Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Recent Advances in Bipolar Electrochemiluminescence for Analytical Application

Author(s): Huanhuan Xing, Jing Li* and Erkang Wang *

Volume 18, Issue 6, 2022

Published on: 05 January, 2022

Page: [601 - 611] Pages: 11

DOI: 10.2174/1573411017666210706160215

Price: $65

Abstract

Background: Bipolar electrode (BPE), as an immersed electrical conductor in the electrolyte, can be polarized into cathodic and anodic poles under a sufficient electric field without direct contact, which affords a unique way to promote asymmetrical reactions at two poles. Up to date, bipolar electrochemistry has been widely used in the preparation of Janus materials, the fabrication of sensing/screening platform, target focusing and microswimmers. However, the wireless feature of BPE makes monitoring the Faradaic current difficult. Electrochemiluminescence (ECL), the light emission via an electrochemical reaction, matches the feature of bipolar electrochemistry well and is widely adopted to achieve the record of the Faradaic current flowing through the BPE. The objective of the present review aims to demonstrate the most recent advances in analytical applications (2016-2020) in combination with the high sensitive ECL as the output.

Methods: Due to the difficulty of the recording of the Faradaic current flowing the BPE, the ECL, as a simple, sensitive and detectable signal-out, has become a popular method for analytical application based on the BPE. This review mainly summarizes the recent research of BPE/ECL according to the configuration and sensing principle of BPE designed in the ECL analysis.

Results: Various sensors based on the BPE/ECL have been proposed for the electroactive targets and the bio-relevant molecules without the electroactivity by different ingenious designs. Besides, the microelectrode array and ultra-microelectrode (UME) array have also been applied in the BPE/ECL field to achieve the high temporal-spatial resolution imaging of the sample molecules based on the BPE microelectrode array.

Conclusion: The combination of BPE and ECL provides a simple, portable and versatile sensor strategy for various targets due to the unique advantages of BPE and ECL, and can be applied for the fast, accurate and point-of-care diagnostics of numerous diseases. Though the BPE/ECL analysis has many merits such as high-throughput, excellent sensitivity, and high spatial-temporal resolution, the sensitive and commercial ECL analysis based on the BPE is still difficult to realize and the analysis research of BPE/ECL is still in the early stage.

Keywords: Bipolar electrode, electrochemiluminescence, biosensor, high-throughput, asymmetrical reactions, bipolar electrochemisrty.

Graphical Abstract

[1]
Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev., 2008, 108(7), 2506-2553.
[http://dx.doi.org/10.1021/cr068083a] [PMID: 18505298]
[2]
Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence. Chem. Soc. Rev., 2015, 44(10), 3117-3142.
[http://dx.doi.org/10.1039/C5CS00086F] [PMID: 25803228]
[3]
Zhai, Q.F.; Li, J.; Wang, E.K. Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. ChemElectroChem, 2017, 4, 1639-1650.
[http://dx.doi.org/10.1002/celc.201600898]
[4]
Chen, M.; Ning, Z.; Chen, K.; Zhang, Y.; Shen, Y. Recent advances of electrochemiluminescent system in bioassay. J. Anal. Test., 2020, 4, 57-75.
[http://dx.doi.org/10.1007/s41664-020-00136-x]
[5]
Kannan, P.; Chen, J.; Su, F.; Guo, Z.; Huang, Y. Faraday-cage-type electrochemiluminescence immunoassay: A rise of advanced biosensing strategy. Anal. Chem., 2019, 91(23), 14792-14802.
[http://dx.doi.org/10.1021/acs.analchem.9b04503] [PMID: 31692335]
[6]
Fosdick, S.E.; Knust, K.N.; Scida, K.; Crooks, R.M. Bipolar electrochemistry. Angew. Chem. Int. Ed. Engl., 2013, 52(40), 10438-10456.
[http://dx.doi.org/10.1002/anie.201300947] [PMID: 23843205]
[7]
Backhurst, J.R.; Coulson, J.M.; Goodridge, F.; Plimley, R.E. A preliminary investigation of fluidized bed electrodes. J. Electrochem. Soc., 1969, 116, 1600-1607.
[http://dx.doi.org/10.1149/1.2411628]
[8]
Arora, A.; Eijkel, J.C.T.; Morf, W.E.; Manz, A. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal. Chem., 2001, 73(14), 3282-3288.
[http://dx.doi.org/10.1021/ac0100300] [PMID: 11476226]
[9]
Loget, G.; Zigah, D.; Bouffier, L.; Sojic, N.; Kuhn, A. Bipolar electrochemistry: From materials science to motion and beyond. Acc. Chem. Res., 2013, 46(11), 2513-2523.
[http://dx.doi.org/10.1021/ar400039k] [PMID: 23719628]
[10]
Mavre, F.; Chow, K.F.; Sheridan, E.; Chang, B.Y.; Crooks, J.A.; Crooks, R.M. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes. Anal. Chem., 2009, 81, 6218-6225.
[http://dx.doi.org/10.1021/ac900744p]
[11]
Oja, S.M.; Zhang, B. Electrogenerated chemiluminescence reporting on closed bipolar microelectrodes and the influence of electrode size. ChemElectroChem, 2016, 3(3), 457-464.
[http://dx.doi.org/10.1002/celc.201500352] [PMID: 27500079]
[12]
Zhan, W.; Alvarez, J.; Crooks, R.M. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. J. Am. Chem. Soc., 2002, 124(44), 13265-13270.
[http://dx.doi.org/10.1021/ja020907s] [PMID: 12405855]
[13]
Zhan, W.; Alvarez, J.; Crooks, R.M. A two-channel microfluidic sensor that uses anodic electrogenerated chemiluminescence as a photonic reporter of cathodic redox reactions. Anal. Chem., 2003, 75(2), 313-318.
[http://dx.doi.org/10.1021/ac020488h] [PMID: 12553767]
[14]
Chow, K.F.; Mavré, F.; Crooks, R.M. Wireless electrochemical DNA microarray sensor. J. Am. Chem. Soc., 2008, 130(24), 7544-7545.
[http://dx.doi.org/10.1021/ja802013q] [PMID: 18505258]
[15]
Bouffier, L.; Arbault, S.; Kuhn, A.; Sojic, N. Generation of electrochemiluminescence at bipolar electrodes: Concepts and applications. Anal. Bioanal. Chem., 2016, 408(25), 7003-7011.
[http://dx.doi.org/10.1007/s00216-016-9606-9] [PMID: 27185542]
[16]
Zhang, X.; Zhai, Q.; Xing, H.; Li, J.; Wang, E. Bipolar electrodes with 100% current efficiency for sensors. ACS Sens., 2017, 2(3), 320-326.
[http://dx.doi.org/10.1021/acssensors.7b00031] [PMID: 28723210]
[17]
Bouffier, L.; Manojlovic, D.; Kuhn, A.; Sojic, N. Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. Curr. Opin. Electroche., 2019, 16, 28-34.
[http://dx.doi.org/10.1016/j.coelec.2019.04.004]
[18]
Li, J.; Wang, E. Wireless ECL generation based on bipolar electrochemistry.Analytical electrogenerated chemiluminescence: From fundamentals to bioassays; Sojic, N., Ed.; The Royal Society of Chemistry, 2019, pp. 176-199.
[http://dx.doi.org/10.1039/9781788015776-00176]
[19]
Guerrette, J.P.; Oja, S.M.; Zhang, B. Coupled electrochemical reactions at bipolar microelectrodes and nanoelectrodes. Anal. Chem., 2012, 84(3), 1609-1616.
[http://dx.doi.org/10.1021/ac2028672] [PMID: 22229756]
[20]
Zhang, X.; Chen, C.; Li, J.; Zhang, L.; Wang, E. New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform. Anal. Chem., 2013, 85(11), 5335-5339.
[http://dx.doi.org/10.1021/ac400805f] [PMID: 23635353]
[21]
Yuan, F.; Qi, L.; Fereja, T.H.; Snizhko, D.V.; Liu, Z.; Zhang, W.; Xu, G. Regenerable bipolar electrochemiluminescence device using glassy carbon bipolar electrode, stainless steel driving electrode and cold patch. Electrochim. Acta, 2018, 262, 182-186.
[http://dx.doi.org/10.1016/j.electacta.2017.12.186]
[22]
Lu, W.X.; Bao, N.; Ding, S.N. A bipolar electrochemiluminescence sensing platform based on pencil core and paper reservoirs. Rsc Adv., 2016, 6, 25388-25392.
[http://dx.doi.org/10.1039/C6RA01460G]
[23]
Hao, N.; Lu, J.; Dai, Z.; Qian, J.; Zhang, J.; Guo, Y.; Wang, K. Analysis of aqueous systems using all-inorganic perovskite CsPbBr3 quantum dots with stable electrochemiluminescence performance using a closed bipolar electrode. Electrochem. Commun., 2019, 108, 106559.
[http://dx.doi.org/10.1016/j.elecom.2019.106559]
[24]
Zhao, W.; Ma, Y.; Ye, J.; Jin, J. A closed bipolar electrochemiluminescence sensing platform based on quantum dots: A practical solution for biochemical analysis and detection. Sens. Actuators B Chem., 2020, 311, 127930.
[http://dx.doi.org/10.1016/j.snb.2020.127930]
[25]
Zhang, X.; Li, J.; Jia, X.; Li, D.; Wang, E. Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system. Anal. Chem., 2014, 86(11), 5595-5599.
[http://dx.doi.org/10.1021/ac501246k] [PMID: 24831604]
[26]
Zhang, J.; Yu, W.; Jiang, X.; Gao, Y.; Peng, G. Alternate reporting surfaces in closed bipolar electrode system: A strategy forelectrochemiluminescence sensing of both redox processes. J. Electroanal. Chem. (Lausanne Switz.), 2020, 878, 114705.
[http://dx.doi.org/10.1016/j.jelechem.2020.114705]
[27]
Li, H.; Bouffier, L.; Arbault, S.; Kuhn, A.; Hogan, C.F.; Sojic, N. Spatially-resolved multicolor bipolar electrochemiluminescence. Electrochem. Commun., 2017, 77, 10-13.
[http://dx.doi.org/10.1016/j.elecom.2017.02.006]
[28]
Moghaddam, M.R.; Carrara, S.; Hogan, C.F. Multi-colour bipolar electrochemiluminescence for heavy metal ion detection. Chem. Commun. (Camb.), 2019, 55(8), 1024-1027.
[http://dx.doi.org/10.1039/C8CC08472F] [PMID: 30480267]
[29]
Hu, Y.; He, Y.; Peng, Z.; Li, Y. A ratiometric electrochemiluminescence sensing platform for robust ascorbic acid analysis based on a molecularly imprinted polymer modified bipolar electrode. Biosens. Bioelectron., 2020, 167, 112490.
[http://dx.doi.org/10.1016/j.bios.2020.112490] [PMID: 32805510]
[30]
Baek, S.; Kwon, S.R.; Yeon, S.Y.; Yoon, S.H.; Kang, C.M.; Han, S.H.; Lee, D.; Chung, T.D. Miniaturized reverse electrodialysis-powered biosensor using electrochemiluminescence on bipolar electrode. Anal. Chem., 2018, 90(7), 4749-4755.
[http://dx.doi.org/10.1021/acs.analchem.7b05425] [PMID: 29521095]
[31]
Ma, X.; Qi, L.; Gao, W.; Yuan, F.; Xia, Y.; Lou, B.; Xu, G. A portable wireless single-electrode system for electrochemiluminescent analysis. Electrochim. Acta, 2019, 308, 20-24.
[http://dx.doi.org/10.1016/j.electacta.2019.04.015]
[32]
Shi, H.W.; Zhao, W.; Liu, Z.; Liu, X.C.; Xu, J.J.; Chen, H.Y. Temporal sensing platform based on bipolar electrode for the ultrasensitive detection of cancer cells. Anal. Chem., 2016, 88(17), 8795-8801.
[http://dx.doi.org/10.1021/acs.analchem.6b02204] [PMID: 27506255]
[33]
Guo, R.; Hu, S.; Wang, Z. A portable electrochemiluminescence bipolar electrode array for the visualized sensing of Cas9 activity. Analyst (Lond.), 2020, 145(10), 3569-3574.
[http://dx.doi.org/10.1039/D0AN00678E] [PMID: 32352098]
[34]
Ino, K.; Yaegaki, R.; Hiramoto, K.; Nashimoto, Y.; Shiku, H. Closed bipolar electrode array for on-chip analysis of cellular respiration by cell aggregates. ACS Sens., 2020, 5(3), 740-745.
[http://dx.doi.org/10.1021/acssensors.9b02061] [PMID: 31997640]
[35]
Zhai, Q.; Zhang, X.; Han, Y.; Zhai, J.; Li, J.; Wang, E. A nanoscale multichannel closed bipolar electrode array for electrochemiluminescence sensing platform. Anal. Chem., 2016, 88(1), 945-951.
[http://dx.doi.org/10.1021/acs.analchem.5b03685] [PMID: 26597965]
[36]
Gao, W.; Muzyka, K.; Ma, X.; Lou, B.; Xu, G. A single-electrode electrochemical system for multiplex electrochemiluminescence analysis based on a resistance induced potential difference. Chem. Sci. (Camb.), 2018, 9(16), 3911-3916.
[http://dx.doi.org/10.1039/C8SC00410B] [PMID: 29780522]
[37]
Wu, M.; Xu, N.; Qiao, J.; Chen, J.; Jin, L. Bipolar electrode-electrochemiluminescence (ECL) biosensor based on a hybridization chain reaction. Analyst (Lond.), 2019, 144(15), 4633-4638.
[http://dx.doi.org/10.1039/C9AN01022J] [PMID: 31250857]
[38]
Shokouhi, M.; Mehrgardi, M.A. Cancer cell detection-based on released hydrogen peroxide using a non-modified closed bipolar electrochemical system. ChemElectroChem, 2020, 7, 3439-3444.
[http://dx.doi.org/10.1002/celc.202000535]
[39]
Zhang, N.; Gao, H.; Xu, C.H.; Cheng, Y.; Chen, H.Y.; Xu, J.J. An efficient electrochemiluminescence enhancement strategy on bipolar electrode for bioanalysis. Anal. Chem., 2019, 91(19), 12553-12559.
[http://dx.doi.org/10.1021/acs.analchem.9b03477] [PMID: 31462043]
[40]
Zhang, X.; Ding, S.N. Graphite paper-based bipolar electrode electrochemiluminescence sensing platform. Biosens. Bioelectron., 2017, 94, 47-55.
[http://dx.doi.org/10.1016/j.bios.2017.02.033] [PMID: 28257974]
[41]
Wang, F.; Fu, C.; Huang, C.; Li, N.; Wang, Y.; Ge, S.; Yu, J. Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosens. Bioelectron., 2020, 150, 111917.
[http://dx.doi.org/10.1016/j.bios.2019.111917] [PMID: 31784310]
[42]
Shi, H.W.; Zhao, W.; Liu, Z.; Liu, X.C.; Wu, M.S.; Xu, J.J.; Chen, H.Y. Joint enhancement strategy applied in ECL biosensor based on closed bipolar electrodes for the detection of PSA. Talanta, 2016, 154, 169-174.
[http://dx.doi.org/10.1016/j.talanta.2016.03.059] [PMID: 27154662]
[43]
Xiong, X.; Li, Y.; Yuan, W.; Lu, Y.; Xiong, X.; Li, Y.; Chen, X.; Liu, Y. Screen printed bipolar electrode for sensitive electrochemiluminescence detection of aflatoxin B1 in agricultural products. Biosens. Bioelectron., 2020, 150, 111873.
[http://dx.doi.org/10.1016/j.bios.2019.111873] [PMID: 31748193]
[44]
Wang, Y.Z.; Ji, S.Y.; Xu, H.Y.; Zhao, W.; Xu, J.J.; Chen, H.Y. Bidirectional electrochemiluminescence color switch: An application in detecting multimarkers of prostate cancer. Anal. Chem., 2018, 90(5), 3570-3575.
[http://dx.doi.org/10.1021/acs.analchem.8b00014] [PMID: 29417820]
[45]
Wang, Y.Z.; Xu, C.H.; Zhao, W.; Guan, Q.Y.; Chen, H.Y.; Xu, J.J. Bipolar electrode based multicolor electrochemiluminescence biosensor. Anal. Chem., 2017, 89(15), 8050-8056.
[http://dx.doi.org/10.1021/acs.analchem.7b01494] [PMID: 28660761]
[46]
Cao, J.T.; Wang, Y.L.; Zhang, J.J.; Dong, Y.X.; Liu, F.R.; Ren, S.W.; Liu, Y.M. Immuno-electrochemiluminescent imaging of a single cell based on functional nanoprobes of heterogeneous Ru(bpy)32+@SiO2/Au nanoparticles. Anal. Chem., 2018, 90(17), 10334-10339.
[http://dx.doi.org/10.1021/acs.analchem.8b02141] [PMID: 30074769]
[47]
Khoshfetrat, S.M.; Bagheri, H.; Mehrgardi, M.A. Visual electrochemiluminescence biosensing of aflatoxin M1 based on luminol-functionalized, silver nanoparticle-decorated graphene oxide. Biosens. Bioelectron., 2018, 100, 382-388.
[http://dx.doi.org/10.1016/j.bios.2017.09.035] [PMID: 28950248]
[48]
Liu, H.; Zhou, X.; Shen, J.; Xing, D. Sensitive detection of Hg2+ with switchable electrochemiluminescence luminophore and disposable bipolar electrode. ChemElectroChem, 2017, 4, 1681-1685.
[http://dx.doi.org/10.1002/celc.201600912]
[49]
Xiao, Y.; Xu, L.; Qi, L.W. Electrochemiluminescence bipolar electrode array for the multiplexed detection of glucose, lactate and choline based on a versatile enzymatic approach. Talanta, 2017, 165, 577-583.
[http://dx.doi.org/10.1016/j.talanta.2017.01.019] [PMID: 28153301]
[50]
Motaghi, H.; Ziyaee, S.; Mehrgardi, M.A.; Kajani, A.A.; Bordbar, A.K. Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosens. Bioelectron., 2018, 118, 217-223.
[http://dx.doi.org/10.1016/j.bios.2018.07.066] [PMID: 30092457]
[51]
Li, X.; Du, Y.; Wang, H.; Ma, H.; Wu, D.; Ren, X.; Wei, Q.; Xu, J.J. Self-supply of H2O2 and O2 by hydrolyzing CaO2 to enhance the electrochemiluminescence of luminol based on a closed bipolar electrode. Anal. Chem., 2020, 92(18), 12693-12699.
[http://dx.doi.org/10.1021/acs.analchem.0c03170] [PMID: 32808521]
[52]
Ge, S.; Zhao, J.; Wang, S.; Lan, F.; Yan, M.; Yu, J. Ultrasensitive electrochemiluminescence assay of tumor cells and evaluation of H2O2 on a paper-based closed-bipolar electrode by in-situ hybridization chain reaction amplification. Biosens. Bioelectron., 2018, 102, 411-417.
[http://dx.doi.org/10.1016/j.bios.2017.11.055] [PMID: 29175216]
[53]
Wang, Y.Z.; Zhao, W.; Dai, P.P.; Lu, H.J.; Xu, J.J.; Pan, J.; Chen, H.Y. Spatial-resolved electrochemiluminescence ratiometry based on bipolar electrode for bioanalysis. Biosens. Bioelectron., 2016, 86, 683-689.
[http://dx.doi.org/10.1016/j.bios.2016.07.067] [PMID: 27472402]
[54]
Zhang, H.R.; Wang, Y.Z.; Zhao, W.; Xu, J.J.; Chen, H.Y. Visual color-switch electrochemiluminescence biosensing of cancer cell based on multichannel bipolar electrode chip. Anal. Chem., 2016, 88(5), 2884-2890.
[http://dx.doi.org/10.1021/acs.analchem.5b04716] [PMID: 26833237]
[55]
Lu, H.J.; Zhao, W.; Xu, J.J.; Chen, H.Y. Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis. Biosens. Bioelectron., 2018, 102, 624-630.
[http://dx.doi.org/10.1016/j.bios.2017.12.008] [PMID: 29248716]
[56]
Iwama, T.; Inoue, K.Y.; Abe, H.; Matsue, T.; Shiku, H. Bioimaging using bipolar electrochemical microscopy with improved spatial resolution. Analyst (Lond.), 2020, 145(21), 6895-6900.
[http://dx.doi.org/10.1039/D0AN00912A] [PMID: 32820751]
[57]
Anderson, T.J.; Defnet, P.A.; Zhang, B. Electrochemiluminescence (ECL)-based electrochemical imaging using a massive array of bipolar ultramicroelectrodes. Anal. Chem., 2020, 92(9), 6748-6755.
[http://dx.doi.org/10.1021/acs.analchem.0c00921] [PMID: 32237722]
[58]
Defnet, P.A.; Zhang, B. Detection of transient nanoparticle collision events using electrochemiluminescence on a closed bipolar microelectrode. ChemElectroChem, 2020, 7, 252-259.
[http://dx.doi.org/10.1002/celc.201901734]
[59]
Intracellular wireless analysis of single cells by bipolar electrochemiluminescence confined in a nanopipette. Angew. Chem. Int. Ed. Engl., 2020, 59(26), 10416-10420.
[http://dx.doi.org/10.1002/anie.202002323] [PMID: 32216004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy