Generic placeholder image

Applied Drug Research, Clinical Trials and Regulatory Affairs

Editor-in-Chief

ISSN (Print): 2667-3371
ISSN (Online): 2667-338X

Review Article

A Note on Robotics and Artificial Intelligence in Pharmacy

Author(s): Sankha Bhattacharya*

Volume 8, Issue 2, 2021

Published on: 13 December, 2021

Article ID: e061221198606 Pages: 10

DOI: 10.2174/2667337108666211206151551

Price: $65

Abstract

Artificial intelligence and robotics are two of the hottest and most recent technologies to emerge from the world of science. There is tremendous potential for these technologies to solve a wide range of pharmaceutical problems, including the reduction of the enormous amounts of money and time invested in the drug discovery and development process, technical solutions related to the quality of drug products, and an increase in the demand for pharmaceuticals. Nanorobotics is a new subfield that has emerged from the field of robotics itself. This technique makes use of robots that are as small as nano- or micron-sized to diagnose diseases and deliver drugs to the targeted organ, tissue, or cell. These techniques, as well as their various applications in the pharmacy sector, are extensively discussed throughout this article. Internationally renowned pharmaceutical companies are collaborating with Artificial Intelligence behemoths in order to revolutionise the discovery and development process of potential drug molecules and to ensure the highest possible quality in their products.

Keywords: Robotics, artificial intelligence, machine learning, deep learning, artificial neural networking, automation.

Graphical Abstract

[1]
Gaponov I, Razinkova A. Quadcopter Design and Implementation as a Multidisciplinary Engineering Course. Proceedings Of IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) 2012 20-23 Aug; Hong Kong, China: IEEE 2012.
[http://dx.doi.org/10.1109/TALE.2012.6360335]
[2]
Scassellati BM. Foundations for a theory of mind for a humanoid robot. Doctoral dissertation, Massachusetts Institute of Technology, USA 2001.
[3]
Kaplan J. Humans Need Not Apply. Yale University Press 2015; pp. 159-88.
[4]
Bellingham JG, Rajan K. Robotics in remote and hostile environments. Science 2007; 318(5853): 1098-102.
[http://dx.doi.org/10.1126/science.1146230] [PMID: 18006738]
[5]
Steinfeld JI, Wormhoudt J. Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 1998; 49(1): 203-32.
[http://dx.doi.org/10.1146/annurev.physchem.49.1.203] [PMID: 15012428]
[6]
Rabbitt SM, Kazdin AE, Scassellati B. Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use. Clin Psychol Rev 2015; 35: 35-46.
[http://dx.doi.org/10.1016/j.cpr.2014.07.001] [PMID: 25462112]
[7]
McDonald CJ. The barriers to electronic medical record systems and how to overcome them. J Am Med Inform Assoc 1997; 4(3): 213-21.
[http://dx.doi.org/10.1136/jamia.1997.0040213] [PMID: 9147340]
[8]
Duan Y, Edwards JS, Dwivedi YK. Artificial intelligence for decision making in the era of Big Data-evolution, challenges and research agenda. Int J Inf Manage 2019; 48: 63-71.
[http://dx.doi.org/10.1016/j.ijinfomgt.2019.01.021]
[9]
Amir-Aslani A, Mangematin V. The future of drug discovery and development: shifting emphasis towards personalized medicine. Technol Forecast Soc Change 2010; 77(2): 203-17.
[http://dx.doi.org/10.1016/j.techfore.2009.09.005]
[10]
Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R. Statistical practice in high-throughput screening data analysis. Nat Biotechnol 2006; 24(2): 167-75.
[http://dx.doi.org/10.1038/nbt1186] [PMID: 16465162]
[11]
Schneider G. Automating drug discovery. Nat Rev Drug Discov 2018; 17(2): 97-113.
[http://dx.doi.org/10.1038/nrd.2017.232] [PMID: 29242609]
[12]
Selvaraj H, Selvi ST, Selvathi D, Gewali L. Brain MRI slices classification using least squares support vector machine. Intern J Intel Comput Med Sci Image Process 2007; 1(1): 21-33.
[http://dx.doi.org/10.1080/1931308X.2007.10644134]
[13]
Ryu D, Kim J, Lim D, et al. Label-free bone marrow white blood cell classification using refractive index tomograms and deep learning. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.11.13.381244]
[14]
Henry KW. A technique for measuring the pressure, volume, enthalpy, and resistance of equilbrium thermodynamics states of liquid metals at high temperatures and pressures. PhD Thesis. Lawrence Livermore National Lab(LLNL): University of California, 1971.
[http://dx.doi.org/10.2172/4046918]
[15]
Ford KA, Ryslik G, Sodhi J, et al. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47(3): 291-319.
[http://dx.doi.org/10.3109/03602532.2015.1047026] [PMID: 26024250]
[16]
Robosky LC, Robertson DG, Baker JD, Rane S, Reily MD. In vivo toxicity screening programs using metabonomics. Comb Chem High Throughput Screen 2002; 5(8): 651-62.
[http://dx.doi.org/10.2174/1386207023329932] [PMID: 12470262]
[17]
Zhao L. Computational modeling for chemical toxicity assessment in the big data era: combining data-driven profiling and mechanism-driven read-across. Doctoral dissertation. Camden NJ: Rutgers University-Camden Graduate School, USA, 2020.
[18]
Ashrafian H. Artificial intelligence and robot responsibilities: innovating beyond rights. Sci Eng Ethics 2015; 21(2): 317-26.
[http://dx.doi.org/10.1007/s11948-014-9541-0] [PMID: 24737482]
[19]
Breazeal C. Emotion and sociable humanoid robots. Int J Hum Comput Stud 2003; 59(1-2): 119-55.
[http://dx.doi.org/10.1016/S1071-5819(03)00018-1]
[20]
Simmons RG. Structured control for autonomous robots. IEEE Trans Robot Autom 1994; 10(1): 34-43.
[http://dx.doi.org/10.1109/70.285583]
[21]
Fox D, Thrun S, Burgard W, Dellaert F. Particle filters for mobile robot localization InSequential Monte Carlo methods in practice. New York, NY: Springer 2001; pp. 401-28.
[http://dx.doi.org/10.1007/978-1-4757-3437-9_19]
[22]
Chen B, Ma H, Qin LY, et al. Recent developments and challenges of lower extremity exoskeletons. J Orthop Translat 2015; 5: 26-37.
[http://dx.doi.org/10.1016/j.jot.2015.09.007] [PMID: 30035072]
[23]
Cooper DW. Particulate contamination and microelectronics manufacturing: an introduction. Aerosol Sci Technol 1986; 5(3): 287-99.
[http://dx.doi.org/10.1080/02786828608959094]
[24]
Krebs HI, Palazzolo JJ, Dipietro L, et al. Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots 2003; 15(1): 7-20.
[http://dx.doi.org/10.1023/A:1024494031121]
[25]
Cross RG, Dixit A. Customer-centric pricing: the surprising secret for profitability. Bus Horiz 2005; 48(6): 483-91.
[http://dx.doi.org/10.1016/j.bushor.2005.04.005]
[26]
Blanchfield JR. Good manufacturing practice (GMP) in the food industry. Handbook of hygiene control in the food industry. Woodhead Publishing 2005; pp. 324-47.
[27]
Lassetter JH, Warnick ML. Medical errors, drug-related problems, and medication errors: a literature review on quality of care and cost issues. J Nurs Care Qual 2003; 18(3): 175-81.
[http://dx.doi.org/10.1097/00001786-200307000-00003] [PMID: 12856901]
[28]
Barker KN, Flynn EA, Pepper GA, Bates DW, Mikeal RL. Medication errors observed in 36 health care facilities. Arch Intern Med 2002; 162(16): 1897-903.
[http://dx.doi.org/10.1001/archinte.162.16.1897] [PMID: 12196090]
[29]
Manasse HR Jr, Speedie MK. Pharmacists, pharmaceuticals, and policy issues shaping the work force in pharmacy. Am J Health Syst Pharm 2007; 64(12): e30-48.
[http://dx.doi.org/10.2146/sp070002e] [PMID: 17563038]
[30]
Max R. Tablet counter and packaging unit. United States patent US 3,206,062, 1965.
[31]
Young C, Koopsen C, Farb D. Medication errors guidebook. Berlin, Germany: University of HealthCare 2005.
[32]
Hepler CD. Unresolved issues in the future of pharmacy. Am J Hosp Pharm 1988; 45(5): 1071-81.
[http://dx.doi.org/10.1093/ajhp/45.5.1071] [PMID: 3041805]
[33]
Bepko RJ Jr, Moore JR, Coleman JR. Implementation of a pharmacy automation system (robotics) to ensure medication safety at Norwalk hospital. Qual Manag Health Care 2009; 18(2): 103-14.
[http://dx.doi.org/10.1097/QMH.0b013e3181a02771] [PMID: 19369853]
[34]
Kane-Gill SL, Dasta JF, Buckley MS, et al. Clinical practice guideline: safe medication use in the ICU. Crit Care Med 2017; 45(9): e877-915.
[http://dx.doi.org/10.1097/CCM.0000000000002533] [PMID: 28816851]
[35]
Qureshi MO, Sajjad R. A study of integration of robotics in the hospitality sector and its emulation in the pharmaceutical sector. Health Sci J 2017; 11(1): 1.
[36]
Lam KS. New aspects of natural products in drug discovery. Trends Microbiol 2007; 15(6): 279-89.
[http://dx.doi.org/10.1016/j.tim.2007.04.001] [PMID: 17433686]
[37]
Ad Hoc Committee on Health Research Relating to Future Intervention Options, World Health Organization. Investing in Health Research and Development: Report of the Ad Hoc Committee on Health Research Relating to Future Intervention Options, Convened Under the Auspices of the World Health Organization 1996.
[38]
Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 2011; 10(3): 188-95.
[http://dx.doi.org/10.1038/nrd3368] [PMID: 21358738]
[39]
Houssay LP. Robotics and radiation hardening in the nuclear industry. doctoral dissertation. Florida, USA: State University System of Florida.
[40]
Nightingale P, Mahdi S. The evolution of pharmaceutical innovation. In: Mariana M, Giovanni D, Eds. Knowledge accumulation and industry evolution: The case of pharma-biotech. Cambridge, UK: Cambridge University Press 2006; pp. 73-111.
[http://dx.doi.org/10.1017/CBO9780511493232.003]
[41]
Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 2004; 3(5): 417-29.
[http://dx.doi.org/10.1038/nrd1382] [PMID: 15136789]
[42]
Keedwell E, Narayanan A. Intelligent bioinformatics: The application of artificial intelligence techniques to bioinformatics problems. John Wiley & Sons 2005.
[43]
Villoutreix BO, Renault N, Lagorce D, Sperandio O, Montes M, Miteva MA. Free resources to assist structure-based virtual ligand screening experiments. Curr Protein Pept Sci 2007; 8(4): 381-411.
[http://dx.doi.org/10.2174/138920307781369391] [PMID: 17696871]
[44]
Abraham MH, Ibrahim A, Zhao Y, Acree WE Jr. A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J Pharm Sci 2006; 95(10): 2091-100.
[http://dx.doi.org/10.1002/jps.20595] [PMID: 16886177]
[45]
Wessel MD, Jurs PC, Tolan JW, Muskal SM. Prediction of human intestinal absorption of drug compounds from molecular structure. J Chem Inf Comput Sci 1998; 38(4): 726-35.
[http://dx.doi.org/10.1021/ci980029a] [PMID: 9691477]
[46]
Di L, Kerns E. Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic press, 2015.
[47]
Kerns EH, Kleintop T, Little D, et al. Integrated high capacity solid phase extraction-MS/MS system for pharmaceutical profiling in drug discovery. J Pharm Biomed Anal 2004; 34(1): 1-9.
[http://dx.doi.org/10.1016/j.japna.2003.03.001] [PMID: 14738913]
[48]
Bohacek RS, McMartin C, Guida WC. The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 1996; 16(1): 3-50.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:13::AID-MED13.0.CO;2-6] [PMID: 8788213]
[49]
Kellogg RM. The molecules R2CXCR2 including azomethine, carbonyl and thiocarbonyl ylides. Their syntheses, properties and reactions. Tetrahedron 1976; 32(18): 2165-84.
[http://dx.doi.org/10.1016/0040-4020(76)85131-9]
[50]
Malhotra M, Nambiar S, Rengaswamy V, Prakash S. Small interfering ribonucleic acid design strategies for effective targeting and gene silencing. Expert Opin Drug Discov 2011; 6(3): 269-89.
[http://dx.doi.org/10.1517/17460441.2011.555394] [PMID: 22647204]
[51]
Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[52]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[53]
Bertolini F, Sukhatme VP, Bouche G. Drug repurposing in oncology-patient and health systems opportunities. Nat Rev Clin Oncol 2015; 12(12): 732-42.
[http://dx.doi.org/10.1038/nrclinonc.2015.169] [PMID: 26483297]
[54]
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm 2016; 13(7): 2524-30.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00248] [PMID: 27200455]
[55]
Fleischer H, Thurow K. Automation solutions for analytical measurements: concepts and applications. Newyork, USA: John Wiley & Sons, Inc, 2017.
[http://dx.doi.org/10.1002/9783527805297]
[56]
Chintalapati PR. Method for transporting an NMR sample spaced horizontally and vertically from a cryo-magnetic system using a vibration isolated motorized curvilinear Transport Carrier with dual end-effector and method for telescoping the Carrier to different cryo-magnetic systems at different heights. US patent 14/155,797, 2015.
[57]
Buitrago SA, Regalado EL, Pereira T, et al. Organic chemistry. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 2015; 347(6217): 49-53.
[http://dx.doi.org/10.1126/science.1259203] [PMID: 25554781]
[58]
Battersby DJ. High-Throughput methods for reaction development using the mosquito® liquid handling robot. Doctoral dissertation. Cambridge, UK: Cambridge University Press 2019.
[59]
Damiati SA, Alaofi AL, Dhar P, Alhakamy NA. Novel machine learning application for prediction of membrane insertion potential of cell-penetrating peptides. Int J Pharm 2019; 567: 118453.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118453] [PMID: 31233847]
[60]
Chen L, Dou J, Ma Q, et al. Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope. Sci Adv 2017; 3(9): e1701735.
[http://dx.doi.org/10.1126/sciadv.1701735] [PMID: 28929139]
[61]
Burset M, Guigo R. Evaluation of gene structure prediction programs. genomics 1996; 34(3): 353-67.
[62]
Schmidt S, Gonzalez D, Derendorf H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci 2010; 99(3): 1107-22.
[http://dx.doi.org/10.1002/jps.21916] [PMID: 19852037]
[63]
Zhao Q, Ye Z, Su Y, Ouyang D. Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques. Acta Pharm Sin B 2019; 9(6): 1241-52.
[http://dx.doi.org/10.1016/j.apsb.2019.04.004] [PMID: 31867169]
[64]
Gao H, Ye Z, Dong J, et al. Predicting drug/phospholipid complexation by the lightGBM method. Chem Phys Lett 2020; 747: 137354.
[http://dx.doi.org/10.1016/j.cplett.2020.137354]
[65]
Li G, Hou Y, Wu A. Fourth industrial revolution: technological drivers, impacts and coping methods. Chin Geogr Sci 2017; 27(4): 626-37.
[http://dx.doi.org/10.1007/s11769-017-0890-x]
[66]
Josephson JR, Josephson SG, Eds. Abductive inference: Computation, philosophy, technology. Cambridge, UK: Cambridge University Press 1996.
[67]
Alterovitz R, Koenig S, Likhachev M. Robot planning in the real world: Research challenges and opportunities. AI Mag 2016; 37(2): 76-84.
[http://dx.doi.org/10.1609/aimag.v37i2.2651]
[68]
McFarlane I. Use of in-line sensors and closed-loop control for food manufacturing processes. InFood engineering in a computer climate 1992; 133-44.
[69]
Stoll M, Hubenschmid L, Koch C, Lieb K. Voluntary disclosures of payments from pharmaceutical companies to healthcare professionals in Germany: a descriptive study of disclosures in 2015 and 2016. BMJ Open 2020; 10(9): e037395.
[http://dx.doi.org/10.1136/bmjopen-2020-037395] [PMID: 32948560]
[70]
Caldwell DJ, Mertens B, Kappler K, et al. A risk-based approach to managing active pharmaceutical ingredients in manufacturing effluent. Environ Toxicol Chem 2016; 35(4): 813-22.
[http://dx.doi.org/10.1002/etc.3163] [PMID: 26183919]
[71]
Engelberger JF. Robotics in practice: management and applications of industrial robots. (1980th ed.), Berlin: Germany: Springer 2012.
[72]
Palima D, Glückstad J. Gearing up for optical microrobotics: Micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev 2013; 7(4): 478-94.
[http://dx.doi.org/10.1002/lpor.201200030]
[73]
Wilson M, Kannangara K, Smith G, Simmons M, Raguse B. Nanotechnology: basic science and emerging technologies. (1st ed.), Newyork, USA: CRC press 2002.
[http://dx.doi.org/10.1201/9781420035230]
[74]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[75]
Qasim SB, Rehman IU. Application of nanomaterials in dentistry. Micro and Nanomanufacturing. Cham: Springer 2018; II: pp. 319-36.
[76]
Luo M, Feng Y, Wang T, Guan J. Micro-/nanorobots at work in active drug delivery. Adv Funct Mater 2018; 28(25): 1706100.
[http://dx.doi.org/10.1002/adfm.201706100]
[77]
Gandhi M, Joshi PN. Nanorobots for in vivo monitoring: the future of nano-implantable devices innanobiomaterial engineering. Singapore: Springer 2020; pp. 227-52.
[78]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[79]
Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci 2003; 6(1): 33-66.
[PMID: 12753729]
[80]
Tiwari A, Nordin AN, Eds. Advanced biomaterials and biodevices. Newyork, USA: John Wiley Sons, 2014.
[http://dx.doi.org/10.1002/9781118774052]
[81]
Cavalcanti A, Shirinzadeh B, Freitas RA, Hogg T. Nanorobot architecture for medical target identification. Nanotechnology 2007; 19(1): 015103.
[http://dx.doi.org/10.1088/0957-4484/19/01/015103]
[82]
Hoop M, Ribeiro AS, Rösch D, et al. Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater 2018; 28(25): 1705920.
[http://dx.doi.org/10.1002/adfm.201705920]
[83]
Sahari A, Headen D, Behkam B. Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed Microdevices 2012; 14(6): 999-1007.
[http://dx.doi.org/10.1007/s10544-012-9712-1] [PMID: 23053449]
[84]
Liu H, Li Z, Sun Y, et al. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci Rep 2018; 8(1): 1086.
[http://dx.doi.org/10.1038/s41598-018-19373-3] [PMID: 29348413]
[85]
Self-fueled particles for propulsion through flowing aqueous fluids. US patent 10,238,598, 2019.
[86]
Cai J, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A Mater Ener Sustain 2016; 4(5): 1671-9.
[http://dx.doi.org/10.1039/C5TA09450J]
[87]
Alharbi KK, Al-Sheikh YA. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J Biol Sci 2014; 21(2): 109-17.
[http://dx.doi.org/10.1016/j.sjbs.2013.11.001] [PMID: 24600302]
[88]
Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 2007; 3(10): 668-77.
[http://dx.doi.org/10.1038/nchembio.2007.26] [PMID: 17828252]
[89]
Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem 2007; 53(11): 2002-9.
[http://dx.doi.org/10.1373/clinchem.2007.090795] [PMID: 17890442]
[90]
Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot 2017; 2(4): eaam6431.
[http://dx.doi.org/10.1126/scirobotics.aam6431] [PMID: 31552379]
[91]
Douglas PS, DeCara JM, Devereux RB, et al. American society of echocardiography standards; American college of cardiology foundation. Echocardiographic imaging in clinical trials: American Society of Echocardiography Standards for echocardiography core laboratories: endorsed by the American College of Cardiology Foundation. J Am Soc Echocardiogr 2009; 22(7): 755-65.
[http://dx.doi.org/10.1016/j.echo.2009.05.020] [PMID: 19560654]
[92]
Bennett P, LeLacheur RM. Logistical and operational practice in the regulated bioanalysis laboratory. In: Mario LR Jr, Stephen L, Eds. Regulated Bioanalysis: Fundamentals and Practice. Cham: Springer 2017; pp. 39-62.
[http://dx.doi.org/10.1007/978-3-319-54802-9_3]
[93]
Grazal JG, Earl DS EU. Health and environmental professionals 1997; 2(2): 55-60.
[94]
Scorer T, Perkin M, Buckley M. Measurement Good Practice Guide No. 7. Weighing in the pharmaceutical industry. Eddington, Middlesex, United Kingdom: Crown 2004.
[95]
Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018; 4(11): e00938.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00938] [PMID: 30519653]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy