Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Evaluation of Pleotropic Protective Activity of Capparis spinose Extract on Arthritis Rat Model

Author(s): Mohammed Yosri*, Mahmoud M. Elaasser, Marwa M. Abdel-Aziz, Hanna Y. Ahmed and Basma H. Amin

Volume 21, Issue 1, 2022

Published on: 01 June, 2022

Page: [10 - 23] Pages: 14

DOI: 10.2174/1871523021666220211110136

Price: $65

Abstract

Background: Capparis spinosa grows in Asian and Mediterranean desert areas. Different parts of Capparis spinosa, including flowers, have been used in various folk medicine applications.

Objective: This study aims to evaluate the anti-arthritic potential of ethanolic extract of Egyptian Capparis spinosa flowers in a rat model of rheumatoid arthritis. Moreover, analysis of Capparis spinosa extract was performed using LC-qTOF-MS/MS.

Methods: Animals were split into six groups: negative control group, induced arthritic animals, arthritic rats receiving 7, 14 and 28 mg/kg of Capparis spinosa extract, respectively, in three groups to detect the optimum dose, and the induced group receiving a standard drug. The arthritic score was checked daily for 15 days after induction. After animals were sacrificed, their joints and muscles were subjected to microscopic and ultra-structure examinations. Ex vivo culturing of osteoclasts was performed. Cytokine levels were measured in all examined groups.

Results: The results revealed 7 mg/kg of Capparis spinosa extract as the optimal dose, which decreased inflammation signs through controlling chondrocytes, osteoclasts, and levels of inflammatory mediators.

Conclusion: LC-Mass analysis revealed Capparis spinosa extract to contain a mixture of flavonol glycosides, flavan-3-ols and hydroxycinnamic acid derivatives, which may provide beneficial multifunction in regulating arthritic symptoms.

Keywords: Capparis spinosa, adjuvant induced arthritis rats, histology, osteoclasts, cytokines, rheumatoid arthritis (RA).

Graphical Abstract

[1]
Yang, C.L.H.; Or, T.C.T.; Ho, M.H.K.; Lau, A.S.Y. Scientific basis of botanical medicine as alternative remedies for rheumatoid arthritis. Clin. Rev. Allergy Immunol., 2013, 44(3), 284-300.
[http://dx.doi.org/10.1007/s12016-012-8329-8] [PMID: 22700248]
[2]
Collison, J. Rheumatoid arthritis: Tipping the balance towards resolution. Nat. Rev. Rheumatol., 2016, 12(11), 622.
[http://dx.doi.org/10.1038/nrrheum.2016.159] [PMID: 27652507]
[3]
Yuan, K.; Li, X.; Lu, Q.; Zhu, Q.; Jiang, H.; Wang, T.; Huang, G.; Xu, A. Application and mechanisms of triptolide in the treatment of inflammatory diseases-A review. Front. Pharmacol., 2019, 10, 1469.
[http://dx.doi.org/10.3389/fphar.2019.01469] [PMID: 31866868]
[4]
Hendrickx, G.; Fischer, V.; Liedert, A.; von Kroge, S.; Haffner-Luntzer, M.; Brylka, L.; Pawlus, E.; Schweizer, M.; Yorgan, T.; Baranows-ky, A.; Rolvien, T.; Neven, M.; Schumacher, U.; Beech, D.J.; Amling, M.; Ignatius, A.; Schinke, T. Piezo1 inactivation in chondrocytes impairs trabecular bone formation. J. Bone Miner. Res., 2021, 36(2), 369-384.
[http://dx.doi.org/10.1002/jbmr.4198] [PMID: 33180356]
[5]
Park, D.R.; Kim, J.; Kim, G.M.; Lee, H.; Kim, M.; Hwang, D.; Lee, H.; Kim, H.S.; Kim, W.; Park, M.C.; Shim, H.; Lee, S.Y. Osteoclast-associated receptor blockade prevents articular cartilage destruction via chondrocyte apoptosis regulation. Nat. Commun., 2020, 11(1), 4343.
[http://dx.doi.org/10.1038/s41467-020-18208-y] [PMID: 32859940]
[6]
Stamp, L.K.; Khalilova, I.; Tarr, J.M.; Senthilmohan, R.; Turner, R.; Haigh, R.C.; Winyard, P.G.; Kettle, A.J. Myeloperoxidase and oxida-tive stress in rheumatoid arthritis. Rheumatology (Oxford), 2012, 51(10), 1796-1803.
[http://dx.doi.org/10.1093/rheumatology/kes193] [PMID: 22814531]
[7]
Umar, S.; Golam Sarwar, A.H.; Umar, K.; Ahmad, N.; Sajad, M.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell. Immunol., 2013, 284(1-2), 51-59.
[http://dx.doi.org/10.1016/j.cellimm.2013.07.004] [PMID: 23921080]
[8]
Fraenkel, L.; Buta, E.; Suter, L.; Dubreuil, M.; Levy, C.; Najem, C.; Brennan, M.; Corn, B.; Kerns, R.J.; Goulet, A. Nonsteroidal anti-inflammatory drugs vs cognitive behavioral therapy for arthritis pain: A randomized withdrawal trial. JAMA Intern. Med., 2020, 180(9), 1194-1202.
[http://dx.doi.org/10.1001/jamainternmed.2020.2821]
[9]
Roongta, R.; Ghosh, A. Managing rheumatoid arthritis during COVID-19. Clin. Rheumatol., 2020, 39(11), 3237-3244.
[http://dx.doi.org/10.1007/s10067-020-05358-z] [PMID: 32892311]
[10]
Quiñonez-Flores, C.M.; González-Chávez, S.A.; Del Río Nájera, D.; Pacheco-Tena, C. Oxidative stress relevance in the pathogenesis of the Rheumatoid Arthritis: A systematic review. BioMed Res. Int., 2016, 2016, 6097417.
[http://dx.doi.org/10.1155/2016/6097417] [PMID: 27340664]
[11]
Dudics, S.; Langan, D.; Meka, R.R.; Venkatesha, S.H.; Berman, B.M.; Che, C.T.; Moudgil, K.D. Natural products for the treatment of auto-immune arthritis: Their mechanisms of action, targeted delivery, and interplay with the host microbiome. Int. J. Mol. Sci., 2018, 19(9), 2508.
[http://dx.doi.org/10.3390/ijms19092508] [PMID: 30149545]
[12]
Deligiannidou, G.E.; Gougoula, V.; Bezirtzoglou, E.; Kontogiorgis, C.; Constantinides, T.K. The role of natural products in rheumatoid arthritis: Current knowledge of basic in vitro and in vivo research. Antioxidants, 2021, 10(4), 599.
[http://dx.doi.org/10.3390/antiox10040599] [PMID: 33924632]
[13]
Che, C.T.; Wong, M.S.; Lam, C.W.K.; McPhee, D.J. Natural products from Chinese medicines with potential benefits to bone health. Molecules, 2016, 21(3), 239.
[http://dx.doi.org/10.3390/molecules21030239] [PMID: 26927052]
[14]
Gautam, R.K.; Sharma, S.; Sharma, K.; Gupta, G. Evaluation of antiarthritic activity of butanol fraction of Punica granatum linn. Rind extract against freund’s complete adjuvant-induced arthritis in rats. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(1), 53-62.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018025137] [PMID: 29773000]
[15]
Bouhlali, E.T.; Hmidani, A.; Bourkhis, B.; Khouya, T.; Ramchoun, M.; Filali-Zegzouti, Y.; Alem, C. Phenolic profile and anti-inflammatory activity of four Moroccan date (Phoenix dactylifera L.) seed varieties. Heliyon, 2020, 6, e03436.
[16]
Tlili, N.; Elfalleh, W.; Saadaoui, E.; Khaldi, A.; Triki, S.; Nasri, N. The caper (Capparis L.): ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia, 2011, 82(2), 93-101.
[http://dx.doi.org/10.1016/j.fitote.2010.09.006] [PMID: 20851750]
[17]
Asl, M.B.; Talebpour, A.H.; Alijanpour, R. Introducing of medicinal plants in Maragheh, Eastern Azerbaijan province (northwestern Iran). J. Med. Plants Res., 2012, 6, 4208-4220.
[18]
Ascrizzi, R.; Cioni, P.L.; Giusti, G.; Pistelli, L.; Flamini, G. Patterns in volatile emission of different aerial parts of caper (Capparis spinosa L.). Chem. Biodivers., 2016, 13(7), 904-912.
[http://dx.doi.org/10.1002/cbdv.201500292] [PMID: 27276076]
[19]
Zhang, H.; Ma, Z.F. Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients, 2018, 10(2), 116.
[http://dx.doi.org/10.3390/nu10020116] [PMID: 29364841]
[20]
Kianersi, F.; Abdollahi, M.R.; Mirzaie-Asl, A.; Dastan, D.; Rasheed, F. Identification and tissue-specific expression of rutin biosynthetic pathway genes in Capparis spinosa elicited with salicylic acid and methyl jasmonate. Sci. Rep., 2020, 10(1), 8884.
[http://dx.doi.org/10.1038/s41598-020-65815-2] [PMID: 32483287]
[21]
Mercati, F.; Fontana, I.; Gristina, A.S.; Martorana, A.; El Nagar, M.; De Michele, R.; Fici, S.; Carimi, F. Transcriptome analysis and co-dominant markers development in caper, a drought tolerant orphan crop with medicinal value. Sci. Rep., 2019, 9(1), 10411.
[http://dx.doi.org/10.1038/s41598-019-46613-x] [PMID: 31320697]
[22]
Wojdyło, A.; Nowicka, P.; Grimalt, M.; Legua, P.; Almansa, M.S.; Amorós, A.; Carbonell-Barrachina, A.A.; Hernández, F. Polyphenol compounds and biological activity of caper (Capparis spinosa L.) flowers buds. Plants, 2019, 8(12), 539.
[http://dx.doi.org/10.3390/plants8120539] [PMID: 31775254]
[23]
Redford, K.E.; Abbott, G.W. The ubiquitous flavonoid quercetin is an atypical KCNQ potassium channel activator. Commun. Biol., 2020, 3(1), 356.
[http://dx.doi.org/10.1038/s42003-020-1089-8] [PMID: 32641720]
[24]
Bakr, R.O.; Bishbishy, M.H. Profile of bioactive compounds of Capparis spinosa var. aegyptiaca growing in Egypt. Rev. Bras. Farmacogn., 2016, 26(4), 514-520.
[http://dx.doi.org/10.1016/j.bjp.2016.04.001]
[25]
Wojdyło, A.; Nowicka, P.; Oszmia, J.; Nski, J.; Golis, T. Phytochemical compounds and biological effects of Actinidia fruits. J. Funct. Foods, 2017, 30, 194-202.
[http://dx.doi.org/10.1016/j.jff.2017.01.018]
[26]
Liu, Y.; Zhang, B.; Cai, Q. Study on the pharmacodynamics and metabolomics of five medicinal species in Atractylodes DC. on rats with rheumatoid arthritis. Biomed. Pharmacother., 2020, 131, 110554.
[http://dx.doi.org/10.1016/j.biopha.2020.110554] [PMID: 32890964]
[27]
Granica, S. Czerwińska, M.E.; Piwowarski, J.P.; Ziaja, M.; Kiss, A.K. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J. Agric. Food Chem., 2013, 61(4), 801-810.
[http://dx.doi.org/10.1021/jf304002h]
[28]
Bendele, A. Animal models of rheumatoid arthritis. J. Musculoskelet. Neuronal Interact., 2001, 1(4), 377-385.
[PMID: 15758488]
[29]
Suzuki, H.; Hirano, N.; Watanabe, C.; Tarumoto, Y. Carbon tetrachloride does not induce micronucleus in either mouse bone marrow or peripheral blood. Mutat. Res., 1997, 394(1-3), 77-80.
[http://dx.doi.org/10.1016/S1383-5718(97)00128-9] [PMID: 9434846]
[30]
Ablin, J.N.; Entin-Meer, M.; Aloush, V.; Oren, S.; Elkayam, O.; George, J.; Barshack, I. Protective effect of eotaxin-2 inhibition in adju-vant-induced arthritis. Clin. Exp. Immunol., 2010, 161(2), 276-283.
[http://dx.doi.org/10.1111/j.1365-2249.2010.04172.x] [PMID: 20456418]
[31]
Su, C.; Chen, Y.; Chen, Y.; Zhou, Y.; Li, L.; Lu, Q.; Liu, H.; Luo, X.; Zhu, J. Effect of electroacupuncture at the ST36 and GB39 acupoints on apoptosis by regulating the p53 signaling pathway in adjuvant arthritis rats. Mol. Med. Rep., 2019, 20(5), 4101-4110.
[http://dx.doi.org/10.3892/mmr.2019.10674] [PMID: 31545441]
[32]
Abdel-Azeem, A.M.; Zaki, S.M.; Khalil, W.F.; Makhlouf, N.A.; Farghaly, L.M. Anti-rheumatoid activity of secondary metabolites pro-duced by endophytic Chaetomium globosum. Front. Microbiol., 2016, 7, 1477.
[http://dx.doi.org/10.3389/fmicb.2016.01477] [PMID: 27703452]
[33]
Muschter, D.; Göttl, C.; Vogel, M.; Grifka, J.; Straub, R.H.; Grässel, S. Reactivity of rat bone marrow-derived macrophages to neurotrans-mitter stimulation in the context of collagen II-induced arthritis. Arthritis Res. Ther., 2015, 17(1), 169.
[http://dx.doi.org/10.1186/s13075-015-0684-4] [PMID: 26104678]
[34]
Chevalier, C. Çolakoğlu, M.; Brun, J.; Thouverey, C.; Bonnet, N.; Ferrari, S.; Trajkovski, M. Primary mouse osteoblast and osteoclast culturing and analysis. STAR Protoc., 2021, 2(2), 100452.
[http://dx.doi.org/10.1016/j.xpro.2021.100452] [PMID: 33912848]
[35]
Li, F.; Sun, X.; Zhao, B.; Ma, J.; Zhang, Y.; Li, S.; Li, Y.; Ma, X. Effects of cyclic tension stress on the apoptosis of osteoclasts in vitro. Exp. Ther. Med., 2015, 9(5), 1955-1961.
[http://dx.doi.org/10.3892/etm.2015.2338] [PMID: 26136922]
[36]
Adıyaman, M.Ş.; Adıyaman, Ö.A.; Dağlı, A.F.; Karahan, M.Z.; Kaya, İ.; Dağlı, M.N. Effects of grapeseed extract on doxorubicin-induced cardiotoxicity in rats. Herz, 2021, 46(Suppl. 1), 103-108.
[http://dx.doi.org/10.1007/s00059-019-04888-w] [PMID: 31970462]
[37]
Kazemian, M.; Abad, M.; Haeri, M.R.; Ebrahimi, M.; Heidari, R. Anti-diabetic effect of Capparis spinosa L. root extract in diabetic rats. Avicenna J. Phytomed., 2015, 5(4), 325-332.
[PMID: 26445712]
[38]
Vahid, H.; Rakhshandeh, H.; Ghorbani, A. Antidiabetic properties of Capparis spinosa L. and its components. Biomed. Pharmacother., 2017, 92, 293-302.
[http://dx.doi.org/10.1016/j.biopha.2017.05.082] [PMID: 28551550]
[39]
Mollica, A.; Stefanucci, A.; Macedonio, G.; Locatelli, M.; Luisi, E.; Novellino, G.; Zengin, G. Chemical composition and biological activity of Capparis spinosa L. from Lipari Island. S. Afr. J. Bot., 2019, 120, 135-140.
[http://dx.doi.org/10.1016/j.sajb.2018.02.397]
[40]
Al-Anazi, K.M.; Al-Mareed, A.A.; Farah, M.A.; Ali, M.A.; Hailan, W.A.Q.; Al-Hemaid, F.M. Protective effect of Capparis spinosa extract against potassium bromate induced oxidative stress and genotoxicity in mice. Evid. Based Complement. Alternat. Med., 2021, 2021(19), 8875238.
[http://dx.doi.org/10.1155/2021/8875238] [PMID: 33531925]
[41]
Panico, A.M.; Cardile, V.; Mercati, F.; Garufi, C.; Puglia, F.; Bonina, G.; Ronsisvalle, A. Protective effect of Capparis spinosa on chondro-cytes. Life Sci., 2005, 77(20), 2479-2488.
[http://dx.doi.org/10.1016/j.lfs.2004.12.051]
[42]
Feng, X.; Lu, J.; Xin, H.; Zhang, L.; Wang, Y.; Tang, K. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constit-uents. Yakugaku Zasshi, 2011, 131(3), 423-429.
[http://dx.doi.org/10.1248/yakushi.131.423] [PMID: 21372539]
[43]
Maresca, M.; Micheli, L.; Di Cesare Mannelli, L.; Tenci, B.; Innocenti, M.; Khatib, M.; Mulinacci, N.; Ghelardini, C. Acute effect of Cap-paris spinosa root extracts on rat articular pain. J. Ethnopharmacol., 2016, 193, 456-465.
[http://dx.doi.org/10.1016/j.jep.2016.09.032] [PMID: 27647009]
[44]
Shakeri, F.; Boskabady, M.H. A review of the relaxant effect of various medicinal plants on tracheal smooth muscle, their possible mech-anism(s) and potency. J. Ethnopharmacol., 2015, 175, 528-548.
[http://dx.doi.org/10.1016/j.jep.2015.10.017] [PMID: 26456328]
[45]
Ozan, F.; Özan, Ü.; Oktay, E.A.; Toptas, O.; Özdemir, H. KürÞat, E. Dynamic assessment of Capparis spinosa buds on survival of perio-dontal ligament cells using a real-time cell analysis method. Niger. J. Clin. Pract., 2015, 18(3), 395-399.
[http://dx.doi.org/10.4103/1119-3077.151766] [PMID: 25772925]
[46]
Erdogan, M.S.; Babacan, H.; Kara, M.I.; Gurler, B.; Akgul, H.; Soyler, D.A. Effect of Capparis spinosa extract on sutural ossification: A stereological study. Arch. Oral Biol., 2015, 60(8), 1146-1152.
[http://dx.doi.org/10.1016/j.archoralbio.2015.04.012] [PMID: 26043444]
[47]
Tel, J.; Benitez-Ribas, D.; Janssen, E.M.; Smits, E.L.J.; Jacobs, J.F.M. Dendritic cells as vaccines: Key regulators of tolerance and immuni-ty. Mediators Inflamm., 2016, 2016, 5789725.
[http://dx.doi.org/10.1155/2016/5789725] [PMID: 27340343]
[48]
Hamuti, A.; Li, J.; Zhou, F.; Aipire, A.; Ma, J.; Yang, J.; Li, J. Capparis spinosa fruit ethanol extracts exert different effects on the matura-tion of dendritic cells. Molecules, 2017, 22(1), 97.
[http://dx.doi.org/10.3390/molecules22010097] [PMID: 28067853]
[49]
Moutia, M.; El Azhary, K.; Elouaddari, A.; Al Jahid, A.; Jamal Eddine, J.; Seghrouchni, F.; Habti, N.; Badou, A. Capparis spinosa L. pro-motes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells. BMC Immunol., 2016, 17(1), 26.
[http://dx.doi.org/10.1186/s12865-016-0164-x] [PMID: 27483999]
[50]
Lee, C.T.; Huang, K.S.; Shaw, J.F.; Chen, J.R.; Kuo, W.S.; Shen, G.; Grumezescu, A.M.; Holban, A.M.; Wang, Y.T.; Wang, J.S.; Hsiang, Y.P.; Lin, Y.M.; Hsu, H.H.; Yang, C.H. Trends in the immunomodulatory effects of Cordyceps militaris: Total extracts, polysaccharides and Cordycepin. Front. Pharmacol., 2020, 11, 575704.
[http://dx.doi.org/10.3389/fphar.2020.575704] [PMID: 33328984]
[51]
Shi, Y.; Shu, H.; Wang, X.; Zhao, H.; Lu, C.; Lu, A.; He, X. Potential advantages of bioactive compounds extracted from traditional chi-nese medicine to inhibit bone destructions in Rheumatoid Arthritis. Front. Pharmacol., 2020, 11, 561962.
[http://dx.doi.org/10.3389/fphar.2020.561962] [PMID: 33117162]
[52]
Li, M.H.; Xiao, R.; Li, J.B.; Zhu, Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage, 2017, 25(10), 1577-1587.
[http://dx.doi.org/10.1016/j.joca.2017.07.004] [PMID: 28705606]
[53]
Pope, J.E.; Choy, E.H. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Semin. Arthritis Rheum., 2021, 51(1), 219-229.
[http://dx.doi.org/10.1016/j.semarthrit.2020.11.005] [PMID: 33385862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy