Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Eugenol Elicits Prolongevity by Increasing Resistance to Oxidative Stress in C. elegans

Author(s): Nikhat Parween, Amber Jabeen and Birendra Prasad*

Volume 21, Issue 9, 2022

Published on: 18 January, 2022

Page: [841 - 853] Pages: 13

DOI: 10.2174/1871527320666211008150347

Price: $65

Abstract

Aims: To analyze the efficacy of eugenol on longevity by assessing its antioxidant effect using Caenorhabditis elegans as an animal model.

Background: Eugenol is a major polyphenolic component of Ocimum sanctum (Tulsi) which attributes wide pharmacological activities and can serve as a biomarker. However, the possible effect of eugenol on longevity in Caenorhabditis elegans has not been reported.

Objective: The objective of this investigation was to provide the first scientific based results about the effect of eugenol on longevity, slowing down of paralysis in Alzheimer’s model and the mechanism behind it in Caenorhabditis elegans animal model system.

Methods: The phenolic components of methanolic extract of Ocimum sanctum were analyzed by RP-HPLC. Worms were exposed to different concentrations of extract and one of its components - eugenol. Lifespan, health span, survival in CL4176 Alzheimer’s model and molecular mechanism were analyzed.

Results: Extract of Ocimum sanctum and eugenol increased lifespan and provided indemnity against pro-oxidants. It also significantly improved healthy ageing and slowed the progression of neurodegeneration in CL4176 Alzheimer’s model of the worm by increasing survival against prooxidants and slowing down the paralysis. Longevity effect was independent of the DAF-16 as observed by using DAF-16::GFP and daf-16 null mutant strains. These results implicate eugenol as a potent therapeutic compound that may curtail ageing and age related disorders like- Alzheimer’s disease.

Conclusion: The present work demonstrated eugenol as a potential anti-ageing compound that may curtail ageing, improve heath span by enhancing resistance to oxidative stress and exerts its effect independent of DAF-16 pathway. So, it can be assumed that eugenol can be beneficial to humans as well, albeit further research is necessary before declaring it for human consumption.

Keywords: Eugenol, lifespan, C. elegans, oxidative stress, DAF-16, polyphenolic component.

Graphical Abstract

[1]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[2]
Cypser JR, Johnson TE. Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J Gerontol A Biol Sci Med Sci 2002; 57(3): B109-14.
[http://dx.doi.org/10.1093/gerona/57.3.B109] [PMID: 11867647]
[3]
Harman D. Free radical theory of aging. Mutation Research/ DNAging 1992; 275(3–6): 257-66.
[http://dx.doi.org/10.1016/0921-8734(92)90030-S]
[4]
Queen BL, Tollefsbol TO. Polyphenols and aging. Curr Aging Sci 2010; 3(1): 34-42.
[http://dx.doi.org/10.2174/1874609811003010034] [PMID: 20298168]
[5]
Ibrahim SM, Al-Zubaidi LA, Adnan SA, Jessim AI, Jasim AI. Antioxidant activity of purified Eugenol compound in some Dairy products. Int J Adv Res (Indore) 2015; 3(4): 186-95.
[6]
Benencia F, Courrèges MC. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res 2000; 14(7): 495-500.
[http://dx.doi.org/10.1002/1099-1573(200011)14:7<495::AID-PTR650>3.0.CO;2-8] [PMID: 11054837]
[7]
Ogata M, Hoshi M. S Urano S, Endo T. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem Pharm Bull (Tokyo) 2000; 48(10): 1467-9.
[http://dx.doi.org/10.1248/cpb.48.1467] [PMID: 11045452]
[8]
Pisano M, Pagnan G, Loi M, et al. Antiploriferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol Cancer 2007; 6: 6-8.
[http://dx.doi.org/10.1186/1476-4598-6-8]
[9]
Ewald CY, Castillo-Quan JI, Blackwell TK. Untangling longevity, dauer, and healthspan in Caenorhabditis elegans insulin/igf-1-signalling. Gerontology 2018; 64(1): 96-104.
[http://dx.doi.org/10.1159/000480504] [PMID: 28934747]
[10]
Johnson TE. Advantages and disadvantages of Caenorhabditis elegans for aging research. Exp Gerontol 2003; 38(11-12): 1329-32.
[http://dx.doi.org/10.1016/j.exger.2003.10.020] [PMID: 14698813]
[11]
Stiernagle T. Maintenance of C. elegans. WormBook 2006; 11: 1-11.
[PMID: 18050451]
[12]
Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 1999; 299: 152-78.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[13]
Quettier-Deleu C, Gressier B, Vasseur J, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 2000; 72(1-2): 35-42.
[http://dx.doi.org/10.1016/S0378-8741(00)00196-3] [PMID: 10967451]
[14]
Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 2012; 64(64): e4019.
[http://dx.doi.org/10.3791/4019] [PMID: 22710399]
[15]
Nawa M, Kage-Nakadai E, Aiso S, Okamoto K, Mitani S, Matsuoka M. Reduced expression of BTBD10, an Akt activator, leads to motor neuron death. Cell Death Differ 2012; 19(8): 1398-407.
[http://dx.doi.org/10.1038/cdd.2012.19] [PMID: 22388351]
[16]
Lithgow GJ, White TM, Hinerfeld DA, Johnson TE. Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol 1994; 49(6): B270-6.
[http://dx.doi.org/10.1093/geronj/49.6.B270] [PMID: 7963273]
[17]
Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 1968; 125(1): 189-98.
[http://dx.doi.org/10.1016/0003-9861(68)90654-1] [PMID: 5655425]
[18]
Worthington V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J Altern Complement Med 2001; 7(2): 161-73.
[http://dx.doi.org/10.1089/107555301750164244] [PMID: 11327522]
[19]
Aebi H. Catalase in vitro. Methods Enzymol 1984; 105: 121-6.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[20]
Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA 2005; 102(12): 4494-9.
[http://dx.doi.org/10.1073/pnas.0500749102] [PMID: 15767565]
[21]
Gems D, Sutton AJ, Sundermeyer ML, et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998; 150(1): 129-55.
[http://dx.doi.org/10.1093/genetics/150.1.129] [PMID: 9725835]
[22]
Du F, Zhou L, Jiao Y, et al. Ingredients in zijuan pu’er tea extract alleviate β-amyloid peptide toxicity in a Caenorhabditis elegans model of alzheimer’s disease likely through daf-16. Molecules 2019; 24(4): 729.
[http://dx.doi.org/10.3390/molecules24040729] [PMID: 30781621]
[23]
Harman D. Free radical theory of aging: an update: increasing the functional life span. Ann N Y Acad Sci 2006; 1067(1): 10-21.
[http://dx.doi.org/10.1196/annals.1354.003] [PMID: 16803965]
[24]
Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966; 50(3): 163-70.
[PMID: 5910392]
[25]
Owolabi OJ, Omogbai EKI, Obasuyi O. Antifungal and antibacterial activities of the ethanolic and aqueous extract of Kigelia africana (Bignoniaceae) stem bark. Afr J Biotechnol 2007; 6(14): 1677-80.
[26]
Pandey R, Gupta S, Shukla V, Tandon S, Shukla V. Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J Exp Biol 2013; 51(7): 515-21.
[PMID: 23898550]
[27]
Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J Nat Prod 2011; 74(8): 1713-20.
[http://dx.doi.org/10.1021/np200011a] [PMID: 21805983]
[28]
Zheng SQ, Huang XB, Xing TK, Ding AJ, Wu GS, Luo HR. Chlorogenic acid extends the lifespan of Caenorhabditis elegansvia insulin/igf-1 signaling pathway. J Gerontology: Series A 2017; 72(4): 464-72.
[29]
Li H, Yu X, Li C, et al. Caffeic acid protects against Aβ toxicity and prolongs lifespan in Caenorhabditis elegans models. Food Funct 2021; 12(3): 1219-31.
[http://dx.doi.org/10.1039/D0FO02784G] [PMID: 33432954]
[30]
Zamberlan DC, Amaral GP, Arantes LP, et al. Rosmarinus officinalis L. increases Caenorhabditis elegans stress resistance and longevity in a DAF-16, HSF-1 and SKN-1-dependent manner. Braz J Med Biol Res 2016; 49(9): e5235.
[http://dx.doi.org/10.1590/1414-431x20165235] [PMID: 27533765]
[31]
Yu YB, Dosanjh L, Lao L, Tan M, Shim BS, Luo Y. Cinnamomum cassia bark in two herbal formulas increases life span in Caenorhabditis elegans via insulin signaling and stress response pathways. PLoS One 2010; 5(2): e9339.
[http://dx.doi.org/10.1371/journal.pone.0009339] [PMID: 20179756]
[32]
Rollins JA, Howard AC, Dobbins SK, Washburn EH, Rogers AN. Assessing health span in Caenorhabditis elegans: Lessons from short-lived mutants. J Gerontol A Biol Sci Med Sci 2017; 72(4): 473-80.
[http://dx.doi.org/10.1093/gerona/glw248] [PMID: 28158466]
[33]
Jabeen A, Parween N, Sayrav K, Prasad B. Date (Phoenix dactylifera) seed and syringic acid exhibits antioxidative effect and lifespan extending properties in Caenorhabditis elegans. Arab J Chem 2020; 13(12): 9058-67.
[http://dx.doi.org/10.1016/j.arabjc.2020.10.028]
[34]
Li J, Yu Y, Wang Q, Zhang J, Yang Y, Li B, et al. Synthesis of aspirin eugenol ester and its biological activity. Med Chem Res 2012; 21(7): 995-9.
[http://dx.doi.org/10.1007/s00044-011-9609-1]
[35]
Cai WJ, Huang JH, Zhang SQ, et al. Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS One 2011; 6(12): e28835.
[http://dx.doi.org/10.1371/journal.pone.0028835] [PMID: 22216122]
[36]
Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with anti-amyloid β aggregation show potential risk of toxicity via pro-oxidant properties. Int J Mol Sci 2020; 21(10): 3561.
[http://dx.doi.org/10.3390/ijms21103561] [PMID: 32443552]
[37]
Vaiserman A, Koliada A, Lushchak O. Neuroinflammation in pathogenesis of alzheimer’s disease: phytochemicals as potential therapeutics. Mech Ageing Dev 2020; 189: 111259.
[http://dx.doi.org/10.1016/j.mad.2020.111259] [PMID: 32450086]
[38]
Kumar J, Park KC, Awasthi A, Prasad B. Silymarin extends lifespan and reduces proteotoxicity in C. elegans Alzheimer’s model. CNS Neurol Disord Drug Targets 2015; 14(2): 295-302.
[http://dx.doi.org/10.2174/1871527314666150116110212] [PMID: 25613505]
[39]
Oroojan AA, Chenani N, An’aam M. Antioxidant effects of eugenol on oxidative stress induced by hydrogen peroxide in islets of langerhans isolated from male mouse. Int J Hepatol 2020; 2020: 5890378.
[http://dx.doi.org/10.1155/2020/5890378] [PMID: 33457017]
[40]
Reveillaud I, Niedzwiecki A, Bensch KG, Fleming JE. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance of oxidative stress. Mol Cell Biol 1991; 11(2): 632-40.
[http://dx.doi.org/10.1128/MCB.11.2.632] [PMID: 1899285]
[41]
Schriner SE, Linford NJ. Extension of mouse lifespan by overexpression of catalase. Age (Dordr) 2006; 28(2): 209-18.
[http://dx.doi.org/10.1007/s11357-006-9010-z] [PMID: 19943142]
[42]
Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science 2003; 300(5619): 644-7.
[http://dx.doi.org/10.1126/science.1083614] [PMID: 12690206]
[43]
Murphy CT, McCarroll SA, Bargmann CI, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003; 424(6946): 277-83.
[http://dx.doi.org/10.1038/nature01789] [PMID: 12845331]
[44]
An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 2003; 17(15): 1882-93.
[http://dx.doi.org/10.1101/gad.1107803] [PMID: 12869585]
[45]
Ma L, Liu J, Lin Q, Gu Y, Yu W. Eugenol protects cells against oxidative stress via Nrf2. Exp Ther Med 2021; 21(2): 107.
[http://dx.doi.org/10.3892/etm.2020.9539] [PMID: 33335570]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy