Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Markers of Neuroinflammation in the Serum of Prepubertal Children with Fetal Alcohol Spectrum Disorders

Author(s): Marco Fiore*, Carla Petrella, Giovanna Coriale, Pamela Rosso, Elena Fico, Massimo Ralli, Antonio Greco, Marco De Vincentiis, Antonio Minni, Antonella Polimeni, Mario Vitali, Marisa Patrizia Messina, Giampiero Ferraguti, Francesca Tarani, Simone de Persis, Mauro Ceccanti and Luigi Tarani

Volume 21, Issue 9, 2022

Published on: 26 January, 2022

Page: [854 - 868] Pages: 15

DOI: 10.2174/1871527320666211201154839

Price: $65

conference banner
Abstract

Background: Fetal Alcohol Spectrum Disorders (FASD) are the manifestation of the damage caused by alcohol consumption during pregnancy. Children with Fetal Alcohol Syndrome (FAS), the extreme FASD manifestation, show both facial dysmorphology and mental retardation. Alcohol consumed during gestational age prejudices brain development by reducing, among others, the synthesis and release of neurotrophic factors and neuroinflammatory markers. Alcohol drinking also induces oxidative stress.

Hypothesis/Objective: The present study aimed to investigate the potential association between neurotrophins, neuroinflammation, and oxidative stress in 12 prepubertal male and female FASD children diagnosed as FAS or partial FAS (pFAS).

Methods: Accordingly, we analyzed, in the serum, the level of BDNF and NGF and the oxidative stress, as Free Oxygen Radicals Test (FORT) and Free Oxygen Radicals Defense (FORD). Moreover, serum levels of inflammatory mediators (IL-1α, IL-2, IL-6, IL-10, IL-12, MCP-1, TGF-β, and TNF-α) involved in neuroinflammatory and oxidative processes have been investigated.

Results: We demonstrated low serum levels of NGF and BDNF in pre-pubertal FASD children with respect to healthy controls. These changes were associated with higher serum presence of TNF- α and IL-1α. Quite interestingly, an elevation in the FORD was also found despite normal FORT levels. Moreover, we found a potentiation of IL-1α, IL-2, IL-10, and IL-1α1 in the analyzed female compared to male children.

Conclusion: The present investigation shows an imbalance in the peripheral neuroimmune pathways that could be used in children as early biomarkers of the deficits observed in FASD.

Keywords: Cytokine, inflammation, ROS, NGF, BDNF, child.

Graphical Abstract

[1]
Isobe Y, Asakura H, Tsujiguchi H, et al. Alcohol intake is associated with elevated serum levels of selenium and selenoprotein P in humans. Front Nutr 2021; 8: 633703.
[http://dx.doi.org/10.3389/fnut.2021.633703] [PMID: 33693023]
[2]
Jin S, Cao Q, Yang F, et al. Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat Metab 2021; 3(3): 337-51.
[http://dx.doi.org/10.1038/s42255-021-00357-z] [PMID: 33758417]
[3]
Matye DJ, Li Y, Chen C, et al. Gut-restricted apical sodium-dependent bile acid transporter inhibitor attenuates alcohol-induced liver steatosis and injury in mice. Alcohol Clin Exp Res 2021; 45(6): 1188-99.
[http://dx.doi.org/10.1111/acer.14619] [PMID: 33885179]
[4]
Quaranta MG, Ferrigno L, Tata X, et al. Liver function following hepatitis C virus eradication by direct acting antivirals in patients with liver cirrhosis: data from the PITER cohort. BMC Infect Dis 2021; 21(1): 413.
[http://dx.doi.org/10.1186/s12879-021-06053-3] [PMID: 33947337]
[5]
Lieber CS. Medical disorders of alcoholism. N Engl J Med 1995; 333(16): 1058-65.
[http://dx.doi.org/10.1056/NEJM199510193331607] [PMID: 7675050]
[6]
Kranzler HR, Soyka M. Diagnosis and pharmacotherapy of alcohol use disorder a review. JAMA 2018; 320(8): 815-24.
[http://dx.doi.org/10.1001/jama.2018.11406] [PMID: 30167705]
[7]
Buttari B, Profumo E, Mancinelli R, et al. Chronic and acute alcohol exposure prevents monocyte-derived dendritic cells from differentiating and maturing. Int J Immunopathol Pharmacol 2008; 21(4): 929-39.
[http://dx.doi.org/10.1177/039463200802100417] [PMID: 19144278]
[8]
Ceccanti M, Hamilton D, Coriale G, et al. Spatial learning in men undergoing alcohol detoxification. Physiol Behav 2015; 149: 324-30.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.034] [PMID: 26143187]
[9]
Ceccanti M, Coriale G, Hamilton DA, et al. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can J Physiol Pharmacol 2018; 96(2): 128-36.
[http://dx.doi.org/10.1139/cjpp-2017-0013] [PMID: 28763626]
[10]
Ciafrè S, Carito V, Ferraguti G, et al. How alcohol drinking affects our genes: An epigenetic point of view. Biochem Cell Biol 2019; 97(4): 345-56.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[11]
Moder JE, Ordenewitz LK, Schlüter JA. Fetal alcohol spectrum disorders - diagnosis, prognosis and prevention. Bundesgesundheitsbl 2021; 64: 747-54.
[http://dx.doi.org/10.1007/s00103-021-03329-6]
[12]
Vorgias D, Bernstein B. Fetal Alcohol Syndrome. FL: Treasure Island 2021.
[13]
Oei JL. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020; 115(11): 2148-63.
[http://dx.doi.org/10.1111/add.15036] [PMID: 32149441]
[14]
Viljoen D, Louw JG, Lombard C, Olivier L. Comparing diagnostic outcomes of children with fetal alcohol syndrome in South Africa with diagnostic outcomes when using the updated Institute of Medicine diagnostic guidelines. Birth Defects Res 2018; 110(17): 1335-42.
[http://dx.doi.org/10.1002/bdr2.1399] [PMID: 30347134]
[15]
Coriale G, Fiorentino D, Di Lauro F, et al. Fetal Alcohol Spectrum Disorder (FASD): neurobehavioral profile, indications for diagnosis and treatment. Riv Psichiatr 2013; 48(5): 359-69.
[http://dx.doi.org/10.1708/1356.15062] [PMID: 24326748]
[16]
Glass L, Ware AL, Mattson SN. Neurobehavioral, neurologic, and neuroimaging characteristics of fetal alcohol spectrum disorders. Handb Clin Neurol 2014; 125: 435-62.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00025-2] [PMID: 25307589]
[17]
Mattson SN, Crocker N, Nguyen TT. Fetal alcohol spectrum disorders: neuropsychological and behavioral features. Neuropsychol Rev 2011; 21(2): 81-101.
[http://dx.doi.org/10.1007/s11065-011-9167-9] [PMID: 21503685]
[18]
Carter RC, Jacobson JL, Jacobson SW. Early detection of fetal alcohol spectrum disorders: An elusive but critical goal. Pediatrics 2019; 144(6): e20193080.
[http://dx.doi.org/10.1542/peds.2019-3080] [PMID: 31744892]
[19]
Kalberg WO, May PA, Buckley D, et al. Early-life predictors of fetal alcohol spectrum disorders. Pediatrics 2019; 144(6): e20182141.
[http://dx.doi.org/10.1542/peds.2018-2141] [PMID: 31744890]
[20]
Lucas BR, Latimer J, Doney R, et al. Gross motor performance in children prenatally exposed to alcohol and living in remote Australia. J Paediatr Child Health 2016; 52(8): 814-24.
[http://dx.doi.org/10.1111/jpc.13240] [PMID: 27439995]
[21]
Doney R, Lucas BR, Jones T, Howat P, Sauer K, Elliott EJ. Fine motor skills in children with prenatal alcohol exposure or fetal alcohol spectrum disorder. J Dev Behav Pediatr 2014; 35(9): 598-609.
[http://dx.doi.org/10.1097/DBP.0000000000000107] [PMID: 25325756]
[22]
Doney R, Lucas BR, Watkins RE, et al. Visual-motor integration, visual perception, and fine motor coordination in a population of children with high levels of fetal alcohol spectrum disorder. Res Dev Disabil 2016; 55: 346-57.
[http://dx.doi.org/10.1016/j.ridd.2016.05.009] [PMID: 27228005]
[23]
Bastons-Compta A, Astals M, Andreu-Fernandez V, Navarro- Tapia E, Garcia-Algar O. Postnatal nutritional treatment of neurocognitive deficits in fetal alcohol spectrum disorder. Biochem Cell Biol 2018; 96(2): 213-21.
[http://dx.doi.org/10.1139/bcb-2017-0085] [PMID: 29091739]
[24]
Bukiya AN, Dopico AM. Fetal cerebral circulation as target of maternal alcohol consumption. Alcohol Clin Exp Res 2018; 42(6): 1006-18.
[http://dx.doi.org/10.1111/acer.13755] [PMID: 29672868]
[25]
Ceccanti M, Mancinelli R, Tirassa P, et al. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol Aging 2012; 33(2): 359-67.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[26]
Fiore M, Mancinelli R, Aloe L, et al. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol Lett 2009; 188(3): 208-13.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.013] [PMID: 19397965]
[27]
Carito V, Ceccanti M, Ferraguti G, et al. NGF and BDNF alterations by prenatal alcohol exposure. Curr Neuropharmacol 2019; 17(4): 308-17.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[28]
Ceci FM, Ferraguti G, Petrella C, et al. Nerve growth factor in alcohol use disorders. Curr Neuropharmacol 2021; 19(1): 45-60.
[http://dx.doi.org/10.2174/1570159X18666200429003239] [PMID: 32348226]
[29]
Ceccanti M, Fiorentino D, Coriale G, et al. Maternal risk factors for fetal alcohol spectrum disorders in a province in Italy. Drug Alcohol Depend 2014; 145: 201-8.
[http://dx.doi.org/10.1016/j.drugalcdep.2014.10.017] [PMID: 25456331]
[30]
Ciafrè S, Ferraguti G, Greco A, et al. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci Biobehav Rev 2020; 118: 654-68.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.018] [PMID: 32976915]
[31]
May PA, Hasken JM, Baete A, et al. Fetal alcohol spectrum disorders in a midwestern city: Child characteristics, maternal risk traits, and prevalence. Alcohol Clin Exp Res 2020; 44(4): 919-38.
[http://dx.doi.org/10.1111/acer.14314] [PMID: 32293735]
[32]
Parviainen R, Auvinen J, Serlo W, Järvelin MR, Sinikumpu JJ. Maternal alcohol consumption during pregnancy associates with bone fractures in early childhood. A birth-cohort study of 6718 participants. Bone 2020; 137: 115462.
[http://dx.doi.org/10.1016/j.bone.2020.115462] [PMID: 32485362]
[33]
Popova S, Lange S, Temple V, et al. Profile of mothers of children with fetal alcohol spectrum disorder: A population-based study in Canada. Int J Environ Res Public Health 2020; 17(21): 1-15.
[http://dx.doi.org/10.3390/ijerph17217986] [PMID: 33143108]
[34]
Mahnke AH, Sideridis GD, Salem NA, et al. Infant circulating MicroRNAs as biomarkers of effect in fetal alcohol spectrum disorders. Sci Rep 2021; 11(1): 1429.
[http://dx.doi.org/10.1038/s41598-020-80734-y] [PMID: 33446819]
[35]
Gómez-Roig MD, Pascal R, Cahuana MJ, et al. Environmental exposure during pregnancy: Influence on prenatal development and early life: A comprehensive review. Fetal Diagn Ther 2021; 48(4): 245-57.
[http://dx.doi.org/10.1159/000514884] [PMID: 33735860]
[36]
Rasmussen C. Executive functioning and working memory in fetal alcohol spectrum disorder. Alcohol Clin Exp Res 2005; 29(8): 1359-67.
[http://dx.doi.org/10.1097/01.alc.0000175040.91007.d0] [PMID: 16131842]
[37]
Ferraguti G, Merlino L, Battagliese G, et al. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict Biol 2020; 25(3): e12724.
[http://dx.doi.org/10.1111/adb.12724] [PMID: 30811093]
[38]
Ferraguti G, Ciolli P, Carito V, et al. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol Lett 2017; 275: 49-56.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.016] [PMID: 28455000]
[39]
Montag AC, Hull AD, Yevtushok L, et al. Second-trimester ultrasound as a tool for early detection of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2016; 40(11): 2418-25.
[http://dx.doi.org/10.1111/acer.13232] [PMID: 27688069]
[40]
Kfir M, Yevtushok L, Onishchenko S, et al. Can prenatal ultrasound detect the effects of in-utero alcohol exposure? A pilot study. Ultrasound Obstet Gynecol 2009; 33(6): 683-9.
[http://dx.doi.org/10.1002/uog.6379] [PMID: 19444822]
[41]
Joya X, Friguls B, Ortigosa S, et al. Determination of maternal-fetal biomarkers of prenatal exposure to ethanol: A review. J Pharm Biomed Anal 2012; 69: 209-22.
[http://dx.doi.org/10.1016/j.jpba.2012.01.006] [PMID: 22300909]
[42]
Memo L, Gnoato E, Caminiti S, Pichini S, Tarani L. Fetal alcohol spectrum disorders and fetal alcohol syndrome: The state of the art and new diagnostic tools. Early Hum Dev 2013; 89(Suppl. 1): S40-3.
[http://dx.doi.org/10.1016/S0378-3782(13)70013-6] [PMID: 23809349]
[43]
Cacialli P. Neurotrophins time point intervention after traumatic brain injury: From zebrafish to human. Int J Mol Sci 2021; 22(4): 1-15.
[http://dx.doi.org/10.3390/ijms22041585] [PMID: 33557335]
[44]
Xue Y, Liang H, Yang R, Deng K, Tang M, Zhang M. The role of pro- and mature neurotrophins in the depression. Behav Brain Res 2021; 404: 113162.
[http://dx.doi.org/10.1016/j.bbr.2021.113162] [PMID: 33549684]
[45]
Meis S, Endres T, Lessmann V. Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 2020; 382(1): 161-72.
[http://dx.doi.org/10.1007/s00441-020-03260-3] [PMID: 32845430]
[46]
Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low- molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev 2021; 41(5): 2746-74.
[http://dx.doi.org/10.1002/med.21721] [PMID: 32808322]
[47]
Fiore M, Laviola G, Aloe L, di Fausto V, Mancinelli R, Ceccanti M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology 2009; 30(1): 59-71.
[http://dx.doi.org/10.1016/j.neuro.2008.11.009] [PMID: 19100286]
[48]
Boschen KE, Klintsova AY. Neurotrophins in the brain: Interaction with alcohol exposure during development. Vitam Horm 2017; 104: 197-242.
[http://dx.doi.org/10.1016/bs.vh.2016.10.008] [PMID: 28215296]
[49]
Parks EA, McMechan AP, Hannigan JH, Berman RF. Environmental enrichment alters neurotrophin levels after fetal alcohol exposure in rats. Alcohol Clin Exp Res 2008; 32(10): 1741-51.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00759.x] [PMID: 18652597]
[50]
Sahay A, Kale A, Joshi S. Role of neurotrophins in pregnancy and offspring brain development. Neuropeptides 2020; 83: 102075.
[http://dx.doi.org/10.1016/j.npep.2020.102075] [PMID: 32778339]
[51]
Malfait AM, Miller RE, Block JA. Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. Pharmacol Ther 2020; 211: 107553.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107553] [PMID: 32311372]
[52]
Kozlov EM, Grechko AV, Chegodaev YS, Wu WK, Orekhov AN. Contribution of neurotrophins to the immune system regulation and possible connection to alcohol addiction. Biology (Basel) 2020; 9(4): E63.
[http://dx.doi.org/10.3390/biology9040063] [PMID: 32231011]
[53]
Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in crime: NGF and BDNF in visceral dysfunction. Curr Neuropharmacol 2019; 17(11): 1021-38.
[http://dx.doi.org/10.2174/1570159X17666190617095844] [PMID: 31204623]
[54]
Frohlich J, Chaldakov GN, Vinciguerra M. Cardio- and neurometabolic adipobiology: Consequences and implications for therapy. Int J Mol Sci 2021; 22(8): 4137.
[http://dx.doi.org/10.3390/ijms22084137] [PMID: 33923652]
[55]
Aloe L, Skaper SD, Leon A, Levi-Montalcini R. Nerve growth factor and autoimmune diseases. Autoimmunity 1994; 19(2): 141-50.
[http://dx.doi.org/10.3109/08916939409009542] [PMID: 7772704]
[56]
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-immune hemostasis: Homeostasis and diseases in the central nervous system. Front Cell Neurosci 2018; 12: 459.
[http://dx.doi.org/10.3389/fncel.2018.00459] [PMID: 30534057]
[57]
Manni L, Aloe L, Fiore M. Changes in cognition induced by social isolation in the mouse are restored by electro-acupuncture. Physiol Behav 2009; 98(5): 537-42.
[http://dx.doi.org/10.1016/j.physbeh.2009.08.011] [PMID: 19733189]
[58]
Angelucci F, Piermaria J, Gelfo F, et al. The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Can J Physiol Pharmacol 2016; 94(4): 455-61.
[http://dx.doi.org/10.1139/cjpp-2015-0322] [PMID: 26863448]
[59]
Amendola T, Fiore M, Aloe L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci Lett 2003; 345(1): 37-40.
[http://dx.doi.org/10.1016/S0304-3940(03)00491-9] [PMID: 12809983]
[60]
Fiore M, Korf J, Angelucci F, Talamini L, Aloe L. Prenatal exposure to methylazoxymethanol acetate in the rat alters neurotrophin levels and behavior: Considerations for neurodevelopmental diseases. Physiol Behav 2000; 71(1-2): 57-67.
[http://dx.doi.org/10.1016/S0031-9384(00)00310-3] [PMID: 11134686]
[61]
Fiore M, Korf J, Antonelli A, Talamini L, Aloe L. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: Associations with altered brain development and neurotrophin levels. Neurotoxicol Teratol 2002; 24(2): 179-91.
[http://dx.doi.org/10.1016/S0892-0362(01)00214-8] [PMID: 11943506]
[62]
Bruscolini A, Sacchetti M, La Cava M, et al. Quality of life and neuropsychiatric disorders in patients with Graves’ Orbitopathy: Current concepts. Autoimmun Rev 2018; 17(7): 639-43.
[http://dx.doi.org/10.1016/j.autrev.2017.12.012] [PMID: 29729448]
[63]
Quartini A, Pacitti F, Bersani G, Iannitelli A. From adolescent neurogenesis to schizophrenia: Opportunities, challenges and promising interventions. Biomed Rev 2017; 28: 66-73.
[http://dx.doi.org/10.14748/bmr.v28.4452]
[64]
Schulte-Herbrüggen O, Braun A, Rochlitzer S, Jockers-Scherübl MC, Hellweg R. Neurotrophic factors-a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 2007; 14(22): 2318-29.
[http://dx.doi.org/10.2174/092986707781745578] [PMID: 17896980]
[65]
Tirassa P, Rosso P, Iannitelli A. Ocular Nerve Growth Factor (NGF) and NGF eye drop application as paradigms to investigate NGF neuroprotective and reparative actions. Methods Mol Biol 2018; 1727: 19-38.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_2] [PMID: 29222770]
[66]
Chaldakov GN, Fiore M, Ghenev PI, Stankulov IS, Aloe L. Atherosclerotic lesions: Possible interactive involvement of intima, adventitia and associated adipose tissue. Int Med J 2000; 7: 43-9.
[67]
Chaldakov GN, Fiore M, Tonchev AB, et al. Homo obesus: A metabotrophin-deficient species. Pharmacology and nutrition insight. Curr Pharm Des 2007; 13(21): 2176-9.
[http://dx.doi.org/10.2174/138161207781039616] [PMID: 17627549]
[68]
Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 2015; 6(5): 331-41.
[http://dx.doi.org/10.14336/AD.2015.0825] [PMID: 26425388]
[69]
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 2019; 13: 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[70]
Ceci FM, Ferraguti G, Petrella C. Nerve growth factor, stress and diseases. Curr Med Chem 2020.
[http://dx.doi.org/10.2174/0929867327999200818111654] [PMID: 32811396]
[71]
Vega SR, Kleinert J, Sulprizio M, Hollmann W, Bloch W, Strüder HK. Responses of serum neurotrophic factors to exercise in pregnant and postpartum women. Psychoneuroendocrinology 2011; 36(2): 220-7.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.012] [PMID: 20692101]
[72]
Deng J, Li L, Lin L-M, Li Y-M, Xia B-H, Liao D-F. Metabolic mechanism of Prunella vulgaris in treatment of ethanol-induced oxidative stress in rats based on metabonomics. Zhongguo Zhongyao Zazhi 2021; 46(7): 1813-21.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20210122.503]
[73]
Zhao H, Liu S, Zhao H, et al. Protective effects of fucoidan against ethanol-induced liver injury through maintaining mitochondrial function and mitophagy balance in rats. Food Funct 2021; 12(9): 3842-54.
[http://dx.doi.org/10.1039/D0FO03220D] [PMID: 33977968]
[74]
Jiang Z-B, Gao J, Chai Y-H, Li W, Luo Y-F, Chen Y-Z. Astragaloside alleviates alcoholic fatty liver disease by suppressing oxidative stress. Kaohsiung J Med Sci 2021; 37(8): 718-29.
[http://dx.doi.org/10.1002/kjm2.12390] [PMID: 33973356]
[75]
Patel F, Parwani K, Patel D, Mandal P. Metformin and probiotics interplay in amelioration of ethanol-induced oxidative stress and inflammatory response in an in vitro and in vivo model of hepatic injury. Mediators Inflamm 2021; 2021: 6636152.
[http://dx.doi.org/10.1155/2021/6636152] [PMID: 33953643]
[76]
Pomacu MM, Trașcă MD, Pădureanu V, et al. Interrelation of inflammation and oxidative stress in liver cirrhosis. Exp Ther Med 2021; 21(6): 602.
[http://dx.doi.org/10.3892/etm.2021.10034] [PMID: 33936259]
[77]
Fukuyama Y, Kubo M, Harada K. The search for, and chemistry and mechanism of, neurotrophic natural products. J Nat Med 2020; 74(4): 648-71.
[http://dx.doi.org/10.1007/s11418-020-01431-8] [PMID: 32643028]
[78]
Pyun CW, Seo TS, Kim DJ, Kim TW, Bae JS. Protective effects of ligularia fischeri and Aronia melanocarpa extracts on alcoholic liver disease in vitro and in vivo study. BioMed Res Int 2020; 2020: 9720387.
[http://dx.doi.org/10.1155/2020/9720387] [PMID: 32382583]
[79]
Kołota A, Głąbska D, Oczkowski M, Gromadzka-Ostrowska J. Oxidative stress parameters in the liver of growing male rats receiving various alcoholic beverages. Nutrients 2020; 12(1): E158.
[http://dx.doi.org/10.3390/nu12010158] [PMID: 31935882]
[80]
Lu Y, Cederbaum AI. Cytochrome P450s and alcoholic liver disease. Curr Pharm Des 2018; 24(14): 1502-17.
[http://dx.doi.org/10.2174/1381612824666180410091511] [PMID: 29637855]
[81]
Doody EE, Groebner JL, Walker JR, et al. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling. Am J Physiol Gastrointest Liver Physiol 2017; 313(6): G558-69.
[http://dx.doi.org/10.1152/ajpgi.00027.2017] [PMID: 28864499]
[82]
Cederbaum AI. Alcohol metabolism. Clin Liver Dis 2012; 16(4): 667-85.
[http://dx.doi.org/10.1016/j.cld.2012.08.002] [PMID: 23101976]
[83]
Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 2003; 27(4): 277-84.
[PMID: 15540798]
[84]
Goodlett CR, Horn KH. Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health 2001; 25(3): 175-84.
[PMID: 11810955]
[85]
Petrella C, Carito V, Carere C, et al. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition 2020; 79-80: 110783.
[http://dx.doi.org/10.1016/j.nut.2020.110783] [PMID: 32569950]
[86]
Carito V, Ceccanti M, Cestari V, et al. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition 2017; 33: 65-9.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[87]
Sies H. Strategies of antioxidant defense. Eur J Biochem 1993; 215:213-9.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb18025.x] [PMID: 7688300]
[88]
Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol 2006; 533: 222–39.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.087] [PMID: 16500642]
[89]
Kane CJM, Drew PD. Neuroinflammatory contribution of microglia and astrocytes in fetal alcohol spectrum disorders. J Neurosci Res 2021; 99(8): 1973-85.
[http://dx.doi.org/10.1002/jnr.24735] [PMID: 32959429]
[90]
Subramaniyan V, Chakravarthi S, Jegasothy R, et al. Alcohol-associated liver disease: A review on its pathophysiology, diagnosis and drug therapy. Toxicol Rep 2021; 8: 376-85.
[http://dx.doi.org/10.1016/j.toxrep.2021.02.010] [PMID: 33680863]
[91]
Mukherjee S, Cabrera MA, Boyadjieva NI, Berger G, Rousseau B, Sarkar DK. Alcohol increases exosome release from microglia to promote complement C1q-induced cellular death of proopiomelanocortin neurons in the hypothalamus in a rat model of fetal alcohol spectrum disorders. J Neurosci 2020; 40(41): 7965-79.
[http://dx.doi.org/10.1523/JNEUROSCI.0284-20.2020] [PMID: 32887744]
[92]
Chastain LG, Franklin T, Gangisetty O, et al. Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: Possible epigenetic mechanism. Neuropsychopharmacology 2019; 44(9): 1579-88.
[http://dx.doi.org/10.1038/s41386-019-0326-7] [PMID: 30737481]
[93]
Bodnar TS, Raineki C, Wertelecki W, et al. Altered maternal immune networks are associated with adverse child neurodevelopment: Impact of alcohol consumption during pregnancy. Brain Behav Immun 2018; 73: 205-15.
[http://dx.doi.org/10.1016/j.bbi.2018.05.004] [PMID: 29738852]
[94]
Bodnar TS, Raineki C, Wertelecki W, et al. Immune network dysregulation associated with child neurodevelopmental delay: Modulatory role of prenatal alcohol exposure. J Neuroinflammation 2020; 17(1): 39.
[http://dx.doi.org/10.1186/s12974-020-1717-8] [PMID: 31992316]
[95]
Tarani L, Carito V, Ferraguti G, et al. Neuroinflammatory markers in the serum of prepubertal children with down syndrome. J Immunol Res 2020; 2020: 6937154.
[http://dx.doi.org/10.1155/2020/6937154] [PMID: 32280719]
[96]
Carito V, Ceccanti M, Tarani L, Ferraguti G, Chaldakov GN, Fiore M. Neurotrophins’ modulation by olive polyphenols. Curr Med Chem 2016; 23(28): 3189-97.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[97]
Pavlatou MG, Papastamataki M, Apostolakou F, Papassotiriou I, Tentolouris N. FORT and FORD: Two simple and rapid assays in the evaluation of oxidative stress in patients with type 2 diabetes mellitus. Metabolism 2009; 58(11): 1657-62.
[http://dx.doi.org/10.1016/j.metabol.2009.05.022] [PMID: 19604518]
[98]
Hoyme HE, Kalberg WO, Elliott AJ. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics 2016; 138(2): e20154256.
[http://dx.doi.org/10.1542/peds.2015-4256]
[99]
Aloe L, Iannitelli A, Angelucci F, Bersani G, Fiore M. Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav Pharmacol 2000; 11(3-4): 235-42.
[http://dx.doi.org/10.1097/00008877-200006000-00007] [PMID: 11103878]
[100]
Bersani G, Iannitelli A, Fiore M, Angelucci F, Aloe L. Data and hypotheses on the role of nerve growth factor and other neurotrophins in psychiatric disorders. Med Hypotheses 2000; 55(3): 199-207.
[http://dx.doi.org/10.1054/mehy.1999.1044] [PMID: 10985909]
[101]
Chaldakov GN, Fiore M, Tonchev AB, Aloe L. Neuroadipology: A novel component of neuroendocrinology. Cell Biol Int 2010; 34(10): 1051-3.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[102]
Fiore M, Triaca V, Amendola T, Tirassa P, Aloe L. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol Behav 2002; 77(2-3): 437-43.
[http://dx.doi.org/10.1016/S0031-9384(02)00875-2] [PMID: 12419420]
[103]
Saucedo R, Valencia J, Moreno-González LE, et al. Maternal serum adipokines and inflammatory markers at late gestation and newborn weight in mothers with and without gestational diabetes mellitus. Ginekol Pol 2021. [Online ahead of print]
[http://dx.doi.org/10.5603/GP.a2021.0083] [PMID: 33914332]
[104]
Jadhav A, Khaire A, Gundu S, et al. Placental neurotrophin levels in gestational diabetes mellitus. Int J Dev Neurosci 2021; 81(4): 352-63.
[105]
Wang X, Cong P, Wang X, et al. Maternal diet with sea urchin gangliosides promotes neurodevelopment of young offspring via enhancing NGF and BDNF expression. Food Funct 2020; 11(11): 9912-23.
[http://dx.doi.org/10.1039/D0FO01605E] [PMID: 33094781]
[106]
Manti M, Pui H-P, Edström S, et al. Excess of ovarian nerve growth factor impairs embryonic development and causes reproductive and metabolic dysfunction in adult female mice. FASEB J 2020; 34(11): 14440-57.
[http://dx.doi.org/10.1096/fj.202001060R] [PMID: 32892421]
[107]
Garcez ML, Mina F, Bellettini-Santos T, Ribeiro FM, et al. Folic acid supplementation in the gestational phase of female rats improves age-related memory impairment and neuroinflammation in their adult and aged offspring. J Gerontol A Biol Sci Med Sci 2020; 76(6): 991-5.
[108]
Dal-Pont GC, Jório MTS, Resende WR, et al. Effects of lithium and valproate on behavioral parameters and neurotrophic factor levels in an animal model of mania induced by paradoxical sleep deprivation. J Psychiatr Res 2019; 119: 76-83.
[http://dx.doi.org/10.1016/j.jpsychires.2019.09.003] [PMID: 31574363]
[109]
Valvassori SS, Mariot E, Varela RB, et al. The role of neurotrophic factors in manic-, anxious- and depressive-like behaviors induced by amphetamine sensitization: Implications to the animal model of bipolar disorder. J Affect Disord 2019; 245: 1106-13.
[http://dx.doi.org/10.1016/j.jad.2018.10.370] [PMID: 30699853]
[110]
Valvassori SS, Borges CP, Varela RB, et al. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats. Brain Res Bull 2017; 134: 228-35.
[http://dx.doi.org/10.1016/j.brainresbull.2017.08.006] [PMID: 28802897]
[111]
Neugebauer K, Hammans C, Wensing T, et al. Nerve growth factor serum levels are associated with regional gray matter volume differences in schizophrenia patients. Front Psychiatry 2019; 10: 275.
[http://dx.doi.org/10.3389/fpsyt.2019.00275] [PMID: 31105606]
[112]
Wiener CD, de Mello Ferreira S, Pedrotti Moreira F, et al. Serum levels of Nerve Growth Factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord 2015; 184: 245-8.
[http://dx.doi.org/10.1016/j.jad.2015.05.067] [PMID: 26118751]
[113]
Emon MPZ, Das R, Nishuty NL, Shalahuddin Qusar MMA, Bhuiyan MA, Islam MR. Reduced serum BDNF levels are associated with the increased risk for developing MDD: A case-control study with or without antidepressant therapy. BMC Res Notes 2020; 13(1): 83.
[http://dx.doi.org/10.1186/s13104-020-04952-3] [PMID: 32085720]
[114]
Bonini M, Fioretti D, Sargentini V, et al. Increased nerve growth factor serum levels in top athletes. Clin J Sport Med 2013; 23(3): 228-31.
[http://dx.doi.org/10.1097/JSM.0b013e31827ee6d5] [PMID: 23275347]
[115]
Aloe L, Bracci-Laudiero L, Alleva E, Lambiase A, Micera A, Tirassa P. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proc Natl Acad Sci USA 1994; 91(22): 10440-4.
[http://dx.doi.org/10.1073/pnas.91.22.10440] [PMID: 7937971]
[116]
Jockers-Scherübl MC, Zubraegel D, Baer T, et al. Nerve growth factor serum concentrations rise after successful cognitive-behavioural therapy of generalized anxiety disorder. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(1): 200-4.
[http://dx.doi.org/10.1016/j.pnpbp.2006.09.006] [PMID: 17055636]
[117]
Mora E, Portella MJ, Piñol-Ripoll G, et al. High BDNF serum levels are associated to good cognitive functioning in bipolar disorder. Eur Psychiatry 2019; 60: 97-107.
[http://dx.doi.org/10.1016/j.eurpsy.2019.02.006] [PMID: 30808582]
[118]
Barbosa AG, Pratesi R, Paz GSC, et al. Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Sci Rep 2020; 10(1): 17348.
[http://dx.doi.org/10.1038/s41598-020-74239-x] [PMID: 33060610]
[119]
Ventriglia M, Zanardini R, Bonomini C, et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res Int 2013; 2013: 901082.
[http://dx.doi.org/10.1155/2013/901082] [PMID: 24024214]
[120]
Amidfar M, Réus GZ, de Moura AB, Quevedo J, Kim Y-K. The role of neurotrophic factors in pathophysiology of major depressive disorder. Adv Exp Med Biol 2021; 1305: 257-72.
[http://dx.doi.org/10.1007/978-981-33-6044-0_14] [PMID: 33834404]
[121]
Levchenko A, Vyalova NM, Nurgaliev T, et al. NRG1, PIP4K2A, and HTR2C as potential candidate biomarker genes for several clinical subphenotypes of depression and bipolar disorder. Front Genet 2020; 11: 936.
[http://dx.doi.org/10.3389/fgene.2020.00936] [PMID: 33193575]
[122]
Roh HT, So WY. Cranial electrotherapy stimulation affects mood state but not levels of peripheral neurotrophic factors or hypothalamic- pituitary-adrenal axis regulation. Technol Health Care 2017; 25(3): 403-12.
[http://dx.doi.org/10.3233/THC-161275] [PMID: 27886020]
[123]
Krueger AM, Roediger DJ, Mueller BA, et al. Para-limbic structural abnormalities are associated with internalizing symptoms in children with prenatal alcohol exposure. Alcohol Clin Exp Res 2020; 44(8): 1598-608.
[http://dx.doi.org/10.1111/acer.14390] [PMID: 32524616]
[124]
Scendoni R, Mirtella D, Froldi R, Valsecchi M, Ferrante L, Cingolani M. Correlation study between anatomopathological data and levels of blood morphine concentrations in heroin-related deaths. Leg Med (Tokyo) 2021; 51: 101877.
[http://dx.doi.org/10.1016/j.legalmed.2021.101877] [PMID: 33848788]
[125]
Ramos P, Pinto E, Santos A, Almeida A. Reference values for trace element levels in the human brain: A systematic review of the literature. J Trace Elem Med Biol 2021; 66: 126745.
[http://dx.doi.org/10.1016/j.jtemb.2021.126745] [PMID: 33813265]
[126]
Öztürk C, Validyev D, Becher UM, Weber M, Nickenig G, Tiyerili V. A novel scoring system to estimate chemotherapy-induced myocardial toxicity: Risk assessment prior to non-anthracycline chemotherapy regimens. Int J Cardiol Heart Vasc 2021; 33: 100751.
[http://dx.doi.org/10.1016/j.ijcha.2021.100751] [PMID: 33786364]
[127]
Shi M, Deng S, Cui Y, et al. Repeated low-dose exposures to sarin disrupted the homeostasis of phospholipid and sphingolipid metabolism in guinea pig hippocampus. Toxicol Lett 2021; 338: 32-9.
[http://dx.doi.org/10.1016/j.toxlet.2020.11.020] [PMID: 33253782]
[128]
Bier DM. Dietary sugars: Not as sour as they are made out to be. Nestle Nutr Inst Workshop Ser 2020; 95: 100-11.
[http://dx.doi.org/10.1159/000511524] [PMID: 33166963]
[129]
Fernandez GM, Stewart WN, Savage LM. Chronic drinking during adolescence predisposes the adult rat for continued heavy drinking: Neurotrophin and behavioral adaptation after long-term, continuous ethanol exposure. PLoS One 2016; 11(3): e0149987.
[http://dx.doi.org/10.1371/journal.pone.0149987] [PMID: 26930631]
[130]
Velazquez R, Ash JA, Powers BE, et al. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 2013; 58: 92-101.
[http://dx.doi.org/10.1016/j.nbd.2013.04.016] [PMID: 23643842]
[131]
Pardon MC. Role of neurotrophic factors in behavioral processes: implications for the treatment of psychiatric and neurodegenerative disorders. Vitam Horm 2010; 82: 185-200.
[http://dx.doi.org/10.1016/S0083-6729(10)82010-2] [PMID: 20472139]
[132]
Jeanblanc J, Coune F, Botia B, Naassila M. Brain-derived neurotrophic factor mediates the suppression of alcohol self-administration by memantine. Addict Biol 2014; 19(5): 758-69.
[http://dx.doi.org/10.1111/adb.12039] [PMID: 23414063]
[133]
Ceccanti M, Coccurello R, Carito V, et al. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict Biol 2016; 21(4): 776-87.
[http://dx.doi.org/10.1111/adb.12255] [PMID: 25940002]
[134]
Bliźniewska-Kowalska K, Gałecki P, Szemraj J, Talarowska M. Expression of selected genes involved in neurogenesis in the etiopathogenesis of depressive disorders. J Pers Med 2021; 11(3): 1-15.
[http://dx.doi.org/10.3390/jpm11030168] [PMID: 33804468]
[135]
Zalewska T, Jaworska J, Sypecka J, Ziemka-Nalecz M. Impact of a histone deacetylase inhibitor- trichostatin a on neurogenesis after hypoxia- ischemia in immature rats. Int J Mol Sci 2020; 21(11): E3808.
[http://dx.doi.org/10.3390/ijms21113808] [PMID: 32471267]
[136]
Biggio F, Mostallino MC, Talani G, et al. Social enrichment reverses the isolation-induced deficits of neuronal plasticity in the hippocampus of male rats. Neuropharmacology 2019; 151: 45-54.
[http://dx.doi.org/10.1016/j.neuropharm.2019.03.030] [PMID: 30935859]
[137]
Mondal AC, Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: Role of antidepressants treatment. Int J Neurosci 2019; 129(3): 283-96.
[http://dx.doi.org/10.1080/00207454.2018.1527328] [PMID: 30235967]
[138]
Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 2007; 18(5-6): 391-418.
[http://dx.doi.org/10.1097/FBP.0b013e3282ee2aa8] [PMID: 17762509]
[139]
Heaton MB, Paiva M, Swanson DJ, Walker DW. Responsiveness of cultured septal and hippocampal neurons to ethanol and neurotrophic substances. J Neurosci Res 1994; 39(3): 305-18.
[http://dx.doi.org/10.1002/jnr.490390308] [PMID: 7869423]
[140]
Miller MW, Mooney SM. Chronic exposure to ethanol alters neurotrophin content in the basal forebrain-cortex system in the mature rat: Effects on autocrine-paracrine mechanisms. J Neurobiol 2004; 60(4): 490-8.
[http://dx.doi.org/10.1002/neu.20059] [PMID: 15307153]
[141]
Mooney SM, Miller MW. Nerve growth factor neuroprotection of ethanol-induced neuronal death in rat cerebral cortex is age dependent. Neuroscience 2007; 149(2): 372-81.
[http://dx.doi.org/10.1016/j.neuroscience.2007.08.012] [PMID: 17869443]
[142]
Moore DB, Madorsky I, Paiva M, Barrow Heaton M. Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of prenatal exposure. J Neurobiol 2004; 60(1): 101-13.
[http://dx.doi.org/10.1002/neu.20009] [PMID: 15188276]
[143]
Cavalli G, Colafrancesco S, Emmi G, et al. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021; 20(3): 102763.
[http://dx.doi.org/10.1016/j.autrev.2021.102763] [PMID: 33482337]
[144]
Roerink ME, van der Schaaf ME, Dinarello CA, Knoop H, van der Meer JWM. Interleukin-1 as a mediator of fatigue in disease: A narrative review. J Neuroinflammation 2017; 14(1): 16.
[http://dx.doi.org/10.1186/s12974-017-0796-7] [PMID: 28109186]
[145]
Intke C, Korpelainen S, Hämäläinen S, et al. Interleukin-1 receptor antagonist as a biomarker of sepsis in neutropenic haematological patients. Eur J Haematol 2018; 101: 691-8.
[http://dx.doi.org/10.1111/ejh.13161] [PMID: 30099772]
[146]
Rudiger A, Jeger V, Arrigo M, et al. Heart rate elevations during early sepsis predict death in fluid-resuscitated rats with fecal peritonitis. Intensive Care Med Exp 2018; 6(1): 28.
[http://dx.doi.org/10.1186/s40635-018-0190-5] [PMID: 30128907]
[147]
Pietrasanta C, Minoia F, Torreggiani S, et al. When neonatal inflammation does not mean infection: An early-onset mevalonate kinase deficiency with interstitial lung disease. Clin Immunol 2019; 205: 25-8.
[http://dx.doi.org/10.1016/j.clim.2019.05.002] [PMID: 31096039]
[148]
Rabaan AA, Al-Ahmed SH, Muhammad J, et al. Role of inflammatory cytokines in COVID-19 patients: A review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines (Basel) 2021; 9(5): 436.
[http://dx.doi.org/10.3390/vaccines9050436] [PMID: 33946736]
[149]
Carmen-Orozco RP, Dávila-Villacorta DG, Delgado-Kamiche AD, et al. Changes in inflammatory gene expression in brain tissue adjacent and distant to a viable cyst in a rat model for neurocysticercosis. PLoS Negl Trop Dis 2021; 15(4): e0009295.
[http://dx.doi.org/10.1371/journal.pntd.0009295] [PMID: 33905419]
[150]
Zhu AS, Mustafa T, Connell JP, Grande-Allen KJ. Tumor necrosis factor alpha and interleukin 1 beta suppress myofibroblast activation via nuclear factor kappa B signaling in 3D-cultured mitral valve interstitial cells. Acta Biomater 2021; 127: 159-68.
[http://dx.doi.org/10.1016/j.actbio.2021.03.075] [PMID: 33831572]
[151]
Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, Llurba E, Gris JM. Tumor necrosis factor-alpha and pregnancy: Focus on biologics. An updated and comprehensive review. Clin Rev Allergy Immunol 2017; 53(1): 40-53.
[http://dx.doi.org/10.1007/s12016-016-8596-x] [PMID: 28054230]
[152]
Tracey KJ, Cerami A. Tumor necrosis factor: An updated review of its biology. Crit Care Med 1993; 21(10)(Suppl.): S415-22.
[http://dx.doi.org/10.1097/00003246-199310001-00002] [PMID: 8403979]
[153]
Sethi G, Sung B, Kunnumakkara AB, Aggarwal BB. Targeting TNF for treatment of cancer and autoimmunity. Adv Exp Med Biol 2009; 647: 37-51.
[http://dx.doi.org/10.1007/978-0-387-89520-8_3] [PMID: 19760065]
[154]
Alsheikh AM, Alsheikh MM. Obsessive-compulsive disorder with rheumatological and inflammatory diseases: A systematic review. Cureus 2021; 13(5): e14791.
[http://dx.doi.org/10.7759/cureus.14791] [PMID: 33954077]
[155]
Patil S, Gs V, Sarode GS, et al. Exploring the role of immunotherapeutic drugs in autoimmune diseases: A comprehensive review. J Oral Biol Craniofac Res 2021; 11(2): 291-6.
[http://dx.doi.org/10.1016/j.jobcr.2021.02.009] [PMID: 33948430]
[156]
Battineni G, Sagaro GG, Chintalapudi N, Amenta F, Tomassoni D, Tayebati SK. Impact of obesity-induced inflammation on Cardiovascular Diseases (CVD). Int J Mol Sci 2021; 22(9): 4798.
[http://dx.doi.org/10.3390/ijms22094798] [PMID: 33946540]
[157]
Fallahi P, Ferrari SM, Elia G, et al. Cytokines as targets of novel therapies for graves’ ophthalmopathy. Front Endocrinol (Lausanne) 2021; 12: 654473.
[http://dx.doi.org/10.3389/fendo.2021.654473] [PMID: 33935970]
[158]
Speir M, Djajawi TM, Conos SA, Tye H, Lawlor KE. Targeting RIP kinases in chronic inflammatory disease. Biomolecules 2021; 11(5): 646.
[http://dx.doi.org/10.3390/biom11050646] [PMID: 33924766]
[159]
Tziastoudi M, Pissas G, Raptis G, et al. A systematic review and meta-analysis of pharmacogenetic studies in patients with chronic kidney disease. Int J Mol Sci 2021; 22(9): 4480.
[http://dx.doi.org/10.3390/ijms22094480] [PMID: 33923087]
[160]
Aloe L, Fiore M, Probert L, Turrini P, Tirassa P. Overexpression of tumour necrosis factor alpha in the brain of transgenic mice differentially alters nerve growth factor levels and choline acetyltransferase activity. Cytokine 1999; 11(1): 45-54.
[http://dx.doi.org/10.1006/cyto.1998.0397] [PMID: 10080878]
[161]
Fiore M, Alleva E, Probert L, Kollias G, Angelucci F, Aloe L. Exploratory and displacement behavior in transgenic mice expressing high levels of brain TNF-alpha. Physiol Behav 1998; 63(4): 571-6.
[http://dx.doi.org/10.1016/S0031-9384(97)00514-3] [PMID: 9523900]
[162]
Aloe L, Fiore M. TNF-α expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci Lett 1997; 238(1-2): 65-8.
[http://dx.doi.org/10.1016/S0304-3940(97)00850-1] [PMID: 9464656]
[163]
Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol 2017; 17(1): 49-59.
[http://dx.doi.org/10.1038/nri.2016.123] [PMID: 27916979]
[164]
Morel PA, Lee REC, Faeder JR. Demystifying the cytokine network: Mathematical models point the way. Cytokine 2017; 98: 115-23.
[http://dx.doi.org/10.1016/j.cyto.2016.11.013] [PMID: 27919524]
[165]
Ahluwalia B, Wesley B, Adeyiga O, Smith DM, Da-Silva A, Rajguru S. Alcohol modulates cytokine secretion and synthesis in human fetus: An in vivo and in vitro study. Alcohol 2000; 21(3): 207-13.
[http://dx.doi.org/10.1016/S0741-8329(00)00076-8] [PMID: 11091023]
[166]
Lussier AA, Bodnar TS, Mingay M, et al. Prenatal alcohol exposure: Profiling developmental DNA methylation patterns in central and peripheral tissues. Front Genet 2018; 9: 610.
[http://dx.doi.org/10.3389/fgene.2018.00610] [PMID: 30568673]
[167]
Reid N, Moritz KM, Akison LK. Adverse health outcomes associated with fetal alcohol exposure: A systematic review focused on immune-related outcomes. Pediatr Allergy Immunol 2019; 30(7): 698-707.
[http://dx.doi.org/10.1111/pai.13099] [PMID: 31215695]
[168]
Terasaki LS, Schwarz JM. Effects of moderate prenatal alcohol exposure during early gestation in rats on inflammation across the maternal-fetal-immune interface and later-life immune function in the offspring. J Neuroimmune Pharmacol 2016; 11(4): 680-92.
[http://dx.doi.org/10.1007/s11481-016-9691-8] [PMID: 27318824]
[169]
Bodnar TS, Hill LA, Weinberg J. Evidence for an immune signature of prenatal alcohol exposure in female rats. Brain Behav Immun 2016; 58: 130-41.
[http://dx.doi.org/10.1016/j.bbi.2016.05.022] [PMID: 27263429]
[170]
Wells PG, Bhatia S, Drake DM, Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. Birth Defects Res C Embryo Today 2016; 108(2): 108-30.
[http://dx.doi.org/10.1002/bdrc.21134] [PMID: 27345013]
[171]
Ojeda L, Nogales F, Murillo L, Carreras O. The role of folic acid and selenium against oxidative damage from ethanol in early life programming: a review. Biochem Cell Biol 2018; 96(2): 178-88.
[http://dx.doi.org/10.1139/bcb-2017-0069] [PMID: 29040815]
[172]
Zhang Y, Wang H, Li Y, Peng Y. A review of interventions against fetal alcohol spectrum disorder targeting oxidative stress. Int J Dev Neurosci 2018; 71: 140-5.
[http://dx.doi.org/10.1016/j.ijdevneu.2018.09.001] [PMID: 30205148]
[173]
Brocardo PS, Gil-Mohapel J, Christie BR. The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res Brain Res Rev 2011; 67(1-2): 209-25.
[http://dx.doi.org/10.1016/j.brainresrev.2011.02.001] [PMID: 21315761]
[174]
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111(12): 714-48.
[http://dx.doi.org/10.1002/bdr2.1509] [PMID: 31033255]
[175]
Chianese R, Coccurello R, Viggiano A, et al. Impact of dietary fats on brain functions. Curr Neuropharmacol 2018; 16(7): 1059-85.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[176]
Carito V, Venditti A, Bianco A, et al. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat Prod Res 2014; 28(22): 1970-84.
[http://dx.doi.org/10.1080/14786419.2014.918977] [PMID: 24865115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy