Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Effect of Edaravone on MicroRNA Expression in Exosomes after Hepatic Ischemia-reperfusion Injury

Author(s): Yanxia Fei, Jiali Shao, Ge Huang, Lijuan Wang, Shuangfa Zou, Huiping Sun, Chumei Zheng and Jinfeng Yang*

Volume 15, Issue 6, 2022

Published on: 26 January, 2022

Article ID: e301121198440 Pages: 13

DOI: 10.2174/1874467214666211130162152

Price: $65

conference banner
Abstract

Background and Objective: Hepatic ischemia-reperfusion injury (HIRI) results in serious complications after liver resection and transplantation. Edaravone (ED) has a protective effect on IRI. This study was designed to evaluate whether ED could protect the liver of rats from HIRI injury and explored its exosomal miRNA-related mechanism.

Methods: The sham group, hepatic ischemia/reperfusion (IR group), and hepatic ischemia/reperfusion + edaravone (ED group) models were established. We determined the protective effect of ED by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), superoxide dismutase (SOD); enzyme-linked immunosorbent assay for tumor necrosis factor- α (TNF-α) and interleukin-1β (IL-1β); hematoxylin-eosin staining and immunohistochemistry for histopathological changes. Exosomal miRNAs were subjected to second-generation sequencing to identify their differential expression. The results were analyzed using bioinformatics methods and validated using real-time quantitative polymerase chain reaction (RT-qPCR).

Results: HIRI rats showed higher levels of ALT, AST, oxidative stress, and inflammatory markers; ED attenuated these effects. The sequencing results showed 6 upregulated and 13 downregulated miRNAs in the IR vs. sham groups, 10 upregulated and 10 downregulated miRNAs in the ED vs. IR groups. PC-3p-190-42101 was screened as an overlapping differentially expressed miRNA, and RT-qPCR validation showed that its expression in HIRI rats was significantly decreased; ED prevented this downregulation. Moreover, the expression of PC-3P-190-42101 was significantly correlated with the level of inflammatory factors.

Conclusion: These findings indicate that ED can regulate the level of inflammatory factors by affecting the expression of miRNA PC-3p-190-42101 in plasma exosomes to protect the liver from IRI.

Keywords: Hepatic ischemia-reperfusion injury, edaravone, oxidative stress, inflammatory, exosomes, microRNAs.

Graphical Abstract

[1]
Jaeschke, H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(1), G15-G26.
[http://dx.doi.org/10.1152/ajpgi.00342.2002] [PMID: 12488232]
[2]
Jiménez-Castro, M.B.; Cornide-Petronio, M.E.; Gracia-Sancho, J.; Peralta, C. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury. Cells, 2019, 8(10), 8.
[http://dx.doi.org/10.3390/cells8101131] [PMID: 31547621]
[3]
Lentsch, A.B.; Kato, A.; Yoshidome, H.; McMasters, K.M.; Edwards, M.J. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology, 2000, 32(2), 169-173.
[http://dx.doi.org/10.1053/jhep.2000.9323] [PMID: 10915720]
[4]
Mączewski, M.; Beręsewicz, A. Role of nitric oxide and free radicals in cardioprotection by blocking Na+/H+ and Na+/Ca2+ exchange in rat heart. Eur. J. Pharmacol., 2003, 461(2-3), 139-147.
[http://dx.doi.org/10.1016/S0014-2999(03)01302-5] [PMID: 12586209]
[5]
Oliveira, T.H.C.; Marques, P.E.; Proost, P.; Teixeira, M.M.M. Neutrophils: a cornerstone of liver ischemia and reperfusion injury. Lab. Invest., 2018, 98(1), 51-62.
[http://dx.doi.org/10.1038/labinvest.2017.90] [PMID: 28920945]
[6]
Domínguez, F.E.; Siemers, F.; Flohé, S.; Nau, M.; Schade, F.U. Effects of endotoxin tolerance on liver function after hepatic ischemia/reperfusion injury in the rat. Crit. Care Med., 2002, 30(1), 165-170.
[http://dx.doi.org/10.1097/00003246-200201000-00024] [PMID: 11902258]
[7]
Zhang, N.; Komine-Kobayashi, M.; Tanaka, R.; Liu, M.; Mizuno, Y.; Urabe, T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke, 2005, 36(10), 2220-2225.
[http://dx.doi.org/10.1161/01.STR.0000182241.07096.06] [PMID: 16166574]
[8]
Tahara, M.; Nakayama, M.; Jin, M.B.; Fujita, M.; Suzuki, T.; Taniguchi, M.; Shimamura, T.; Furukawa, H.; Todo, S. A radical scavenger, edaravone, protects canine kidneys from ischemia-reperfusion injury after 72 hours of cold preservation and autotransplantation. Transplantation, 2005, 80(2), 213-221.
[http://dx.doi.org/10.1097/01.TP.0000165092.07375.C9] [PMID: 16041266]
[9]
Wu, T-W.; Zeng, L-H.; Wu, J.; Fung, K-P. Myocardial protection of MCI-186 in rabbit ischemia-reperfusion. Life Sci., 2002, 71(19), 2249-2255.
[http://dx.doi.org/10.1016/S0024-3205(02)01965-3] [PMID: 12215372]
[10]
Shimoda, M.; Iwasaki, Y.; Okada, T.; Kubota, K. Edaravone inhibits apoptosis caused by ischemia/reperfusion injury in a porcine hepatectomy model. World J. Gastroenterol., 2012, 18(27), 3520-3526.
[http://dx.doi.org/10.3748/wjg.v18.i27.3520] [PMID: 22826616]
[11]
Ke, J.; Bian, X.; Liu, H.; Li, B.; Huo, R. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression. Mol. Med., 2019, 25(1), 54.
[http://dx.doi.org/10.1186/s10020-019-0122-1] [PMID: 31829167]
[12]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[13]
Zheng, W.; Men, H.; Li, J.; Xing, Y.; Wu, B.; Wang, Z.; Li, J.; Teng, D.; Shi, Y.; Li, J.; Jiang, P.; Cai, J. Global microRNA expression profiling of mouse livers following ischemia-reperfusion injury at different stages. PLoS One, 2016, 11(2), e0148677.
[http://dx.doi.org/10.1371/journal.pone.0148677] [PMID: 26859886]
[14]
Li, S.; Zhang, J.; Wang, Z.; Wang, T.; Yu, Y.; He, J.; Zhang, H.; Yang, T.; Shen, Z. MicroRNA-17 regulates autophagy to promote hepatic ischemia/reperfusion injury via suppression of signal transductions and activation of transcription-3 expression. Liver Transpl., 2016, 22(12), 1697-1709.
[http://dx.doi.org/10.1002/lt.24606] [PMID: 27541946]
[15]
Pan, W.; Wang, L.; Zhang, X-F.; Zhang, H.; Zhang, J.; Wang, G.; Xu, P.; Zhang, Y.; Hu, P.; Zhang, X-D.; Du, R-L.; Wang, H. Hypoxia-induced microRNA-191 contributes to hepatic ischemia/reperfusion injury through the ZONAB/Cyclin D1 axis. Cell Death Differ., 2019, 26(2), 291-305.
[http://dx.doi.org/10.1038/s41418-018-0120-9] [PMID: 29769640]
[16]
Li, Y.; Gao, M.; Xu, L-N.; Yin, L-H.; Qi, Y.; Peng, J-Y. MicroRNA-142-3p attenuates hepatic ischemia/reperfusion injury via targeting of myristoylated alanine-rich C-kinase substrate. Pharmacol. Res., 2020, 156, 104783.
[http://dx.doi.org/10.1016/j.phrs.2020.104783] [PMID: 32224251]
[17]
Li, Y.; Ma, D.; Wang, Z.; Yang, J. MicroRNA-155 deficiency in kupffer cells ameliorates liver ischemia-reperfusion injury in mice. Transplantation, 2017, 101(7), 1600-1608.
[http://dx.doi.org/10.1097/TP.0000000000001765] [PMID: 28640790]
[18]
Xu, C-F.; Yu, C-H.; Li, Y-M. Regulation of hepatic microRNA expression in response to ischemic preconditioning following ischemia/reperfusion injury in mice. OMICS, 2009, 13(6), 513-520.
[http://dx.doi.org/10.1089/omi.2009.0035] [PMID: 19780683]
[19]
Gurunathan, S.; Kang, M-H.; Jeyaraj, M.; Qasim, M.; Kim, J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells, 2019, 8(4), 8.
[http://dx.doi.org/10.3390/cells8040307] [PMID: 30987213]
[20]
Zhou, Y.; Wang, X.; Sun, L.; Zhou, L.; Ma, T-C.; Song, L.; Wu, J-G.; Li, J-L.; Ho, W-Z. Toll-like receptor 3-activated macrophages confer anti-HCV activity to hepatocytes through exosomes. FASEB J., 2016, 30(12), 4132-4140.
[http://dx.doi.org/10.1096/fj.201600696R] [PMID: 27605546]
[21]
Yang, B.; Duan, W.; Wei, L.; Zhao, Y.; Han, Z.; Wang, J.; Wang, M.; Dai, C.; Zhang, B.; Chen, D.; Chen, Z. Bone marrow mesenchymal stem cell-derived hepatocyte-like cell exosomes reduce hepatic ischemia/reperfusion injury by enhancing autophagy. Stem Cells Dev., 2020, 29(6), 372-379.
[http://dx.doi.org/10.1089/scd.2019.0194] [PMID: 31969065]
[22]
Anger, F.; Camara, M.; Ellinger, E.; Germer, C-T.; Schlegel, N.; Otto, C.; Klein, I. Human mesenchymal stromal cell-derived extracellular vesicles improve liver regeneration after ischemia reperfusion injury in mice. Stem Cells Dev., 2019, 28(21), 1451-1462.
[http://dx.doi.org/10.1089/scd.2019.0085] [PMID: 31495270]
[23]
Yao, J.; Zheng, J.; Cai, J.; Zeng, K.; Zhou, C.; Zhang, J.; Li, S.; Li, H.; Chen, L.; He, L.; Chen, H.; Fu, H.; Zhang, Q.; Chen, G.; Yang, Y.; Zhang, Y. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J., 2019, 33(2), 1695-1710.
[http://dx.doi.org/10.1096/fj.201800131RR] [PMID: 30226809]
[24]
Zhang, L.; Song, Y.; Chen, L.; Li, D.; Feng, H.; Lu, Z.; Fan, T.; Chen, Z.; Livingston, M.J.; Geng, Q. MiR-20a-containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J. Cell. Physiol., 2020, 235(4), 3698-3710.
[http://dx.doi.org/10.1002/jcp.29264] [PMID: 31566731]
[25]
Xie, K.; Liu, L.; Chen, J.; Liu, F. Exosomal miR-1246 derived from human umbilical cord blood mesenchymal stem cells attenuates hepatic ischemia reperfusion injury by modulating T helper 17/regulatory T balance. IUBMB Life, 2019, 71(12), 2020-2030.
[http://dx.doi.org/10.1002/iub.2147] [PMID: 31433911]
[26]
Nong, K.; Liu, S.; Zhang, D.; Chen, C.; Yang, Y.; Yang, Y.; Cai, H. The effects of mesenchymal stem cell exosome with an overexpression of miR-148a on hepatic ischemia-reperfusion injury. Int. J. Clin. Exp. Med., 2019, 12, 13325-13336.
[27]
Rigo, F.; De Stefano, N.; Navarro-Tableros, V.; David, E.; Rizza, G.; Catalano, G.; Gilbo, N.; Maione, F.; Gonella, F.; Roggio, D.; Martini, S.; Patrono, D.; Salizzoni, M.; Camussi, G.; Romagnoli, R. Extracellular vesicles from human liver stem cells reduce injury in an ex vivo normothermic hypoxic rat liver perfusion model. Transplantation, 2018, 102(5), e205-e210.
[http://dx.doi.org/10.1097/TP.0000000000002123] [PMID: 29424767]
[28]
Nojima, H.; Freeman, C.M.; Schuster, R.M.; Japtok, L.; Kleuser, B.; Edwards, M.J.; Gulbins, E.; Lentsch, A.B. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J. Hepatol., 2016, 64(1), 60-68.
[http://dx.doi.org/10.1016/j.jhep.2015.07.030] [PMID: 26254847]
[29]
Taniguchi, M.; Uchinami, M.; Doi, K.; Yoshida, M.; Sasaki, H.; Tamagawa, K.; Horiuchi, T.; Tanaka, K. Edaravone reduces ischemia-reperfusion injury mediators in rat liver. J. Surg. Res., 2007, 137(1), 69-74.
[http://dx.doi.org/10.1016/j.jss.2006.06.033] [PMID: 17064733]
[30]
Suzuki, S.; Toledo-Pereyra, L.H.; Rodriguez, F.J.; Cejalvo, D. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation, 1993, 55(6), 1265-1272.
[http://dx.doi.org/10.1097/00007890-199306000-00011] [PMID: 7685932]
[31]
Abe, T.; Unno, M.; Takeuchi, H.; Kakita, T.; Katayose, Y.; Rikiyama, T.; Morikawa, T.; Suzuki, M.; Matsuno, S. A new free radical scavenger, edaravone, ameliorates oxidative liver damage due to ischemia-reperfusion in vitro and in vivo. J. Gastrointest. Surg., 2004, 8(5), 604-615.
[http://dx.doi.org/10.1016/j.gassur.2004.02.011] [PMID: 15239999]
[32]
Okatani, Y.; Wakatsuki, A.; Enzan, H.; Miyahara, Y. Edaravone protects against ischemia/reperfusion-induced oxidative damage to mitochondria in rat liver. Eur. J. Pharmacol., 2003, 465(1-2), 163-170.
[http://dx.doi.org/10.1016/S0014-2999(03)01463-8] [PMID: 12650846]
[33]
Tsuji, K.; Kwon, A-H.; Yoshida, H.; Qiu, Z.; Kaibori, M.; Okumura, T.; Kamiyama, Y. Free radical scavenger (edaravone) prevents endotoxin-induced liver injury after partial hepatectomy in rats. J. Hepatol., 2005, 42(1), 94-101.
[http://dx.doi.org/10.1016/j.jhep.2004.09.018] [PMID: 15629513]
[34]
Uchiyama, M.; Tojo, K.; Yazawa, T.; Ota, S.; Goto, T.; Kurahashi, K. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion. J. Surg. Res., 2015, 194(2), 551-557.
[http://dx.doi.org/10.1016/j.jss.2014.11.011] [PMID: 25481526]
[35]
Suzuki, F.; Hashikura, Y.; Ise, H.; Ishida, A.; Nakayama, J.; Takahashi, M.; Miyagawa, S.; Ikeda, U. MCI-186 (edaravone), a free radical scavenger, attenuates hepatic warm ischemia-reperfusion injury in rats. Transpl. Int., 2005, 18(7), 844-853.
[http://dx.doi.org/10.1111/j.1432-2277.2005.00094.x] [PMID: 15948865]
[36]
Ninomiya, M.; Shimada, M.; Harada, N.; Soejima, Y.; Suehiro, T.; Maehara, Y. The hydroxyl radical scavenger MCI-186 protects the liver from experimental cold ischaemia-reperfusion injury. Br. J. Surg., 2004, 91(2), 184-190.
[http://dx.doi.org/10.1002/bjs.4401] [PMID: 14760666]
[37]
Cho, Y-E.; Kim, S-H.; Lee, B-H.; Baek, M-C. Circulating plasma and exosomal micrornas as indicators of drug-induced organ injury in rodent models. Biomol. Ther. (Seoul), 2017, 25(4), 367-373.
[http://dx.doi.org/10.4062/biomolther.2016.174] [PMID: 28208010]
[38]
Hou, Z.; Qin, X.; Hu, Y.; Zhang, X.; Li, G.; Wu, J.; Li, J.; Sha, J.; Chen, J.; Xia, J.; Wang, L.; Gao, F. Longterm Exercise-Derived Exosomal miR-342-5p: A Novel Exerkine for Cardioprotection. Circ. Res., 2019, 124(9), 1386-1400.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314635] [PMID: 30879399]
[39]
Minghua, W.; Zhijian, G.; Chahua, H.; Qiang, L.; Minxuan, X.; Luqiao, W.; Weifang, Z.; Peng, L.; Biming, Z.; Lingling, Y.; Zhenzhen, W.; Jianqing, X.; Huihui, B.; Xiaozhong, W.; Xiaoshu, C. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis., 2018, 9(3), 320.
[http://dx.doi.org/10.1038/s41419-018-0274-x] [PMID: 29476052]
[40]
Liu, Q.; Hu, Y.; Zhang, M.; Yan, Y.; Yu, H.; Ge, L. microRNA-451 protects neurons against ischemia/reperfusion injury-induced cell death by targeting CELF2. Neuropsychiatr. Dis. Treat., 2018, 14, 2773-2782.
[http://dx.doi.org/10.2147/NDT.S173632] [PMID: 30425495]
[41]
Sun, X-H.; Wang, X.; Zhang, Y.; Hui, J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb. Res., 2019, 177, 23-32.
[http://dx.doi.org/10.1016/j.thromres.2019.02.002] [PMID: 30844685]
[42]
Viñas, J.L.; Burger, D.; Zimpelmann, J.; Haneef, R.; Knoll, W.; Campbell, P.; Gutsol, A.; Carter, A.; Allan, D.S.; Burns, K.D. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int., 2016, 90(6), 1238-1250.
[http://dx.doi.org/10.1016/j.kint.2016.07.015] [PMID: 27650731]
[43]
Xing, X.; Guo, S.; Zhang, G.; Liu, Y.; Bi, S.; Wang, X.; Lu, Q. miR-26a-5p protects against myocardial ischemia/reperfusion injury by regulating the PTEN/PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res., 2020, 53(2), e9106.
[http://dx.doi.org/10.1590/1414-431x20199106] [PMID: 31994603]
[44]
Wei, R.; Zhang, L.; Hu, W.; Wu, J.; Zhang, W. Long non-coding RNA AK038897 aggravates cerebral ischemia/reperfusion injury via acting as a ceRNA for miR-26a-5p to target DAPK1. Exp. Neurol., 2019, 314, 100-110.
[http://dx.doi.org/10.1016/j.expneurol.2019.01.009] [PMID: 30703362]
[45]
Du, Y.; Li, D.; Han, C.; Wu, H.; Xu, L.; Zhang, M.; Zhang, J.; Chen, X. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) protect liver against hepatic ischemia/ reperfusion injury via activating sphingosine kinase and sphingosine-1-phosphate signaling pathway. Cell Physiol. Biochem., 2017, 43, 611-625.
[46]
Elias-Miró, M.; Jiménez-Castro, M.B.; Mendes-Braz, M.; Casillas-Ramírez, A.; Peralta, C. The Current knowledge of the role of PPAR in hepatic ischemia-reperfusion injury. PPAR Res., 2012, 2012, 802384.
[http://dx.doi.org/10.1155/2012/802384] [PMID: 22675337]
[47]
Massip-Salcedo, M.; Roselló-Catafau, J.; Prieto, J.; Avíla, M.A.; Peralta, C. The response of the hepatocyte to ischemia. Liver Int., 2007, 27, 6-16.
[48]
Casillas-Ramírez, A.; Mosbah, I.B.; Ramalho, F.; Roselló-Catafau, J.; Peralta, C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci., 2006, 79(20), 1881-1894.
[http://dx.doi.org/10.1016/j.lfs.2006.06.024] [PMID: 16828807]
[49]
Kuboki, S.; Shin, T.; Huber, N.; Eismann, T.; Galloway, E.; Schuster, R.; Blanchard, J.; Zingarelli, B.; Lentsch, A.B. Peroxisome proliferator-activated receptor-gamma protects against hepatic ischemia/reperfusion injury in mice. Hepatology, 2008, 47(1), 215-224.
[http://dx.doi.org/10.1002/hep.21963] [PMID: 18085707]
[50]
Akahori, T.; Sho, M.; Hamada, K.; Suzaki, Y.; Kuzumoto, Y.; Nomi, T.; Nakamura, S.; Enomoto, K.; Kanehiro, H.; Nakajima, Y. Importance of peroxisome proliferator-activated receptor-gamma in hepatic ischemia/reperfusion injury in mice. J. Hepatol., 2007, 47(6), 784-792.
[http://dx.doi.org/10.1016/j.jhep.2007.07.030] [PMID: 17936399]
[51]
Koh, E-J.; Yoon, S-J.; Lee, S-M. Losartan protects liver against ischaemia/reperfusion injury through PPAR-γ activation and receptor for advanced glycation end-products down-regulation. Br. J. Pharmacol., 2013, 169(6), 1404-1416.
[http://dx.doi.org/10.1111/bph.12229] [PMID: 23647130]
[52]
Xu, Y.; Yao, J.; Zou, C.; Zhang, H.; Zhang, S.; Liu, J.; Ma, G.; Jiang, P.; Zhang, W. Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of Kupffer cells via PPARγ/NLRP3 inflammasome signaling pathway. Oncotarget, 2017, 8(49), 86339-86355.
[http://dx.doi.org/10.18632/oncotarget.21151] [PMID: 29156799]
[53]
Jiang, C.; Ting, A.T.; Seed, B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature, 1998, 391(6662), 82-86.
[http://dx.doi.org/10.1038/34184] [PMID: 9422509]
[54]
von Knethen, A.; Brüne, B. PPARgamma--an important regulator of monocyte/macrophage function. Arch. Immunol. Ther. Exp. (Warsz.), 2003, 51(4), 219-226.
[PMID: 12956430]
[55]
Ahn, M.Y.; Ham, S.A.; Yoo, T.; Lee, W.J.; Hwang, J.S.; Paek, K.S.; Lim, D-S.; Han, S.G.; Lee, C-H.; Seo, H.G. Ligand-activated peroxisome proliferator-activated receptor δ attenuates vascular oxidative stress by inhibiting thrombospondin-1 expression. J. Vasc. Res., 2018, 55(2), 75-86.
[http://dx.doi.org/10.1159/000486570] [PMID: 29408825]
[56]
Shao, Q.; Xia, J.; Wu, P.; Ying, J. Dexmedetomidine protects cardiac microvascular endothelial cells from the damage of OGD/R through regulation of the PPARδ-mediated autophagy. Microcirculation, 2020, 28, e12675.
[57]
Wu, K.K. Peroxisome proliferator-activated receptors protect against apoptosis via 14-3-3. PPAR Res., 2010, 2010
[http://dx.doi.org/10.1155/2010/417646]
[58]
Yue, T-L.; Nerurkar, S.S.; Bao, W.; Jucker, B.M.; Sarov-Blat, L.; Steplewski, K.; Ohlstein, E.H.; Willette, R.N. In vivo activation of peroxisome proliferator-activated receptor-delta protects the heart from ischemia/reperfusion injury in Zucker fatty rats. J. Pharmacol. Exp. Ther., 2008, 325(2), 466-474.
[http://dx.doi.org/10.1124/jpet.107.135327] [PMID: 18287212]
[59]
Ding, G.; Cheng, L.; Qin, Q.; Frontin, S.; Yang, Q. PPARdelta modulates lipopolysaccharide-induced TNFalpha inflammation signaling in cultured cardiomyocytes. J. Mol. Cell. Cardiol., 2006, 40(6), 821-828.
[http://dx.doi.org/10.1016/j.yjmcc.2006.03.422] [PMID: 16698033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy