Review Article

鞘脂和溶血磷脂酸对肿瘤免疫微环境的调节作用

卷 23, 期 6, 2022

发表于: 14 January, 2022

页: [559 - 573] 页: 15

弟呕挨: 10.2174/1389450122666211208111833

价格: $65

摘要

肿瘤微环境(TME)由癌细胞组成,癌细胞与细胞外基质、血液和淋巴网络、成纤维细胞、脂肪细胞和免疫系统细胞等基质成分相互作用。此外,以肿瘤浸润性免疫细胞(TIIC)为代表的肿瘤免疫微环境在肿瘤治疗和患者预后中发挥着重要作用。事实上,众所周知,在肿瘤微环境中高密度的TIICs与几种类型的癌症的更好的治疗效果有关。为此,两种生物活性脂质分子,溶血磷脂酸(LPA)和鞘氨醇-1-磷酸(S1P),调节免疫细胞对TME的归位。本文将揭示LPA和S1P信号通路在肿瘤免疫环境中的作用,重点介绍这一领域的最新进展。

关键词: 肿瘤微环境,肿瘤浸润免疫细胞,肿瘤浸润淋巴细胞,鞘氨醇-1-磷酸,溶血磷脂酸,免疫系统。

图形摘要

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424. http://www.ncbi. nlm.nih.gov/pubmed/30207593
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Bray FMC, Mery L, Piñeros M, et al. Cancer Incidence in Five Continents. In: Bray F, Colombet M, Mery L, et al., Eds., IARC Scientific Publication No. 166, vol. XI. 2021; p.
[4]
Cheng YQ, Wang SB, Liu JH, et al. Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Prolif 2020; 53(8): e12865.
[http://dx.doi.org/10.1111/cpr.12865] [PMID: 32588948]
[5]
Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989; 8(2): 98-101.
[PMID: 2673568]
[6]
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci 2012; 125(23): 5591-6.
[7]
Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21(3): 309-22.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[8]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[9]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74. http://www.ncbi.nlm.nih.gov/ pubmed/21376230
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[10]
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454(7203): 436-44.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[11]
Truffi M, Sorrentino L, Corsi F. Fibroblasts in the tumor microenvironment. Adv Exp Med Biol 2020; 1234: 15-29.
[http://dx.doi.org/10.1007/978-3-030-37184-5_2] [PMID: 32040852]
[12]
Mortezaee K, Parwaie W, Motevaseli E, et al. Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76: 105847.
[http://dx.doi.org/10.1016/j.intimp.2019.105847] [PMID: 31466051]
[13]
Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 2016; 40: 41-8.
[http://dx.doi.org/10.1016/j.copbio.2016.02.007] [PMID: 26938687]
[14]
Del Prete A, Schioppa T, Tiberio L, Stabile H, Sozzani S. Leukocyte trafficking in tumor microenvironment. Curr Opin Pharmacol 2017; 35: 40-7.
[http://dx.doi.org/10.1016/j.coph.2017.05.004] [PMID: 28577499]
[15]
Seager RJ, Hajal C, Spill F, Kamm RD, Zaman MH. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Converg Sci Phys Oncol 2017; 3: 034002.
[http://dx.doi.org/10.1088/2057-1739/aa7e86] [PMID: 30079253]
[16]
Schreiber RD, Old LJ, Smyth MJ. Promotion immunity’s roles in cancer suppression and promotion. Science 2011; 331: 1565-70.
[17]
de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6(1): 24-37.
[http://dx.doi.org/10.1038/nrc1782] [PMID: 16397525]
[18]
Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016; 17(7): 956-65.
[http://dx.doi.org/10.1016/S1470-2045(16)30066-3] [PMID: 27247226]
[19]
Garassino MC, Gadgeel S, Esteban E, et al. Patient-reported outcomes following pembrolizumab or placebo plus pemetrexed and platinum in patients with previously untreated, metastatic, non-squamous non-small-cell lung cancer (KEYNOTE-189): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2020; 21(3): 387-97.
[http://dx.doi.org/10.1016/S1470-2045(19)30801-0] [PMID: 32035514]
[20]
Imbert C, Montfort A, Fraisse M, et al. Resistance of melanoma to immune checkpoint inhibitors is overcome by targeting the sphingosine kinase-1. Nat Commun 2020; 11(1): 437.
[http://dx.doi.org/10.1038/s41467-019-14218-7] [PMID: 31974367]
[21]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[22]
Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2018; 15(3): 151-67.
[http://dx.doi.org/10.1038/nrclinonc.2017.175] [PMID: 29134959]
[23]
Villanueva N, Bazhenova L. New strategies in immunotherapy for lung cancer: beyond PD-1/PD-L1. Ther Adv Respir Dis 2018; 12: 1753466618794133.
[http://dx.doi.org/10.1177/1753466618794133] [PMID: 30215300]
[24]
Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 2019; 38(1): 156.
[http://dx.doi.org/10.1186/s13046-019-1094-2] [PMID: 30975211]
[25]
Zeng W, Yin X, Jiang Y, Jin L, Liang W. PPARα at the crossroad of metabolic-immune regulation in cancer. FEBS J 2021.
[http://dx.doi.org/10.1111/febs.16181]
[26]
El-Kenawi A, Dominguez-Viqueira W, Liu M, et al. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res 2021; 81(21): 5477-5490.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-4028] [PMID: 34301759]
[27]
da Silva Junior IA, Stone SC, Rossetti RM, Jancar S, Lepique AP. Modulation of tumor-associated macrophages (TAM) phenotype by platelet-activating factor (PAF) receptor. J Immunol Res 2017; 2017: 5482768.
[http://dx.doi.org/10.1155/2017/5482768] [PMID: 29445756]
[28]
Lee SC, Dacheux MA, Norman DD, et al. Regulation of tumor immunity by lysophosphatidic acid. Cancers (Basel) 2020; 12(5): 1202.
[http://dx.doi.org/10.3390/cancers12051202] [PMID: 32397679]
[29]
Schneider G. S1P signaling in the tumor microenvironment. Adv Exp Med Biol 2020; 1223: 129-53.
[http://dx.doi.org/10.1007/978-3-030-35582-1_7] [PMID: 32030688]
[30]
Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006; 1: 119-50.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100224] [PMID: 18039110]
[31]
Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 2012; 109(8): 2796-801.
[http://dx.doi.org/10.1073/pnas.1104303108] [PMID: 21825174]
[32]
Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7(3): 211-7.
[http://dx.doi.org/10.1016/j.ccr.2005.02.013] [PMID: 15766659]
[33]
Chen Q, Zhang XHF, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 2011; 20(4): 538-49.
[http://dx.doi.org/10.1016/j.ccr.2011.08.025] [PMID: 22014578]
[34]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[35]
van Kempen LCL, de Visser KE, Coussens LM. Inflammation, proteases and cancer. Eur J Cancer 2006; 42(6): 728-34.
[http://dx.doi.org/10.1016/j.ejca.2006.01.004] [PMID: 16524717]
[36]
Ruffell B, DeNardo DG, Affara NI, Coussens LM. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 2010; 21(1): 3-10.
[http://dx.doi.org/10.1016/j.cytogfr.2009.11.002] [PMID: 20005150]
[37]
Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10(9): 942-9.
[http://dx.doi.org/10.1038/nm1093] [PMID: 15322536]
[38]
van der Vliet HJJ, Koon HB, Atkins MB, Balk SP, Exley MA. Exploiting regulatory T-cell populations for the immunotherapy of cancer. J Immunother 2007; 30(6): 591-5.
[http://dx.doi.org/10.1097/CJI.0b013e31805ca058] [PMID: 17667522]
[39]
Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21(2): 137-48.
[http://dx.doi.org/10.1016/j.immuni.2004.07.017] [PMID: 15308095]
[40]
Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 2007; 19(2): 203-8.
[http://dx.doi.org/10.1016/j.coi.2007.02.001] [PMID: 17292599]
[41]
Martin-Orozco N, Muranski P, Chung Y, et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 2009; 31(5): 787-98.
[http://dx.doi.org/10.1016/j.immuni.2009.09.014] [PMID: 19879162]
[42]
Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6(11): 836-48.
[http://dx.doi.org/10.1038/nri1961] [PMID: 17063185]
[43]
Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev 2007; 220: 129-50.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00575.x] [PMID: 17979844]
[44]
Smyth MJ, Thia KYT, Street SEA, et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000; 191(4): 661-8.
[http://dx.doi.org/10.1084/jem.191.4.661] [PMID: 10684858]
[45]
Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest 2007; 117(5): 1137-46.
[http://dx.doi.org/10.1172/JCI31405] [PMID: 17476343]
[46]
Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007; 450(7171): 903-7.
[http://dx.doi.org/10.1038/nature06309] [PMID: 18026089]
[47]
De Palma M, Coussens LM. Immune cells and inflammatory mediators as regulators of tumor angiogenesis. Angiogenesis: An Integrative Approach From Science to Medicine. 2008; pp. 225-38.
[http://dx.doi.org/10.1007/978-0-387-71518-6_20]
[48]
Lin EY, Li JF, Bricard G, et al. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol 2007; 1(3): 288-302.
[http://dx.doi.org/10.1016/j.molonc.2007.10.003] [PMID: 18509509]
[49]
Takabe K, Spiegel S. Export of sphingosine-1-phosphate and cancer progression. J Lipid Res 2014; 55(9): 1839-46.
[http://dx.doi.org/10.1194/jlr.R046656] [PMID: 24474820]
[50]
Pyne NJ, Pyne S. Sphingosine 1-phosphate and cancer. Nat Rev Cancer 2010; 10(7): 489-503.
[http://dx.doi.org/10.1038/nrc2875] [PMID: 20555359]
[51]
Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 2018; 18(1): 33-50.
[http://dx.doi.org/10.1038/nrc.2017.96] [PMID: 29147025]
[52]
Pyne NJ, Pyne S. Sphingosine 1-phosphate is a missing link between chronic inflammation and colon cancer. Cancer Cell 2013; 23(1): 5-7.
[http://dx.doi.org/10.1016/j.ccr.2012.12.005] [PMID: 23328479]
[53]
Liang J, Nagahashi M, Kim EY, et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 2013; 23(1): 107-20.
[http://dx.doi.org/10.1016/j.ccr.2012.11.013] [PMID: 23273921]
[54]
Nagahashi M, Takabe K, Terracina KP, et al. Sphingosine-1-phosphate transporters as targets for cancer therapy. Biomed Res Int 2014; 2014
[http://dx.doi.org/10.1155/2014/651727]
[55]
Kumar A, Saba JD. Sphingosine-1-Phosphate. In: Choi S, Ed. Encyclopedia of Signaling Molecules 2nd Edition. Cham, Switzerland: Springer International Publishing 2018.
[http://dx.doi.org/10.1007/978-3-319-67199-4_452]
[56]
Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 2011; 11(6): 403-15.
[http://dx.doi.org/10.1038/nri2974] [PMID: 21546914]
[57]
Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Angio Integr Approach Sci Med 2008; 8: 753-63.
[http://dx.doi.org/10.1038/nri2400] [PMID: 18787560]
[58]
Kumar A, Saba JD. Regulation of immune cell migration by sphingosine-1-phosphate. Cell Mol Biol 2015; 61(2): 1-10.
[PMID: 26025394]
[59]
Kumar A, Zamora-Pineda J, Degagné E, Saba JD. S1P lyase regulation of thymic egress and oncogenic inflammatory signaling. Mediators Inflamm 2017; 2017: 7685142.
[http://dx.doi.org/10.1155/2017/7685142] [PMID: 29333002]
[60]
Hu YL, Tee MK, Goetzl EJ, et al. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst 2001; 93(10): 762-8.
[http://dx.doi.org/10.1093/jnci/93.10.762] [PMID: 11353786]
[61]
Vogt W. Pharamacologically active acidic phospholipids and glycolipids. Biochem Pharmacol 1963; 12: 415-20.
[http://dx.doi.org/10.1016/0006-2952(63)90074-1] [PMID: 13997687]
[62]
Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 2003; 3(8): 582-91.
[http://dx.doi.org/10.1038/nrc1143] [PMID: 12894246]
[63]
Ray R, Jangde N, Singh SK, Sinha S, Rai V. Lysophosphatidic acid-RAGE axis promotes lung and mammary oncogenesis via protein kinase B and regulating tumor microenvironment. Cell Commun Signal 2020; 18(1): 170.
[http://dx.doi.org/10.1186/s12964-020-00666-y] [PMID: 33109194]
[64]
Liu S, Umezu-Goto M, Murph M, et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell 2009; 15(6): 539-50.
[http://dx.doi.org/10.1016/j.ccr.2009.03.027] [PMID: 19477432]
[65]
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic acid receptors: Biochemical and clinical implications in different diseases. J Cancer 2020; 11(12): 3519-35.
[http://dx.doi.org/10.7150/jca.41841] [PMID: 32284748]
[66]
Nakamura K, Ohkawa R, Okubo S, et al. Measurement of lysophospholipase D/autotaxin activity in human serum samples. Clin Biochem 2007; 40(3-4): 274-7.
[http://dx.doi.org/10.1016/j.clinbiochem.2006.10.009] [PMID: 17222397]
[67]
Tokumura A. Physiological and pathophysiological roles of lysophosphatidic acids produced by secretory lysophospholipase D in body fluids. Biochim Biophys Acta 2002; 1582(1-3): 18-25.
[http://dx.doi.org/10.1016/S1388-1981(02)00133-6] [PMID: 12069806]
[68]
Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 2003; 1638(1): 1-19.
[http://dx.doi.org/10.1016/S0925-4439(03)00058-9] [PMID: 12757929]
[69]
Houben AJS, Moolenaar WH. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev 2011; 30(3-4): 557-65.
[http://dx.doi.org/10.1007/s10555-011-9319-7] [PMID: 22002750]
[70]
Magkrioti C, Oikonomou N, Kaffe E, et al. The autotaxin-lysophosphatidic acid axis promotes lung carcinogenesis. Cancer Res 2018; 78(13): 3634-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3797] [PMID: 29724718]
[71]
Nema R, Shrivastava A, Kumar A. Prognostic role of lipid phosphate phosphatases in non-smoker, lung adenocarcinoma patients. Comput Biol Med 2021; 129: 104141.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104141] [PMID: 33260104]
[72]
Ray R, Rai V. Lysophosphatidic acid converts monocytes into macrophages in both mice and humans. Blood 2017; 129(9): 1177-83.
[http://dx.doi.org/10.1182/blood-2016-10-743757] [PMID: 28069607]
[73]
Zhang D, Shi R, Xiang W, et al. The Agpat4/LPA axis in colorectal cancer cells regulates antitumor responses via p38/p65 signaling in macrophages. Signal Transduct Target Ther 2020; 5(1): 24.
[http://dx.doi.org/10.1038/s41392-020-0117-y] [PMID: 32296017]
[74]
Hui W, Zhao C, Bourgoin SG. LPA promotes T cell recruitment through synthesis of CXCL13. Mediators Inflamm 2015; 2015: 248492.
[http://dx.doi.org/10.1155/2015/248492] [PMID: 26339130]
[75]
Knowlden SA, Capece T, Popovic M, et al. Regulation of T cell motility in vitro and in vivo by LPA and LPA2. PLoS One 2014; 9(7): e101655.
[http://dx.doi.org/10.1371/journal.pone.0101655] [PMID: 25003200]
[76]
DeNardo DG, Barreto JB, Andreu P, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009; 16(2): 91-102.
[http://dx.doi.org/10.1016/j.ccr.2009.06.018] [PMID: 19647220]
[77]
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (80-) 2006; 313: 1960-4.
[http://dx.doi.org/10.1126/science.1129139]
[78]
Laghi L, Bianchi P, Miranda E, et al. CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol 2009; 10(9): 877-84.
[http://dx.doi.org/10.1016/S1470-2045(09)70186-X] [PMID: 19656725]
[79]
Vassilakopoulou M, Avgeris M, Velcheti V, et al. Evaluation of PD-L1 expression and associated tumor-infiltrating lymphocytes in laryngeal squamous cell carcinoma. Clin Cancer Res 2016; 22(3): 704-13.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1543] [PMID: 26408403]
[80]
Roberts SJ, Ng BY, Filler RB, et al. Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc Natl Acad Sci USA 2007; 104(16): 6770-5.
[http://dx.doi.org/10.1073/pnas.0604982104] [PMID: 17412837]
[81]
Hanada T, Kobayashi T, Chinen T, et al. IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 2006; 203(6): 1391-7.
[http://dx.doi.org/10.1084/jem.20060436] [PMID: 16717119]
[82]
Aspord C, Pedroza-Gonzalez A, Gallegos M, et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med 2007; 204(5): 1037-47.
[http://dx.doi.org/10.1084/jem.20061120] [PMID: 17438063]
[83]
Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth. Nature 2006; 442(7101): 461-5.
[http://dx.doi.org/10.1038/nature04808] [PMID: 16688182]
[84]
Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med 2009; 206(7): 1457-64.
[http://dx.doi.org/10.1084/jem.20090207] [PMID: 19564351]
[85]
Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018; 24(5): 541-50.
[http://dx.doi.org/10.1038/s41591-018-0014-x] [PMID: 29686425]
[86]
Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2005; 2(9): e284.
[http://dx.doi.org/10.1371/journal.pmed.0020284] [PMID: 16124834]
[87]
Waldner MJ, Neurath MF. Colitis-associated cancer: the role of T cells in tumor development. Semin Immunopathol 2009; 31(2): 249-56.
[http://dx.doi.org/10.1007/s00281-009-0161-8] [PMID: 19495757]
[88]
Dülgar Ö, İlvan Ş, Turna ZH. Prognostic factors and tumor infiltrating lymphocytes in triple negative breast cancer. Eur J Breast Health 2020; 16(4): 276-81.
[http://dx.doi.org/10.5152/ejbh.2020.5305] [PMID: 33062969]
[89]
Lundgren C, Bendahl PO, Ekholm M, et al. Tumour-infiltrating lymphocytes as a prognostic and tamoxifen predictive marker in premenopausal breast cancer: data from a randomised trial with long-term follow-up. Breast Cancer Res 2020; 22(1): 140.
[http://dx.doi.org/10.1186/s13058-020-01364-w] [PMID: 33357231]
[90]
Park YH, Lal S, Lee JE, et al. Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat Commun 2020; 11(1): 6175.
[http://dx.doi.org/10.1038/s41467-020-19933-0] [PMID: 33268821]
[91]
Gómez-Aleza C, Nguyen B, Yoldi G, et al. Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells. Nat Commun 2020; 11(1): 6335.
[http://dx.doi.org/10.1038/s41467-020-20138-8] [PMID: 33303745]
[92]
Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1 . Nature 2004; 427(6972): 355-60.
[93]
Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG. Lymphocyte sequestratino through S1P lyase inhiition and disruption of S1P gradients. Science 2005; 309(5741): 1735-9.
[94]
Zamora-Pineda J, Kumar A, Suh JH, Zhang M, Saba JD. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med 2016; 213(12): 2773-91.
[http://dx.doi.org/10.1084/jem.20160287] [PMID: 27810923]
[95]
Bréart B, Ramos-Perez WD, Mendoza A, et al. Lipid phosphate phosphatase 3 enables efficient thymic egress. J Exp Med 2011; 208(6): 1267-78.
[http://dx.doi.org/10.1084/jem.20102551] [PMID: 21576386]
[96]
Mendoza A, Fang V, Chen C, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 2017; 546(7656): 158-61.
[http://dx.doi.org/10.1038/nature22352] [PMID: 28538737]
[97]
Baeyens AAL, Schwab SR. Finding a way out: s1p signaling and immune cell migration. Annu Rev Immunol 2020; 38: 759-84.
[http://dx.doi.org/10.1146/annurev-immunol-081519-083952] [PMID: 32340572]
[98]
Chakraborty P, Vaena SG, Thyagarajan K, et al. Pro-survival lipid sphingosine-1-phosphate metabolically programs t cells to limit anti-tumor activity. Cell Rep 2019; 28(7): 1879-1893.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.07.044] [PMID: 31412253]
[99]
O’Sullivan D, van der Windt GJ, Huang SCC, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 2014; 41(1): 75-88.
[http://dx.doi.org/10.1016/j.immuni.2014.06.005] [PMID: 25001241]
[100]
Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 2012; 14(2): R48.
[http://dx.doi.org/10.1186/bcr3148] [PMID: 22420471]
[101]
Egelston CA, Avalos C, Tu TY, et al. Human breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1 expression. Nat Commun 2018; 9(1): 4297.
[http://dx.doi.org/10.1038/s41467-018-06653-9] [PMID: 30327458]
[102]
Olesch C, Ringel C, Brüne B, Weigert A. Beyond immune cell migration: the emerging role of the sphingosine-1-phosphate receptor s1pr4 as a modulator of innate immune cell activation. Mediators Inflamm 2017; 2017: 6059203.
[http://dx.doi.org/10.1155/2017/6059203] [PMID: 28848247]
[103]
Olesch C, Sirait-Fischer E, Berkefeld M, et al. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. J Clin Invest 2020; 130(10): 5461-76.
[http://dx.doi.org/10.1172/JCI136928] [PMID: 32663191]
[104]
Bates GJ, Fox SB, Han C, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006; 24(34): 5373-80.
[http://dx.doi.org/10.1200/JCO.2006.05.9584] [PMID: 17135638]
[105]
Katz SC, Bamboat ZM, Maker AV, et al. Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol 2013; 20(3): 946-55.
[http://dx.doi.org/10.1245/s10434-012-2668-9] [PMID: 23010736]
[106]
Rathinasamy A, Domschke C, Ge Y, et al. Tumor specific regulatory T cells in the bone marrow of breast cancer patients selectively upregulate the emigration receptor S1P1. Cancer Immunol Immunother 2017; 66(5): 593-603.
[http://dx.doi.org/10.1007/s00262-017-1964-4] [PMID: 28224210]
[107]
Priceman SJ, Shen S, Wang L, et al. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. Cell Rep 2014; 6(6): 992-9.
[http://dx.doi.org/10.1016/j.celrep.2014.02.016] [PMID: 24630990]
[108]
Liu YN, Zhang H, Zhang L, et al. Sphingosine 1 phosphate receptor-1 (S1P1) promotes tumor-associated regulatory T cell expansion: leading to poor survival in bladder cancer. Cell Death Dis 2019; 10(2): 50.
[http://dx.doi.org/10.1038/s41419-018-1298-y] [PMID: 30718502]
[109]
Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 2014; 27: 1-7.
[http://dx.doi.org/10.1016/j.coi.2013.12.005] [PMID: 24413387]
[110]
Zhou Y, Guo F. A selective sphingosine-1-phosphate receptor 1 agonist SEW-2871 aggravates gastric cancer by recruiting myeloid-derived suppressor cells. J Biochem 2018; 163(1): 77-83.
[http://dx.doi.org/10.1093/jb/mvx064] [PMID: 29036438]
[111]
Zheng Y, Voice JK, Kong Y, Goetzl EJ. Altered expression and functional profile of lysophosphatidic acid receptors in mitogen-activated human blood T lymphocytes. FASEB J 2000; 14(15): 2387-9.
[http://dx.doi.org/10.1096/fj.00-0492fje] [PMID: 11024010]
[112]
Zheng Y, Kong Y, Goetzl EJ. Lysophosphatidic acid receptor-selective effects on Jurkat T cell migration through a Matrigel model basement membrane. J Immunol 2001; 166(4): 2317-22.
[http://dx.doi.org/10.4049/jimmunol.166.4.2317] [PMID: 11160288]
[113]
Lee SC, Fujiwara Y, Liu J, et al. Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Mol Cancer Res 2015; 13(1): 174-85.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0263] [PMID: 25158955]
[114]
Oda SK, Strauch P, Fujiwara Y, et al. Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. Cancer Immunol Res 2013; 1(4): 245-55.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0043-T] [PMID: 24455753]
[115]
Mathew D, Kremer KN, Strauch P, Tigyi G, Pelanda R, Torres RM. LPA5 is an inhibitory receptor that suppresses CD8 T-cell cytotoxic function via disruption of early TCR signaling. Front Immunol 2019; 10: 1159.
[http://dx.doi.org/10.3389/fimmu.2019.01159] [PMID: 31231367]
[116]
Matas-Rico E, Van der Haar Avila I, Van Zon M, et al. Secreted autotaxin through LPA suppresses chemotaxis and tumor infiltration of CD8+ T Cells. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.26.966291]
[117]
Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124(2): 263-6.
[http://dx.doi.org/10.1016/j.cell.2006.01.007] [PMID: 16439202]
[118]
Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy 2017; 9(3): 289-302.
[http://dx.doi.org/10.2217/imt-2016-0135] [PMID: 28231720]
[119]
Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med 2011; 9(9): 216.
[http://dx.doi.org/10.1186/1479-5876-9-216] [PMID: 22176642]
[120]
Choi J, Gyamfi J, Jang H, Koo JS. The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol 2018; 33(2): 133-45.
[PMID: 28681373]
[121]
Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23(11): 549-55.
[http://dx.doi.org/10.1016/S1471-4906(02)02302-5] [PMID: 12401408]
[122]
Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3(1): 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[123]
Strack E, Rolfe PA, Fink AF, et al. Identification of tumor-associated macrophage subsets that are associated with breast cancer prognosis. Clin Transl Med 2020; 10(8): e239.
[http://dx.doi.org/10.1002/ctm2.239] [PMID: 33377644]
[124]
Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 2015; 15: 577.
[http://dx.doi.org/10.1186/s12885-015-1546-9] [PMID: 26253167]
[125]
Furuya H, Tamashiro PM, Shimizu Y, et al. Sphingosine Kinase 1 expression in peritoneal macrophages is required for colon carcinogenesis. Carcinogenesis 2017; 38(12): 1218-27.
[http://dx.doi.org/10.1093/carcin/bgx104] [PMID: 29028945]
[126]
Mrad M, Imbert C, Garcia V, et al. Downregulation of sphingosine kinase-1 induces protective tumor immunity by promoting M1 macrophage response in melanoma. Oncotarget 2016; 7(44): 71873-86.
[http://dx.doi.org/10.18632/oncotarget.12380] [PMID: 27708249]
[127]
Kim E-Y, Choi B, Kim J-E, Park S-O, Kim S-M, Chang E-J. Interleukin-22 mediates the chemotactic migration of breast cancer cells and macrophage infiltration of the bone microenvironment by potentiating S1P/SIPR signaling. Cells 2020; 9(1): 131.
[http://dx.doi.org/10.3390/cells9010131] [PMID: 31935914]
[128]
Weichand B, Popp R, Dziumbla S, et al. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J Exp Med 2017; 214(9): 2695-713.
[http://dx.doi.org/10.1084/jem.20160392] [PMID: 28739604]
[129]
Jiang C, Ting AT, Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391(6662): 82-6.
[http://dx.doi.org/10.1038/34184] [PMID: 9422509]
[130]
Cha YJ, Koo JS. Expression of autotaxin-lysophosphatidate signaling-related proteins in breast cancer with adipose stroma. Int J Mol Sci 2019; 20: 2102.
[http://dx.doi.org/10.3390/ijms20092102]
[131]
Lin S, Wang D, Iyer S, et al. The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology 2009; 136(5): 1711-20.
[http://dx.doi.org/10.1053/j.gastro.2009.01.002] [PMID: 19328876]
[132]
Reinartz S, Lieber S, Pesek J, et al. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment. Mol Oncol 2019; 13(2): 185-201.
[http://dx.doi.org/10.1002/1878-0261.12396] [PMID: 30353652]
[133]
Russick J, Joubert PE, Gillard-Bocquet M, et al. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J Immunother Cancer 2020; 8(2): e001054.
[http://dx.doi.org/10.1136/jitc-2020-001054] [PMID: 33067317]
[134]
Lagadari M, Lehmann K, Ziemer M, et al. Sphingosine-1-phosphate inhibits the cytotoxic activity of NK cells via Gs protein-mediated signalling. Int J Oncol 2009; 34(1): 287-94.
[PMID: 19082500]
[135]
van der Weyden L, Arends MJ, Campbell AD, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 2017; 541(7636): 233-6.
[http://dx.doi.org/10.1038/nature20792] [PMID: 28052056]
[136]
Jin Y, Knudsen E, Wang L, Maghazachi AA. Lysophosphatidic acid induces human natural killer cell chemotaxis and intracellular calcium mobilization. Eur J Immunol 2003; 33(8): 2083-9.
[http://dx.doi.org/10.1002/eji.200323711] [PMID: 12884281]
[137]
Lucarini V, Melaiu O, Tempora P, D’Amico S, Locatelli F, Fruci D. Dendritic cells: behind the scenes of t-cell infiltration into the tumor microenvironment. Cancers (Basel) 2021; 13(3): 433.
[http://dx.doi.org/10.3390/cancers13030433] [PMID: 33498755]
[138]
Tran Janco JM, Lamichhane P, Karyampudi L, Knutson KL. Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 2015; 194(7): 2985-91.
[http://dx.doi.org/10.4049/jimmunol.1403134] [PMID: 25795789]
[139]
Guillerey C. NK Cells in the Tumor Microenvironment. In: Birbrair A, Ed. Tumor Microenvironment Advances in Experimental Medicine and Biology. Cham: Springer 2020; p. 1273.
[http://dx.doi.org/10.1007/978-3-030-49270-0_4]
[140]
Liska V, Vycital O, Daum O, et al. Infiltration of colorectal carcinoma by S100+ dendritic cells and CD57+ lymphocytes as independent prognostic factors after radical surgical treatment. Anticancer Res 2012; 32(5): 2129-32.
[PMID: 22593500]
[141]
Santana-Magal N, Farhat-Younis L, Gutwillig A, et al. Melanoma-secreted lysosomes trigger monocyte-derived dendritic cell apoptosis and limit cancer immunotherapy. Cancer Res 2020; 80(10): 1942-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2944] [PMID: 32127354]
[142]
Idzko M, Panther E, Corinti S, et al. Sphingosine 1-phosphate induces chemotaxis of immature and modulates cytokine-release in mature human dendritic cells for emergence of Th2 immune responses. FASEB J 2002; 16(6): 625-7.
[http://dx.doi.org/10.1096/fj.01-0625fje] [PMID: 11919175]
[143]
Rolin J, Sand KL, Knudsen E, Maghazachi AA. FTY720 and SEW2871 reverse the inhibitory effect of S1P on natural killer cell mediated lysis of K562 tumor cells and dendritic cells but not on cytokine release. Cancer Immunol Immunother 2010; 59(4): 575-86.
[http://dx.doi.org/10.1007/s00262-009-0775-7] [PMID: 19823820]
[144]
Nema R, Kumar A. Sphingosine-1-phosphate catabolizing enzymes predict better prognosis in triple-negative breast cancer patients and correlates with tumor-infiltrating immune cells. Front Mol Biosci 2021; 8: 697922.
[http://dx.doi.org/10.3389/fmolb.2021.697922] [PMID: 34235182]
[145]
Panther E, Idzko M, Corinti S, et al. The influence of lysophosphatidic acid on the functions of human dendritic cells. J Immunol 2002; 169(8): 4129-35.
[http://dx.doi.org/10.4049/jimmunol.169.8.4129] [PMID: 12370341]
[146]
Martino A, Volpe E, Baldini PM. The influence of lysophosphatidic acid on the immunophenotypic differentiation of human monocytes into dendritic cells. Haematologica 2006; 91(9): 1273-4.
[PMID: 16956832]
[147]
Bronte V, Brandau S, Chen SH, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016; 7: 12150.
[http://dx.doi.org/10.1038/ncomms12150] [PMID: 27381735]
[148]
Swierczak A, Mouchemore KA, Hamilton JA, Anderson RL. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev 2015; 34(4): 735-51.
[http://dx.doi.org/10.1007/s10555-015-9594-9] [PMID: 26361774]
[149]
Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer 2016; 16(7): 431-46.
[http://dx.doi.org/10.1038/nrc.2016.52] [PMID: 27282249]
[150]
Jensen HK, Donskov F, Marcussen N, Nordsmark M, Lundbeck F, von der Maase H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J Clin Oncol 2009; 27(28): 4709-17.
[http://dx.doi.org/10.1200/JCO.2008.18.9498] [PMID: 19720929]
[151]
Valero C, Pardo L, López M, et al. Pretreatment count of peripheral neutrophils, monocytes, and lymphocytes as independent prognostic factor in patients with head and neck cancer. Head Neck 2017; 39(2): 219-26.
[http://dx.doi.org/10.1002/hed.24561] [PMID: 27534525]
[152]
Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Inferrera C. Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 2002; 15(8): 831-7.
[http://dx.doi.org/10.1097/01.MP.0000020391.98998.6B] [PMID: 12181268]
[153]
Galdiero MR, Bianchi P, Grizzi F, et al. Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Int J Cancer 2016; 139(2): 446-56.
[http://dx.doi.org/10.1002/ijc.30076] [PMID: 26939802]
[154]
Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 2009; 16(3): 183-94.
[http://dx.doi.org/10.1016/j.ccr.2009.06.017] [PMID: 19732719]
[155]
Novitskiy SV, Pickup MW, Chytil A, Polosukhina D, Owens P, Moses HL. Deletion of TGF-β signaling in myeloid cells enhances their anti-tumorigenic properties. J Leukoc Biol 2012; 92(3): 641-51.
[http://dx.doi.org/10.1189/jlb.1211639] [PMID: 22685318]
[156]
Saatian B, Zhao Y, He D, et al. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem J 2006; 393(Pt 3): 657-68.
[http://dx.doi.org/10.1042/BJ20050791] [PMID: 16197369]
[157]
Cummings R, Zhao Y, Jacoby D, et al. Protein kinase Cdelta mediates lysophosphatidic acid-induced NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem 2004; 279(39): 41085-94.
[http://dx.doi.org/10.1074/jbc.M404045200] [PMID: 15280372]
[158]
So J, Navari J, Wang FQ, Fishman DA. Lysophosphatidic acid enhances epithelial ovarian carcinoma invasion through the increased expression of interleukin-8. Gynecol Oncol 2004; 95(2): 314-22.
[http://dx.doi.org/10.1016/j.ygyno.2004.08.001] [PMID: 15491751]
[159]
Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 2001; 12(4): 375-91.
[http://dx.doi.org/10.1016/S1359-6101(01)00016-8] [PMID: 11544106]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy