Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

In vitro Anti-hemolytic Effect, in vivo Anti-inflammatory and in vitro Anti-oxidant Activity of Anchusa azurea Mill

Author(s): Naouel Boussoualim*, Hayat Trabsa, Imane Krache, Soraya Ouhida, Lekhmici Arrar and Abderrahmane Baghiani

Volume 21, Issue 1, 2022

Published on: 21 February, 2022

Page: [24 - 33] Pages: 10

DOI: 10.2174/1871523020666211201162917

Price: $65

conference banner
Abstract

Background: Anchusa azurea Mill. (AA) is a medicinal plant largely used traditionally in folk medicine in Algeria; it is locally named hamham. It is effective in the treatment of various diseases.

Objectives: The aim of the present study is to determine the antioxidant, anti-inflammatory, and anti- hemolytic effects of phenolic fractions from Anchusa azurea Mill.

Methods: In this study, various extracts from Anchusa azurea Mill. (AA) using solvents with increasing polarity were prepared. The quantification of polyphenols and flavonoids was determined. The anti-radical activity of the different extracts was evaluated using DPPH and by measuring the inhibition of the oxidative degradation of β-carotene. The In-vitro antihemolytic effect of the plant extracts is determined (CrE, ChE, AcE, and AqE). For each extract, four concentrations were tested: 10.59, 21.18, 42.37, 84.74 μg/ml. Vitamin C is used as a standard. The free-radical attack was measured by measuring the HT50 (Half-Hemolysis Time). The anti-inflammatory effect using PMA on mice of the methanolic extract (CrE) was evaluated.

Results: The quantification of polyphenols and flavonoids showed that ethyl acetate extract (AcE) contains a higher amount of polyphenols. However, chloroform extract (ChE) presents a higher amount of flavonoids. AcE showed an important scavenging activity using the DPPH radical (IC50= 68.35 μg/ml). The results showed that AcE also exhibited a significant inhibition effect on the oxidation of β-carotene/linoleic acid (84.33 %). All extracts increased the HT50 values (Half-Hemolysis Time) in a dose-dependent manner. The three highest concentrations (21.18, 42.37, and 84.74 μg / ml) of ChE caused a very significant delay (p ≤ 0.001) of hemolysis compared to the negative control and the positive control “VIT C”. The anti-inflammatory effect of using PMA on mice showed that the methanolic extract (CrE) of AA reduced the weight of the ear edema.

Conclusion: This plant has a strong pharmacological power, which supports its traditional medicinal use.

Keywords: Flavonoids, polyphenols, medicinal plant, antioxidant, anti-hemolytic and anti-inflammatory activity, tannins.

Graphical Abstract

[1]
Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 2015, 20(12), 21138-21156.
[http://dx.doi.org/10.3390/molecules201219753] [PMID: 26633317]
[2]
Fontaine, E. Radicaux libres. Traité de nutrition artificielle de l’adulte; Springer-Verlag France, 2007, pp. 251-257.
[http://dx.doi.org/10.1007/978-2-287-33475-7_19]
[3]
Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 1-39.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[4]
Dresler, S.; Szymczak, G.; Wójcik, M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm. Biol., 2017, 55(1), 691-695.
[http://dx.doi.org/10.1080/13880209.2016.1265986] [PMID: 28140740]
[5]
Ceramella, J.; Loizzo, M.R.; Iacopetta, D.; Bonesi, M.; Sicari, V.; Pellicanò, T.M.; Saturnino, C.; Malzert-Fréon, A.; Tundis, R.; Sinicropi, M.S. Anchusa azurea Mill. (Boraginaceae) aerial parts methanol extract interfering with cytoskeleton organization induces programmed cancer cells death. Food Funct., 2019, 10(7), 4280-4290.
[http://dx.doi.org/10.1039/C9FO00582J] [PMID: 31264668]
[6]
Kuruuzum-Uz, A.; Suleyman, H.; Cadirci, E.; Guvenalp, Z.; Demirezer, L.O. Investigation on anti-inflammatory and antiulcer activities of Anchusa azurea extracts and their major constituent rosmarinic acid. Z. Naturforsch. C J. Biosci., 2012, 67(7-8), 360-366.
[http://dx.doi.org/10.1515/znc-2012-7-802] [PMID: 23016274]
[7]
Wang, S; Zhao, Y; Song, J; Wang, R; Gao, L; Zhang, L; Fang, L; Lu, Y; Du, G. Total flavonoids from Anchusa italica Retz. Improve cardiac function and attenuate cardiac remodeling post myocardial infarction in mice. J Ethnopharmacol., 2020, 15(257), 112887.
[8]
Gay, W.I. Methods of animal experimentation (Vol-I); Academic Press: New York, 1965, pp. 32-191.
[9]
Markham, K.R. Techniques of flavonoid identification (Chapitre 1 et 2); Academic Press: London, 1982, pp. 1-113.
[10]
Bahorun, T.; Gressier, B.; Trotin, F.; Brunet, C.; Dine, T.; Luyckx, M.; Vasseur, J.; Cazin, M.; Cazin, J.C.; Pinkas, M. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittelforschung, 1996, 46(11), 1086-1089.
[PMID: 8955870]
[11]
Li, H.; Cheng, K.W.; Wong, C.C.; Fan, K.W.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem., 2007, 102, 771-776.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.022]
[12]
Boumerfeg, S.; Baghiani, A.; Messaoudi, D.; Khennouf, S.; Arrar, L. Antioxidant properties and xanthine oxidase inhibitory effects of Tamus communis L. root extracts. Phytother. Res., 2009, 23(2), 283-288.
[http://dx.doi.org/10.1002/ptr.2621] [PMID: 18844260]
[13]
Aslan, A.; Güllüce, M.; Sôkmen, M.; Adigüzel, A.; Sahin, F.; Ôzkan, H. Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, dermatocarpon miniatum, everinia divaricata, evernia prunastri, and neofuscella pulla. Pharm. Biol., 2006, 44, 247-252.
[http://dx.doi.org/10.1080/13880200600713808]
[14]
Takebayashi, J.; Chen, J.; Tai, A. A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. In: Advanced Protocols in Oxidative Stress II, Methods in Molecular Biology; Armstrong, D., Ed.; , 2010; Vol. 594, pp. 287-296.
[http://dx.doi.org/10.1007/978-1-60761-411-1_20]
[15]
Dwight, J.F.; Hendry, B.M. The effects of tert-butyl hydroperoxide on human erythrocyte membrane ion transport and the protective actions of antioxidants. Clin. Chim. Acta, 1996, 249(1-2), 167-181.
[http://dx.doi.org/10.1016/0009-8981(96)06286-9] [PMID: 8737600]
[16]
Garrido, G.; González, D.; Lemus, Y.; García, D.; Lodeiro, L.; Quintero, G.; Delporte, C.; Núñez-Sellés, A.J.; Delgado, R. In vivo and in vitro anti-inflammatory activity of Mangifera indica L. extract (VIMANG). Pharmacol. Res., 2004, 50(2), 143-149.
[http://dx.doi.org/10.1016/j.phrs.2003.12.003] [PMID: 15177302]
[17]
Bendjelloul-Bensalem, M. Techniques histologiques théorie et pratique; Office des publications universitaires, 1998.
[18]
Surveswaran, S.; Cai, Y.Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem., 2007, 102, 938-953.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.033]
[19]
Naidu, M.M.; Shyamala, B.N.; Naik, J.P.; Sulochanamma, G.; Srinivas, P. Chemical composition andantioxidant activity of the husk and endosperm of fenugreek seeds. Lebensm. Wiss. Technol., 2011, 44, 451-456.
[http://dx.doi.org/10.1016/j.lwt.2010.08.013]
[20]
Frankel, E.N.; Meyer, A.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric., 2000, 80, 1925-1940.
[http://dx.doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4]
[21]
Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem., 2001, 49(6), 2774-2779.
[http://dx.doi.org/10.1021/jf001413m] [PMID: 11409965]
[22]
Blasa, M.; Candiracci, M.; Accorsi, A.; Piacentini, M.P.; Piatti, E. Honey flavonoids as protection agents against oxidative damage to human red blood cells. Food Chem., 2007, 104(4), 1635-1640.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.014]
[23]
Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommesa, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem., 2009, 113, 1226-1233.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.013]
[24]
Dai, F.; Miao, Q.; Zhou, B.; Yang, L.; Liu, Z.L. Protective effects of flavonols and their glycosides against free radical-induced oxidative hemolysis of red blood cells. Life Sci., 2006, 78(21), 2488-2493.
[http://dx.doi.org/10.1016/j.lfs.2005.10.009] [PMID: 16307760]
[25]
Andersen, O.M.; Markham, K.R. Flavonoids: Chemistry, biochemistry and applications; CRC Press, Taylor & Francis Group: USA, 2006, pp. 1-37.
[26]
Kang, J.Y.; Khan, M.N.A.; Park, N.H.; Cho, J.Y.; Lee, M.C.; Fujii, H.; Hong, Y.K. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J. Ethnopharmacol., 2008, 116(1), 187-190.
[http://dx.doi.org/10.1016/j.jep.2007.10.032] [PMID: 18079077]
[27]
Malaviya, R.; Ansell, J.; Hall, L.; Fahmy, M.; Argentieri, R.L.; Olini, G.C., Jr; Pereira, D.W.; Sur, R.; Cavender, D. Targeting cytosolic phospholipase A2 by arachidonyl trifluoromethyl ketone prevents chronic inflammation in mice. Eur. J. Pharmacol., 2006, 539(3), 195-204.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.018] [PMID: 16712837]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy