Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Aptamer-based Cell Recognition and Detection

Author(s): Liyan Zheng, Qiang Zhang, Yutong Zhang, Liping Qiu* and Weihong Tan*

Volume 18, Issue 6, 2022

Published on: 14 January, 2022

Page: [612 - 621] Pages: 10

DOI: 10.2174/1573411017666211201163504

Price: $65

Abstract

Cells, regarded as the structural and functional units of organisms, have become one of the most important objects in many research areas. Specific recognition and detection of malignant cells are critical for disease diagnosis, therapy and prognosis. Aptamers are short; single-stranded oligonucleotides screened from a random library by an in vitro technology termed “Systematic Evolution of Ligands by Exponential Enrichment” (SELEX) on the basis of their specific binding to target cargos. With the advantages of small size, easy synthesis, convenient modification, high chemical stability and low immunogenicity, aptamers have attracted broad attention in bioanalysis. Using intact living cells as the selection target, the cell-SELEX technology enables the generation of many aptamers that can specifically recognize molecular signatures of target cells. These aptamers have been extensively utilized in various cell-based research. In this mini-review, we focus on recent advances in aptamer-based recognition and detection of cells, particularly circulating tumor cells (CTCs).

Keywords: Aptamers, Cell-SELEX, circulating tumor cells, cell recognition, fluorescence detection, microfluidics.

Graphical Abstract

[1]
Sheng, W.; Chen, T.; Tan, W.; Fan, Z.H. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano, 2013, 7(8), 7067-7076.
[http://dx.doi.org/10.1021/nn4023747] [PMID: 23837646]
[2]
Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov., 2006, 5(12), 993-996.
[http://dx.doi.org/10.1038/nrd2199] [PMID: 17139284]
[3]
Cristofanilli, M. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Semin. Oncol., 2006, 33(3)(Suppl. 9), S9-S14.
[http://dx.doi.org/10.1053/j.seminoncol.2006.03.016] [PMID: 16797376]
[4]
Nagarajan, T.; Marissen, W.E.; Rupprecht, C.E. Monoclonal antibodies for the prevention of rabies: theory and clinical practice. Antib. Technol. J., 2014, 4, 1-12.
[http://dx.doi.org/10.2147/ANTI.S33533]
[5]
Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822.
[http://dx.doi.org/10.1038/346818a0] [PMID: 1697402]
[6]
Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510.
[http://dx.doi.org/10.1126/science.2200121] [PMID: 2200121]
[7]
Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z.C.; Chen, H.W.; Mallikaratchy, P.; Sefah, K.; Yang, C.J.; Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA, 2006, 103(32), 11838-11843.
[http://dx.doi.org/10.1073/pnas.0602615103] [PMID: 16873550]
[8]
Graham, J.C.; Zarbl, H. Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells. PLoS One, 2012, 7(4), e36103.
[http://dx.doi.org/10.1371/journal.pone.0036103] [PMID: 22536456]
[9]
Mallikaratchy, P.; Tang, Z.; Kwame, S.; Meng, L.; Shangguan, D.; Tan, W. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol. Cell. Proteomics, 2007, 6(12), 2230-2238.
[http://dx.doi.org/10.1074/mcp.M700026-MCP200] [PMID: 17875608]
[10]
Chen, H.W.; Medley, C.D.; Sefah, K.; Shangguan, D.; Tang, Z.; Meng, L.; Smith, J.E.; Tan, W. Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem, 2008, 3(6), 991-1001.
[http://dx.doi.org/10.1002/cmdc.200800030] [PMID: 18338423]
[11]
Shangguan, D.; Cao, Z.; Meng, L.; Mallikaratchy, P.; Sefah, K.; Wang, H.; Li, Y.; Tan, W. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res., 2008, 7(5), 2133-2139.
[http://dx.doi.org/10.1021/pr700894d] [PMID: 18363322]
[12]
Gourronc, F.A.; Rockey, W.M.; Thiel, W.H.; Giangrande, P.H.; Klingelhutz, A.J. Identification of RNA aptamers that internalize into HPV-16 E6/E7 transformed tonsillar epithelial cells. Virology, 2013, 446(1-2), 325-333.
[http://dx.doi.org/10.1016/j.virol.2013.08.015] [PMID: 24074596]
[13]
Kim, Y.; Wu, Q.; Hamerlik, P.; Hitomi, M.; Sloan, A.E.; Barnett, G.H.; Weil, R.J.; Leahy, P.; Hjelmeland, A.B.; Rich, J.N. Aptamer identification of brain tumor-initiating cells. Cancer Res., 2013, 73(15), 4923-4936.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4556] [PMID: 23796560]
[14]
Kim, J.W.; Kim, E.Y.; Kim, S.Y.; Byun, S.K.; Lee, D.; Oh, K.J.; Kim, W.K.; Han, B.S.; Chi, S.W.; Lee, S.C.; Bae, K.H. Identification of DNA aptamers toward epithelial cell adhesion molecule via cell-SELEX. Mol. Cells, 2014, 37(10), 742-746.
[http://dx.doi.org/10.14348/molcells.2014.0208] [PMID: 25266702]
[15]
Lu, M.; Zhou, L.; Zheng, X.; Quan, Y.; Wang, X.; Zhou, X.; Ren, J. A novel molecular marker of breast cancer stem cells identified by cell-SELEX method. Cancer Biomark., 2015, 15(2), 163-170.
[http://dx.doi.org/10.3233/CBM-140450] [PMID: 25519016]
[16]
Dua, P.; Kang, H.S.; Hong, S.M.; Tsao, M.S.; Kim, S.; Lee, D.K. Alkaline phosphatase ALPPL-2 is a novel pancreatic carcinoma-associated protein. Cancer Res., 2013, 73(6), 1934-1945.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3682] [PMID: 23467613]
[17]
Rong, Y.; Chen, H.; Zhou, X.F.; Yin, C.Q.; Wang, B.C.; Peng, C.W.; Liu, S.P.; Wang, F.B. Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget, 2016, 7(7), 8282-8294.
[http://dx.doi.org/10.18632/oncotarget.6988] [PMID: 26882565]
[18]
Gijs, M.; Penner, G.; Blackler, G.B.; Impens, N.R.; Baatout, S.; Luxen, A.; Aerts, A.M. Improved aptamers for the diagnosis and potential treatment of HER2-positive cancer. Pharmaceuticals (Basel), 2016, 9(2), 29.
[http://dx.doi.org/10.3390/ph9020029] [PMID: 27213406]
[19]
Shigdar, S.; Lin, J.; Yu, Y.; Pastuovic, M.; Wei, M.; Duan, W. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci., 2011, 102(5), 991-998.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01897.x] [PMID: 21281402]
[20]
Shigdar, S.; Qiao, L.; Zhou, S.F.; Xiang, D.; Wang, T.; Li, Y.; Lim, L.Y.; Kong, L.; Li, L.; Duan, W. RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett., 2013, 330(1), 84-95.
[http://dx.doi.org/10.1016/j.canlet.2012.11.032] [PMID: 23196060]
[21]
Bayat, P.; Taghdisi, S.M.; Rafatpanah, H.; Abnous, K.; Ramezani, M. In vitro selection of CD70 binding aptamer and its application in a biosensor design for sensitive detection of SKOV-3 ovarian cells. Talanta, 2019, 194, 399-405.
[http://dx.doi.org/10.1016/j.talanta.2018.10.063] [PMID: 30609550]
[22]
Daniels, D.A.; Chen, H.; Hicke, B.J.; Swiderek, K.M.; Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15416-15421.
[http://dx.doi.org/10.1073/pnas.2136683100] [PMID: 14676325]
[23]
Almasi, F.; Mousavi Gargari, S.L.; Bitaraf, F.; Rasoulinejad, S. Development of a single stranded DNA aptamer as a molecular probe for lncap cells using cell-selex. Avicenna J. Med. Biotechnol., 2016, 8(3), 104-111.
[PMID: 27563422]
[24]
Sefah, K.; Tang, Z.W.; Shangguan, D.H.; Chen, H.; Lopez-Colon, D.; Li, Y.; Parekh, P.; Martin, J.; Meng, L.; Phillips, J.A.; Kim, Y.M.; Tan, W.H. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia, 2009, 23(2), 235-244.
[http://dx.doi.org/10.1038/leu.2008.335] [PMID: 19151784]
[25]
Fafińska, J.; Czech, A.; Sitz, T.; Ignatova, Z.; Hahn, U. DNA aptamers for the malignant transformation marker CD24. Nucleic Acid Ther., 2018, 28(6), 326-334.
[http://dx.doi.org/10.1089/nat.2018.0748] [PMID: 30407110]
[26]
Hicke, B.J.; Marion, C.; Chang, Y.F.; Gould, T.; Lynott, C.K.; Parma, D.; Schmidt, P.G.; Warren, S. Tenascin-C aptamers are generated using tumor cells and purified protein. J. Biol. Chem., 2001, 276(52), 48644-48654.
[http://dx.doi.org/10.1074/jbc.M104651200] [PMID: 11590140]
[27]
Zhang, K.; Sefah, K.; Tang, L.; Zhao, Z.; Zhu, G.; Ye, M.; Sun, W.; Goodison, S.; Tan, W. A novel aptamer developed for breast cancer cell internalization. ChemMedChem, 2012, 7(1), 79-84.
[http://dx.doi.org/10.1002/cmdc.201100457] [PMID: 22170627]
[28]
Li, X.; Zhang, W.; Liu, L.; Zhu, Z.; Ouyang, G.; An, Y.; Zhao, C.; Yang, C.J. In vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal. Chem., 2014, 86(13), 6596-6603.
[http://dx.doi.org/10.1021/ac501205q] [PMID: 24892693]
[29]
Kang, H.S.; Huh, Y.M.; Kim, S.Y.; Lee, D.K. Isolation of RNA aptamers targeting HER-2-overexpressing breast cancer cells using cell-SELEX. Bull. Korean Chem. Soc., 2009, 30(8), 1827-1831.
[http://dx.doi.org/10.5012/bkcs.2009.30.8.1827]
[30]
Wu, X.; Zhao, Z.; Bai, H.; Fu, T.; Yang, C.; Hu, X.; Liu, Q.; Champanhac, C.; Teng, I-T.; Ye, M.; Tan, W. DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics, 2015, 5(9), 985-994.
[http://dx.doi.org/10.7150/thno.11938] [PMID: 26155314]
[31]
Duan, M.; Long, Y.; Yang, C.; Wu, X.; Sun, Y.; Li, J.; Hu, X.; Lin, W.; Han, D.; Zhao, Y.; Liu, J.; Ye, M.; Tan, W. Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging. Oncotarget, 2016, 7(24), 36436-36446.
[http://dx.doi.org/10.18632/oncotarget.9262] [PMID: 27183906]
[32]
Wang, A.Z.; Bagalkot, V.; Vasilliou, C.C.; Gu, F.; Alexis, F.; Zhang, L.; Shaikh, M.; Yuet, K.; Cima, M.J.; Langer, R.; Kantoff, P.W.; Bander, N.H.; Jon, S.; Farokhzad, O.C. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem, 2008, 3(9), 1311-1315.
[http://dx.doi.org/10.1002/cmdc.200800091] [PMID: 18613203]
[33]
Zhang, H. 99mTc-Mercaptoacetyl-Glu-Glu-aptamer specific for tenascin-C. . In: Mol. Imag. Cont. Agent Database; MICAD, 2008. [Internet]
[34]
Hwang, D.W.; Ko, H.Y.; Lee, J.H.; Kang, H.; Ryu, S.H.; Song, I.C.; Lee, D.S.; Kim, S. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J. Nucl. Med., 2010, 51(1), 98-105.
[http://dx.doi.org/10.2967/jnumed.109.069880] [PMID: 20008986]
[35]
Yang, J.; Li, X.; Jiang, B.; Yuan, R.; Xiang, Y. In Situ-generated multivalent aptamer network for efficient capture and sensitive electrochemical detection of circulating tumor cells in whole blood 2020, 92(11), 7893-7899.
[http://dx.doi.org/10.1021/acs.analchem.0c01195] [PMID: 32338500]
[36]
Choi, J-H.; Kim, T-H.; El-Said, W.A.; Lee, J-H.; Yang, L.; Conley, B.; Choi, J-W.; Lee, K-B. In Situ detection of neurotransmitters from stem cell-derived neural interface at the single-cell level via Graphene-Hybrid SERS Nanobiosensing. Nano Lett., 2020, 20(10), 7670-7679.
[http://dx.doi.org/10.1021/acs.nanolett.0c03205] [PMID: 32870013]
[37]
Shi, H.; He, X.; Wang, K.; Wu, X.; Ye, X.; Guo, Q.; Tan, W.; Qing, Z.; Yang, X.; Zhou, B. Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc. Natl. Acad. Sci. USA, 2011, 108(10), 3900-3905.
[http://dx.doi.org/10.1073/pnas.1016197108] [PMID: 21368158]
[38]
Zeng, Z.; Tung, C.H.; Zu, Y. A cancer cell-activatable aptamer-reporter system for one-step assay of circulating tumor cells. Mol. Ther. Nucleic Acids, 2014, 3(8), e184.
[http://dx.doi.org/10.1038/mtna.2014.36] [PMID: 25118170]
[39]
Li, L.; Jiang, Y.; Cui, C.; Yang, Y.; Zhang, P.; Stewart, K.; Pan, X.; Li, X.; Yang, L.; Qiu, L.; Tan, W. Modulating aptamer specificity with pH-responsive DNA bonds. J. Am. Chem. Soc., 2018, 140(41), 13335-13339.
[http://dx.doi.org/10.1021/jacs.8b08047] [PMID: 30212189]
[40]
Dou, B.; Xu, L.; Jiang, B.; Yuan, R.; Xiang, Y. Aptamer-functionalized and gold nanoparticle array-decorated magnetic graphene nanosheets enable multiplexed and sensitive electrochemical detection of rare circulating tumor cells in whole blood. Anal. Chem., 2019, 91(16), 10792-10799.
[http://dx.doi.org/10.1021/acs.analchem.9b02403] [PMID: 31310099]
[41]
Deng, J.; Tian, F.; Liu, C.; Liu, Y.; Zhao, S.; Fu, T.; Sun, J.; Tan, W. Rapid one-step detection of viral particles using an aptamer-based thermophoretic assay. J. Am. Chem. Soc., 2021, 143(19), 7261-7266.
[http://dx.doi.org/10.1021/jacs.1c02929] [PMID: 33944569]
[42]
Zhou, Z.; Sohn, Y.S.; Nechushtai, R.; Willner, I. DNA tetrahedra modules as versatile optical sensing platforms for multiplexed analysis of mirnas, endonucleases, and aptamer-ligand complexes. ACS Nano, 2020, 14(7), 9021-9031.
[http://dx.doi.org/10.1021/acsnano.0c04031] [PMID: 32539340]
[43]
Yang, L.; Zhang, X.; Ye, M.; Jiang, J.; Yang, R.; Fu, T.; Chen, Y.; Wang, K.; Liu, C.; Tan, W. Aptamer-conjugated nanomaterials and their applications. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1361-1370.
[http://dx.doi.org/10.1016/j.addr.2011.10.002] [PMID: 22016112]
[44]
Herr, J.K.; Smith, J.E.; Medley, C.D.; Shangguan, D.; Tan, W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem., 2006, 78(9), 2918-2924.
[http://dx.doi.org/10.1021/ac052015r] [PMID: 16642976]
[45]
Li, Z.; Wang, G.; Shen, Y.; Guo, N.; Ma, N. DNA‐templated magnetic nanoparticle‐quantum dot polymers for ultrasensitive capture and detection of circulating tumor cells. Adv. Funct. Mater., 2018, 28(14), 1707152.
[http://dx.doi.org/10.1002/adfm.201707152]
[46]
Wang, D.; Peng, R.; Peng, Y.; Deng, Z.; Xu, F.; Su, Y.; Wang, P.; Li, L.; Wang, X-Q.; Ke, Y. Tan, Hierarchical fabrication of dna wireframe nanoarchitectures for efficient cancer imaging and targeted therapy. ACS Nano, 2020, 14(12), 17365-17375.
[http://dx.doi.org/10.1021/acsnano.0c07495]
[47]
Wang, D.; Li, S.; Zhao, Z.; Zhang, X.; Tan, W. Engineering a second-order dna logic-gated nanorobot to sense and release on live cell membranes for multiplexed diagnosis and synergistic therapy. Angew. Chem. Int. Ed. Engl., 2021, 60(29), 15816-15820.
[http://dx.doi.org/10.1002/anie.202103993] [PMID: 33908144]
[48]
Ringquist, S.; Parma, D. Anti-L-selectin oligonucleotide ligands recognize CD62L-positive leukocytes: binding affinity and specificity of univalent and bivalent ligands. Cytometry, 1998, 33(4), 394-405.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19981201)33:4<394:AID-CYTO2>3.0.CO;2-0] [PMID: 9845433]
[49]
Zhou, G.; Lin, M.; Song, P.; Chen, X.; Chao, J.; Wang, L.; Huang, Q.; Huang, W.; Fan, C.; Zuo, X. Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal. Chem., 2014, 86(15), 7843-7848.
[http://dx.doi.org/10.1021/ac502276w] [PMID: 24989246]
[50]
Wang, S.; Kong, H.; Gong, X.; Zhang, S.; Zhang, X. Multicolor imaging of cancer cells with fluorophore-tagged aptamers for single cell typing. Anal. Chem., 2014, 86(16), 8261-8266.
[http://dx.doi.org/10.1021/ac501657g] [PMID: 25054485]
[51]
You, M.; Peng, L.; Shao, N.; Zhang, L.; Qiu, L.; Cui, C.; Tan, W. DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc., 2014, 136(4), 1256-1259.
[http://dx.doi.org/10.1021/ja4114903] [PMID: 24367989]
[52]
You, M.; Zhu, G.; Chen, T.; Donovan, M.J.; Tan, W. Programmable and multiparameter DNA-based logic platform for cancer recognition and targeted therapy. J. Am. Chem. Soc., 2015, 137(2), 667-674.
[http://dx.doi.org/10.1021/ja509263k] [PMID: 25361164]
[53]
Ren, K.; Liu, Y.; Wu, J.; Zhang, Y.; Zhu, J.; Yang, M.; Ju, H. A DNA dual lock-and-key strategy for cell-subtype-specific siRNA delivery. Nat. Commun., 2016, 7(1), 13580.
[http://dx.doi.org/10.1038/ncomms13580] [PMID: 27882923]
[54]
Jiang, Y.; Shi, M.; Liu, Y.; Wan, S.; Cui, C.; Zhang, L.; Tan, W. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. Engl., 2017, 56(39), 11916-11920.
[http://dx.doi.org/10.1002/anie.201703807] [PMID: 28834063]
[55]
Liu, C.; Zhao, J.; Tian, F.; Cai, L.; Zhang, W.; Feng, Q.; Chang, J.; Wan, F.; Yang, Y.; Dai, B.; Cong, Y.; Ding, B.; Sun, J.; Tan, W. Low-cost thermophoretic profiling of extracellular-vesicle surface proteins for the early detection and classification of cancers. Nat. Biomed. Eng., 2019, 3(3), 183-193.
[http://dx.doi.org/10.1038/s41551-018-0343-6] [PMID: 30948809]
[56]
Li, Y.; Deng, J.; Han, Z.; Liu, C.; Tian, F.; Xu, R.; Han, D.; Zhang, S.; Sun, J. Molecular identification of tumor-derived extracellular vesicles using thermophoresis-mediated dna computation. J. Am. Chem. Soc., 2021, 143(3), 1290-1295.
[http://dx.doi.org/10.1021/jacs.0c12016] [PMID: 33455159]
[57]
Shang, L.; Cheng, Y.; Zhao, Y. Emerging droplet microfluidics. Chem. Rev., 2017, 117(12), 7964-8040.
[http://dx.doi.org/10.1021/acs.chemrev.6b00848] [PMID: 28537383]
[58]
Wu, L.; Ding, H.; Qu, X.; Shi, X.; Yang, J.; Huang, M.; Zhang, J.; Zhang, H.; Song, J.; Zhu, L.; Song, Y.; Ma, Y.; Yang, C. Fluidic multivalent membrane nanointerface enables synergetic enrichment of circulating tumor cells with high efficiency and viability. J. Am. Chem. Soc., 2020, 142(10), 4800-4806.
[http://dx.doi.org/10.1021/jacs.9b13782] [PMID: 32049531]
[59]
Liu, D.; Zhang, Y.; Zhu, M.; Yu, Z.; Ma, X.; Song, Y.; Zhou, S.; Yang, C. Microfluidic-integrated multicolor immunosensor for visual detection of hiv-1 p24 antigen with the naked eye. Anal. Chem., 2020, 92(17), 11826-11833.
[http://dx.doi.org/10.1021/acs.analchem.0c02091] [PMID: 32867503]
[60]
Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U.J.; Tompkins, R.G.; Haber, D.A.; Toner, M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007, 450(7173), 1235-1239.
[http://dx.doi.org/10.1038/nature06385] [PMID: 18097410]
[61]
Phillips, J.A.; Xu, Y.; Xia, Z.; Fan, Z.H.; Tan, W. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal. Chem., 2009, 81(3), 1033-1039.
[http://dx.doi.org/10.1021/ac802092j] [PMID: 19115856]
[62]
Zhao, W.; Cui, C.H.; Bose, S.; Guo, D.; Shen, C.; Wong, W.P.; Halvorsen, K.; Farokhzad, O.C.; Teo, G.S.K.; Phillips, J.A.; Dorfman, D.M.; Karnik, R.; Karp, J.M. Bioinspired multivalent DNA network for capture and release of cells. Proc. Natl. Acad. Sci. USA, 2012, 109(48), 19626-19631.
[http://dx.doi.org/10.1073/pnas.1211234109] [PMID: 23150586]
[63]
Zhang, J.; Lin, B.; Wu, L.; Huang, M.; Li, X.; Zhang, H.; Song, J.; Wang, W.; Zhao, G.; Song, Y.; Yang, C. DNA nanolithography enables a highly ordered recognition interface in a microfluidic chip for the efficient capture and release of circulating tumor cells. Angew. Chem. Int. Ed. Engl., 2020, 59(33), 14115-14119.
[http://dx.doi.org/10.1002/anie.202005974] [PMID: 32394524]
[64]
Xu, Y.; Phillips, J.A.; Yan, J.; Li, Q.; Fan, Z.H.; Tan, W. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem., 2009, 81(17), 7436-7442.
[http://dx.doi.org/10.1021/ac9012072] [PMID: 19715365]
[65]
Song, Y.; Shi, Y.; Huang, M.; Wang, W.; Wang, Y.; Cheng, J.; Lei, Z.; Zhu, Z.; Yang, C. Bioinspired engineering of a multivalent aptamer-functionalized nanointerface to enhance the capture and release of circulating tumor cells. Angew. Chem. Int. Ed. Engl., 2019, 58(8), 2236-2240.
[http://dx.doi.org/10.1002/anie.201809337] [PMID: 30548959]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy