hazut, N.; Rapps, K.; Dar, S.; Zalsman, G.; Mechoulam, R.; Weller, A.; Shoval, G. Effects of cannabidiol in males and females in two different rat models of depression. Physiol. Behav., 2019, 201, 59-63.
[http://dx.doi.org/10.1016/j.physbeh.2018.12.019] [PMID: 30571957]
[209]
McAllister-Williams, R.H.; Baldwin, D.S.; Haddad, P.M.; Bazire, S. The use of antidepressants in clinical practice: Focus on agomelatine. Hum. Psychopharmacol., 2010, 25(2), 95-102.
[http://dx.doi.org/10.1002/hup.1094] [PMID: 20196187]
[210]
Pladevall-Vila, M.; Pottegård, A.; Schink, T.; Reutfors, J.; Morros, R.; Poblador-Plou, B.; Timmer, A.; Forns, J.; Hellfritzsch, M.; Reinders, T.; Hägg, D.; Giner-Soriano, M.; Prados-Torres, A.; Cainzos-Achirica, M.; Hallas, J.; Brandt, L.; Cortés, J.; Aguado, J.; Perlemuter, G.; Falissard, B.; Castellsagué, J.; Jacquot, E.; Deltour, N.; Perez-Gutthann, S. Risk of acute liver injury in agomelatine and other antidepressant users in four european countries: A cohort and nested case-control study using automated health data sources. CNS Drugs, 2019, 33(4), 383-395.
[http://dx.doi.org/10.1007/s40263-019-00611-9] [PMID: 30830574]
[211]
Amitai, M.; Zivony, A.; Kronenberg, S.; Nagar, L.; Saar, S.; Sever, J.; Apter, A.; Shoval, G.; Golubchik, P.; Hermesh, H.; Weizman, A.; Zalsman, G. Short-term effects of lithium on white blood cell counts and on levels of serum thyroid-stimulating hormone and creatinine in adolescent inpatients: A retrospective naturalistic study. J. Child Adolesc. Psychopharmacol., 2014, 24(9), 494-500.
[http://dx.doi.org/10.1089/cap.2013.0046] [PMID: 24828326]
[212]
Kennedy, S.H.; Emsley, R. Placebo-controlled trial of agomelatine in the treatment of major depressive disorder. Eur. Neuropsychopharmacol., 2006, 16(2), 93-100.
[http://dx.doi.org/10.1016/j.euroneuro.2005.09.002] [PMID: 16249073]
[213]
Lemoine, P.; Guilleminault, C.; Alvarez, E. Improvement in subjective sleep in major depressive disorder with a novel antidepressant, agomelatine: Randomized, double-blind comparison with venlafaxine. J. Clin. Psychiatry, 2007, 68(11), 1723-1732.
[http://dx.doi.org/10.4088/JCP.v68n1112] [PMID: 18052566]
[214]
Olié, J.P.; Kasper, S. Efficacy of agomelatine, a MT1/MT2 receptor agonist with 5-HT2C antagonistic properties, in major depressive disorder. Int. J. Neuropsychopharmacol., 2007, 10(5), 661-673.
[PMID: 17477888]
[215]
Kennedy, S.H.; Rizvi, S.; Fulton, K.; Rasmussen, J. A double-blind comparison of sexual functioning, antidepressant efficacy, and tolerability between agomelatine and venlafaxine XR. J. Clin. Psychopharmacol., 2008, 28(3), 329-333.
[http://dx.doi.org/10.1097/JCP.0b013e318172b48c] [PMID: 18480691]
[216]
Hale, A.; Corral, R.; Mencacci, O.; Ruiz, J.; Severo, C.; Gentil, V. Superior antidepressant efficacy of agomelatine versus fluoxetine in severe major depressive disorder: A randomised, double-blind study. Eur. Neuropsychopharmacol., 2010, 25(6), 305-314.
[PMID: 20856123]
[217]
Kasper, S.; Hajak, G.; Wulff, K.; Hoogendijk, W.J.; Montejo, A.L.; Smeraldi, E.; Rybakowski, J.K.; Quera-Salva, M-A.; Wirz-Justice, A.M.; Picarel-Blanchot, F.; Baylé, F.J. Efficacy of the novel antidepressant agomelatine on the circadian rest-activity cycle and depressive and anxiety symptoms in patients with major depressive disorder: A randomized, double-blind comparison with sertraline. J. Clin. Psychiatry, 2010, 71(2), 109-120.
[http://dx.doi.org/10.4088/JCP.09m05347blu] [PMID: 20193645]
[218]
Zajecka, J.; Schatzberg, A.; Stahl, S.; Shah, A.; Caputo, A.; Post, A. Efficacy and safety of agomelatine in the treatment of major depressive disorder: A multicenter, randomized, double-blind, placebo-controlled trial. J. Clin. Psychopharmacol., 2010, 30(2), 135-144.
[http://dx.doi.org/10.1097/JCP.0b013e3181d420a7] [PMID: 20520286]
[219]
Stahl, S.M.; Fava, M.; Trivedi, M.H.; Caputo, A.; Shah, A.; Post, A. Agomelatine in the treatment of major depressive disorder: An 8-week, multicenter, randomized, placebo-controlled trial. J. Clin. Psychiatry, 2010, 71(5), 616-626.
[http://dx.doi.org/10.4088/JCP.09m05471blu] [PMID: 20361916]
[220]
Martinotti, G.; Sepede, G.; Gambi, F.; Di Iorio, G.; De Berardis, D.; Di Nicola, M.; Onofrj, M.; Janiri, L.; Di Giannantonio, M. Agomelatine versus venlafaxine XR in the treatment of anhedonia in major depressive disorder: A pilot study. J. Clin. Psychopharmacol., 2012, 32(4), 487-491.
[http://dx.doi.org/10.1097/JCP.0b013e31825d6c25] [PMID: 22722509]
[221]
Heun, R.; Corral, R.M.; Ahokas, A.; Nicolini, H.; Teixeira, J.M.; Dehelean, P. 1643 – efficacy of agomelatine in more anxious elderly depressed patients. A randomized, double-blind study vs placebo. Eur. Psychiatry, 2013, 28, 1.
[http://dx.doi.org/10.1016/S0924-9338(13)76634-3]
[222]
Stein, D.J.; Picarel-Blanchot, F.; Kennedy, S.H. Efficacy of the novel antidepressant agomelatine for anxiety symptoms in major depression. Hum. Psychopharmacol., 2013, 28(2), 151-159.
[http://dx.doi.org/10.1002/hup.2294] [PMID: 23532747]
[223]
Fornaro, M.; McCarthy, M.J.; De Berardis, D.; De Pasquale, C.; Tabaton, M.; Martino, M.; Colicchio, S.; Cattaneo, C.I.; D’Angelo, E.; Fornaro, P. Adjunctive agomelatine therapy in the treatment of acute bipolar II depression: A preliminary open label study. Neuropsychiatr. Dis. Treat., 2013, 9, 243-251.
[http://dx.doi.org/10.2147/NDT.S41557] [PMID: 23430979]
[224]
Yatham, L.N.; Vieta, E.; Goodwin, G.M.; Bourin, M.; de Bodinat, C.; Laredo, J.; Calabrese, J. Agomelatine or placebo as adjunctive therapy to a mood stabiliser in bipolar I depression: Randomised double-blind placebo-controlled trial. Br. J. Psychiatry, 2016, 208(1), 78-86.
[http://dx.doi.org/10.1192/bjp.bp.114.147587] [PMID: 25999335]
[225]
Stein, DJ; Khoo, JP; Ahokas, A; Jarema, M; Van Ameringen, M; Vavrusova, L; Hӧschl, C; Bauer, M; Bitter, I; Mosolov, SN; Olivier, V. 12-week double-blind randomized multicenter study of efficacy and safety of agomelatine (25-50 mg/day) versus escitalopram (10-20 mg/day) in out-patients with severe generalized anxiety disorder. Eur. Neuropsychopharmacol., 2018, 28(8), 970-979.
[226]
Shu, L.; Sulaiman, A.H.; Huang, Y.S.; Fones Soon Leng, C.; Crutel, V.S.; Kim, Y.S. Comparable efficacy and safety of 8 weeks treatment with agomelatine 25-50mg or fluoxetine 20-40mg in Asian out-patients with major depressive disorder. Asian J. Psychiatr., 2014, 8, 26-32.
[http://dx.doi.org/10.1016/j.ajp.2013.09.009] [PMID: 24655622]
[227]
Pribytkov, A.A.; Panova, N.B.; Popova, Y.V.; Emtsov, K.G. Efficacy of agomelatine in depressive disorders with anxiety. Neurosci. Behav. Physiol., 2015, 45(4), 393-397.
[http://dx.doi.org/10.1007/s11055-015-0087-7]
[228]
Komaram, R.B.; Nukala, S.; Palla, J.; Nambaru, L.R.; Kasturi, S.M. A comparative study of efficacy and safety of agomelatine and escitalopram in major depressive disorder. J. Clin. Diagn. Res., 2015, 9(6), VC05-VC08.
[PMID: 26266196]
[229]
Montejo, A.L.; Deakin, J.F.; Gaillard, R.; Harmer, C.; Meyniel, F.; Jabourian, A.; Gabriel, C.; Gruget, C.; Klinge, C.; MacFayden, C.; Milligan, H.; Mullings, E.; Goodwin, G. Better sexual acceptability of agomelatine (25 and 50 mg) compared to escitalopram (20 mg) in healthy volunteers. A 9-week, placebo-controlled study using the PRSexDQ scale. J. Psychopharmacol., 2015, 29(10), 1119-1128.
[http://dx.doi.org/10.1177/0269881115599385] [PMID: 26268533]
[230]
Kennedy, S.H.; Avedisova, A.; Belaïdi, C.; Picarel-Blanchot, F.; de Bodinat, C. Sustained efficacy of agomelatine 10 mg, 25 mg, and 25-50 mg on depressive symptoms and functional outcomes in patients with major depressive disorder. A placebo-controlled study over 6 months. Eur. Neuropsychopharmacol., 2016, 26(2), 378-389.
[http://dx.doi.org/10.1016/j.euroneuro.2015.09.006] [PMID: 26708320]
[231]
Kennedy, S.H.; Heun, R.; Avedisova, A.; Ahokas, A.; Olivier, V.; Picarel-Blanchot, F.; de Bodinat, C. Effect of agomelatine 25-50 mg on functional outcomes in patients with major depressive disorder. J. Affect. Disord., 2018, 238, 122-128.
[http://dx.doi.org/10.1016/j.jad.2018.05.060] [PMID: 29879606]
[232]
Yu, Y-M.; Gao, K-R.; Yu, H.; Shen, Y-F.; Li, H-F. Efficacy and safety of agomelatine vs paroxetine hydrochloride in chinese han patients with major depressive disorder: A multicentre, double-blind, noninferiority, randomized controlled trial. J. Clin. Psychopharmacol., 2018, 38(3), 226-233.
[http://dx.doi.org/10.1097/JCP.0000000000000878] [PMID: 29620692]
[233]
di Giannantonio, M.; Montemitro, C.; Sepede, G.; Brunetti, M.; Baroni, G.; Corbo, M.; Anders, M.; Tavčar, R.; Martinotti, G.; Manzoli, L. Agomelatine effectiveness, tolerability, and impact on anhedonia in major depression: A pooled analysis. J. Clin. Psychopharmacol., 2019, 39(3), 288-290.
[http://dx.doi.org/10.1097/JCP.0000000000001038] [PMID: 30932949]
[234]
Cerou, M.; Peigné, S.; Comets, E.; Chenel, M. Application of item response theory to model disease progression and agomelatine effect in patients with major depressive disorder. AAPS J., 2019, 22(1), 4.
[http://dx.doi.org/10.1208/s12248-019-0379-x] [PMID: 31720897]
[235]
Konstantakopoulos, G.; Dimitrakopoulos, S.; Michalopoulou, P.G. The preclinical discovery and development of agomelatine for the treatment of depression. Expert Opin. Drug Discov., 2020, 15(10), 1121-1132.
[http://dx.doi.org/10.1080/17460441.2020.1781087] [PMID: 32568567]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy