Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Role of Mitochondrial Membrane Potential and Lactate Dehydrogenase A in Apoptosis

Author(s): Sumera Zaib*, Aqsa Hayyat, Naba Ali, Asma Gul, Muhammad Naveed and Imtiaz Khan*

Volume 22, Issue 11, 2022

Published on: 17 January, 2022

Page: [2048 - 2062] Pages: 15

DOI: 10.2174/1871520621666211126090906

Price: $65

Abstract

Apoptosis is a programmed cell death that occurs due to the production of several catabolic enzymes. During this process, several morphological and biochemical changes occur in mitochondria, the main organelle in the cell that participates in apoptosis and controls apoptotic pathways. During apoptosis, cytochrome c is released from mitochondria, and different proteins activate caspase cascades that carry out the cell towards the death process. Apoptosis mainly occurs due to p53 protein that allows the abnormal cells to proliferate. Bcl-2 and Bcl-xl are two anti-apoptotic members of the protein family that prevents apoptosis. The membrane potential of mitochondria decreases by the opening of the permeability transition pore (PTP). These PTP are formed by the binding of Bax with adenine nucleotide translocator (ANT) and cause depolarization in the membrane. The depolarization releases apoptogenic factors (cytochrome c) that result in the loss of oxidative phosphorylation. Knockdown in lactate dehydrogenase (LDH) is the cause of the decrease in mitochondrial membrane potential elevating the levels of reactive oxygen species (ROS) and Bax. Consequently, causing an increase in the release of cytochrome c that ultimately leads to apoptosis. In this review, we have summarized the combined effect of mitochondrial membrane potential and LDH enzyme that triggers apoptosis in cells and their role in the mechanism of apoptosis.

Keywords: Apoptosis, depolarization, mitochondrial membrane potential, oxidative phosphorylation, cell death, proteolytic enzymes.

Graphical Abstract

[1]
James, B.R.; Griffith, T.S. Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptotic pathways in cancer immunosurveillance: Molecular mechanisms and prospects for therapy. Res. Rep. Biochem., 2015, 5, 1-10.
[http://dx.doi.org/10.2147/RRBC.S59123]
[2]
Alarifi, S.; Ali, D.; Alkahtani, S. Mechanistic investigation of toxicity of chromium oxide nanoparticles in murine fibrosarcoma cells. Int. J. Nanomedicine, 2016, 11, 1253-1259.
[http://dx.doi.org/10.2147/IJN.S99995] [PMID: 27099490]
[3]
Liu, J.; Tian, Z.; Zhou, N.; Liu, X.; Liao, C.; Lei, B.; Li, J.; Zhang, S.; Chen, H. Targeting the apoptotic Mcl-1-PUMA interface with a dual-acting compound. Oncotarget, 2017, 8(33), 54236-54242.
[http://dx.doi.org/10.18632/oncotarget.17294] [PMID: 28903337]
[4]
Cavalcante, G.C.; Schaan, A.P.; Cabral, G.F.; Santana-da-Silva, M.N.; Pinto, P.; Vidal, A.F.; Ribeiro-Dos-Santos, Â. A cell’s fate: An overview of the molecular biology and genetics of apoptosis. Int. J. Mol. Sci., 2019, 20(17), 4133.
[http://dx.doi.org/10.3390/ijms20174133] [PMID: 31450613]
[5]
Lausted, C.; Lee, I.; Zhou, Y.; Qin, S.; Sung, J.; Price, N.D.; Hood, L.; Wang, K. Systems approach to neurodegenerative disease biomarker discovery. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 457-481.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135928] [PMID: 24160693]
[6]
Docampo, R.; Vercesi, A.E. mitochondrial Ca2+ and reactive oxygen species in trypanosomatids. Antioxid. Redox Signal. 2021. Online ahead of print.
[http://dx.doi.org/10.1089/ars.2021.0058 ] [PMID: 34218689]
[7]
Kawamata, T.; Kamada, Y.; Kabeya, Y.; Sekito, T.; Ohsumi, Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell, 2008, 19(5), 2039-2050.
[http://dx.doi.org/10.1091/mbc.e07-10-1048] [PMID: 18287526]
[8]
Doherty, J.; Baehrecke, E.H. Life, death and autophagy. Nat. Cell Biol., 2018, 20(10), 1110-1117.
[http://dx.doi.org/10.1038/s41556-018-0201-5] [PMID: 30224761]
[9]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 1-16.
[http://dx.doi.org/10.1186/s12943-019-1085-0] [PMID: 31901224]
[10]
Chen, Q.; Kang, J.; Fu, C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct. Target. Ther., 2018, 3(1), 18.
[http://dx.doi.org/10.1038/s41392-018-0018-5] [PMID: 29967689]
[11]
Khalid, N.; Azimpouran, M. Necrosis. In: StatPearls; StatPearls Publishing: Treasure Island, FL , 2021.
[12]
Tonnus, W.; Meyer, C.; Paliege, A.; Belavgeni, A.; von Mässenhausen, A.; Bornstein, S.R.; Hugo, C.; Becker, J.U.; Linkermann, A. The pathological features of regulated necrosis. J. Pathol., 2019, 247(5), 697-707.
[http://dx.doi.org/10.1002/path.5248] [PMID: 30714148]
[13]
Green, D.R.; Llambi, F. Cell death signaling. Cold Spring Harb. Perspect. Biol., 2015, 7(12), a006080.
[http://dx.doi.org/10.1101/cshperspect.a006080] [PMID: 26626938]
[14]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[15]
Alkahtane, A.A. Nanosilica exerts cytotoxicity and apoptotic response via oxidative stress in mouse embryonic fibroblasts. Toxicol. Environ. Chem., 2015, 97(5), 651-662.
[http://dx.doi.org/10.1080/02772248.2015.1058050]
[16]
Lutsenko, G.V.; Grechikhina, M.V.; Efremov, M.A. Autocrine survival factors of a cytotoxic CTLL-2 cell line. Biochem. (Moscow). Suppl. Ser. A, 2018, 12(3), 239-246.
[http://dx.doi.org/10.1134/S1990747818030066]
[17]
Grabiec, K.; Majewska, A.; Wicik, Z.; Milewska, M.; Błaszczyk, M.; Grzelkowska-Kowalczyk, K. The effect of palmitate supplementation on gene expression profile in proliferating myoblasts. Cell Biol. Toxicol., 2016, 32(3), 185-198.
[http://dx.doi.org/10.1007/s10565-016-9324-2] [PMID: 27114085]
[18]
Santana, V.P.; Furtado, C.L.M.; Molina, C.A.F.; Nobre, Y.T.D.A.; Ferriani, R.A.; Dos Reis, R.M. A randomized clinical trial study of the effects of varicocelectomy on sperm clinical analysis and DNA fragmentation: A preliminary data. Gynecol. Obstet. Res., 2015, 2(1), 29-34.
[http://dx.doi.org/10.17140/GOROJ-2-107]
[19]
Kaschek, L.; Zöphel, S.; Knörck, A.; Hoth, M. A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Semin. Cell Dev. Biol., 2021, 115, 10-18.
[http://dx.doi.org/10.1016/j.semcdb.2020.12.002] [PMID: 33358089]
[20]
Tang, F.; He, Z.; Lei, H.; Chen, Y.; Lu, Z.; Zeng, G.; Wang, H. Identification of differentially expressed genes and biological pathways in bladder cancer. Mol. Med. Rep., 2018, 17(5), 6425-6434.
[http://dx.doi.org/10.3892/mmr.2018.8711] [PMID: 29532898]
[21]
Huang, H.; Li, L.J.; Zhang, H.B.; Wei, A.Y. Papaverine selectively inhibits human prostate cancer cell (PC-3) growth by inducing mitochondrial mediated apoptosis, cell cycle arrest and downregulation of NF-κB/PI3K/Akt signalling pathway. J. BUON, 2017, 22(1), 112-118.
[PMID: 28365943]
[22]
Hussar, P.; Järveots, T.; Pendovski, L.; Blagoevska, K.; Ristoski, T.; Popovska-Percinic, F. T-2 mycotoxin induced apoptosis in broiler’s liver tissue. Papers on Anthropol. XXVII/1 2018, 2018, 9-16.
[http://dx.doi.org/10.12697/poa.2018.27.1.01]
[23]
Zarei, M.; Bashash, D. Induction of G1 cell cycle arrest and increased sub-G1 population upon treatment of Nalm-6 cells with synthetic inhibitor of hTERT. Sci. J. Iran Blood Transfus Organ, 2016, 13(4), 314-323.
[24]
Mansilla, S.F.; de la Vega, M.B.; Calzetta, N.L.; Siri, S.O.; Gottifredi, V. CDK-independent and PCNA-dependent functions of p21 in DNA replication. Genes (Basel), 2020, 11(6), 593.
[http://dx.doi.org/10.3390/genes11060593] [PMID: 32481484]
[25]
Martín-Caballero, J.; Flores, J.M.; García-Palencia, P.; Serrano, M. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res., 2001, 61(16), 6234-6238.
[PMID: 11507077]
[26]
Shah, S.N.A.; Tariq, I.; Zafar, M.N. Toxic epidermal necrolysis. J. Rawal. Med. College, 2017, 21(2), 187-188.
[27]
Gottlieb, R.A. Mitochondria: Execution central. FEBS Lett., 2000, 482(1-2), 6-12.
[http://dx.doi.org/10.1016/S0014-5793(00)02010-X] [PMID: 11018514]
[28]
Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev., 2001, 15(22), 2922-2933.
[PMID: 11711427]
[29]
Castro-E-Silva, O.; D’Albuquerque, L.A.C.; Silveira, M.R.G.; Zorzi, P.; Liu, J.B.; Campos, D.T.Q.; Victorino, J.P.; Jordani, M.C.; Mendes, K.D.S.; Évora, P.R.B. Evaluation of the therapeutic effect of methylene blue on the liver of rats submitted to ischemia and reperfusion. Acta Cir. Bras., 2018, 33(12), 1043-1051.
[http://dx.doi.org/10.1590/s0102-865020180120000001] [PMID: 30624509]
[30]
Wang, J.K.; Wu, H.F.; Zhou, H.; Yang, B.; Liu, X.Z. Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury involving mitochondrial ATP-dependent potassium channel and mitochondrial permeability transition pore. Neurol. Res., 2015, 37(1), 77-83.
[http://dx.doi.org/10.1179/1743132814Y.0000000410] [PMID: 24965894]
[31]
Bauer, T.M.; Murphy, E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res., 2020, 126(2), 280-293.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316306] [PMID: 31944918]
[32]
Karch, J.; Molkentin, J.D. Regulated necrotic cell death: The passive aggressive side of Bax and Bak. Circ. Res., 2015, 116(11), 1800-1809.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305421] [PMID: 25999420]
[33]
Hong, N.R.; Park, H.S.; Ahn, T.S.; Jung, M.H.; Kim, B.J. Association of a methanol extract of Rheum undulatum L. mediated cell death in AGS cells with an intrinsic apoptotic pathway. J. Pharmacopuncture, 2015, 18(2), 26-32.
[http://dx.doi.org/10.3831/KPI.2015.18.012] [PMID: 26120485]
[34]
Pihán, P.; Carreras-Sureda, A.; Hetz, C. BCL-2 family: Integrating stress responses at the ER to control cell demise. Cell Death Differ., 2017, 24(9), 1478-1487.
[http://dx.doi.org/10.1038/cdd.2017.82] [PMID: 28622296]
[35]
Zuo, J.H.; Sun, C.H.; Gao, H.; Wang, L.F.; Zhu, Y.H. Role of Bcl-2 and Bax in parotid gland atrophy. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(23), 5315-5320.
[http://dx.doi.org/10.26355/eurrev_201712_13914] [PMID: 29243771]
[36]
Rottenberg, H.; Hoek, J.B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell, 2017, 16(5), 943-955.
[http://dx.doi.org/10.1111/acel.12650] [PMID: 28758328]
[37]
Carotenuto, F.; Coletti, D.; Di Nardo, P.; Teodori, L. α-linolenic acid reduces TNF-induced apoptosis in C2C12 myoblasts by regulating expression of apoptotic proteins. Eur. J. Transl. Myol., 2016, 26(4), 6033.
[http://dx.doi.org/10.4081/ejtm.2016.6033] [PMID: 28078067]
[38]
Shrivastava, A. The mechanisms of mitochondria-mediated apoptosis in cancer chemotherapy. Cell Biology, 2015, 3(2-1), 17-21.
[http://dx.doi.org/10.11648/j.cb.s.2015030201.13]
[39]
Shoshan-Barmatz, V.; Krelin, Y.; Chen, Q. VDAC1 as a player in mitochondria-mediated apoptosis and target for modulating apoptosis. Curr. Med. Chem., 2017, 24(40), 4435-4446.
[http://dx.doi.org/10.2174/0929867324666170616105200] [PMID: 28618997]
[40]
Martinou, J.C.; Desagher, S.; Antonsson, B. Cytochrome c release from mitochondria: All or nothing. Nat. Cell Biol., 2000, 2(3), E41-E43.
[http://dx.doi.org/10.1038/35004069] [PMID: 10707095]
[41]
Chen, Y.; Zhou, X.; Qiao, J.; Bao, A. Autophagy is a regulator of TRAIL-induced apoptosis in NSCLC A549 cells. J. Cell Commun. Signal., 2017, 11(3), 219-226.
[http://dx.doi.org/10.1007/s12079-016-0364-4] [PMID: 28101818]
[42]
Sharma, K.; Wang, R.X.; Zhang, L.Y.; Yin, D.L.; Luo, X.Y.; Solomon, J.C.; Jiang, R.F.; Markos, K.; Davidson, W.; Scott, D.W.; Shi, Y.F. Death the Fas way: Regulation and pathophysiology of CD95 and its ligand. Pharmacol. Ther., 2000, 88(3), 333-347.
[http://dx.doi.org/10.1016/S0163-7258(00)00096-6] [PMID: 11337030]
[43]
Lawlor, K.E.; Khan, N.; Mildenhall, A.; Gerlic, M.; Croker, B.A.; D’Cruz, A.A.; Hall, C.; Kaur Spall, S.; Anderton, H.; Masters, S.L.; Rashidi, M.; Wicks, I.P.; Alexander, W.S.; Mitsuuchi, Y.; Benetatos, C.A.; Condon, S.M.; Wong, W.W.; Silke, J.; Vaux, D.L.; Vince, J.E. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun., 2015, 6(1), 6282.
[http://dx.doi.org/10.1038/ncomms7282] [PMID: 25693118]
[44]
Korsmeyer, S.J.; Wei, M.C.; Saito, M.; Weiler, S.; Oh, K.J.; Schlesinger, P.H. Pro-apoptotic cascade activates BID, which oligomerizes Bak or Bax into pores that result in the release of cytochrome c. Cell Death Differ., 2000, 7(12), 1166-1173.
[http://dx.doi.org/10.1038/sj.cdd.4400783] [PMID: 11175253]
[45]
Yin, X.M. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res., 2000, 10(3), 161-167.
[http://dx.doi.org/10.1038/sj.cr.7290045] [PMID: 11032168]
[46]
Duchen, M.R. Mitochondria and calcium: from cell signalling to cell death. J. Physiol., 2000, 529(Pt 1), 57-68.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00057.x] [PMID: 11080251]
[47]
Sterea, A.M.; El Hiani, Y. The role of mitochondrial calcium signaling in the pathophysiology of cancer cells. Adv. Exp. Med. Biol., 2020, 1131, 747-770.
[http://dx.doi.org/10.1007/978-3-030-12457-1_30] [PMID: 31646533]
[48]
Creagh, E.M.; Martin, S.J. Caspases: cellular demolition experts. Biochem. Soc. Trans., 2001, 29(Pt 6), 696-702.
[http://dx.doi.org/10.1042/bst0290696] [PMID: 11709057]
[49]
Zhou, M.; Li, Y.; Hu, Q.; Bai, X.C.; Huang, W.; Yan, C.; Scheres, S.H.; Shi, Y. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev., 2015, 29(22), 2349-2361.
[http://dx.doi.org/10.1101/gad.272278.115] [PMID: 26543158]
[50]
Acehan, D.; Jiang, X.; Morgan, D.G.; Heuser, J.E.; Wang, X.; Akey, C.W. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation. Mol. Cell, 2002, 9(2), 423-432.
[http://dx.doi.org/10.1016/S1097-2765(02)00442-2] [PMID: 11864614]
[51]
Desagher, S.; Martinou, J.C. Mitochondria as the central control point of apoptosis. Trends Cell Biol., 2000, 10(9), 369-377.
[http://dx.doi.org/10.1016/S0962-8924(00)01803-1] [PMID: 10932094]
[52]
Miki, Y.; Akimoto, J.; Moritake, K.; Hironaka, C.; Fujiwara, Y. Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med. Sci., 2015, 30(6), 1739-1745.
[http://dx.doi.org/10.1007/s10103-015-1783-9] [PMID: 26109138]
[53]
Peng, S.Y.; Lin, L.C.; Chen, S.R.; Farooqi, A.A.; Cheng, Y.B.; Tang, J.Y.; Chang, H.W. Pomegranate extract (POMx) induces mitochondrial dysfunction and apoptosis of oral cancer cells. Antioxidants, 2021, 10(7), 1117.
[http://dx.doi.org/10.3390/antiox10071117] [PMID: 34356350]
[54]
Nazari, A.; Sadr, S.S.; Faghihi, M.; Azizi, Y.; Hosseini, M.J.; Mobarra, N.; Tavakoli, A.; Imani, A. Vasopressin attenuates ischemia-reperfusion injury via reduction of oxidative stress and inhibition of mitochondrial permeability transition pore opening in rat hearts. Eur. J. Pharmacol., 2015, 760, 96-102.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.006] [PMID: 25895639]
[55]
Kroemer, G.; Reed, J.C. Mitochondrial control of cell death. Nat. Med., 2000, 6(5), 513-519.
[http://dx.doi.org/10.1038/74994] [PMID: 10802706]
[56]
Finkel, E. The mitochondrion: Is it central to apoptosis? Science, 2001, 292(5517), 624-626.
[http://dx.doi.org/10.1126/science.292.5517.624] [PMID: 11330312]
[57]
Smaili, S.S.; Hsu, Y.T.; Youle, R.J.; Russell, J.T. Mitochondria in Ca2+ signaling and apoptosis. J. Bioenerg. Biomembr., 2000, 32(1), 35-46.
[http://dx.doi.org/10.1023/A:1005508311495] [PMID: 11768760]
[58]
Liu, S.; Sun, Z.; Chu, P.; Li, H.; Ahsan, A.; Zhou, Z.; Zhang, Z.; Sun, B.; Wu, J.; Xi, Y.; Han, G.; Lin, Y.; Peng, J.; Tang, Z. EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways. Apoptosis, 2017, 22(5), 672-680.
[http://dx.doi.org/10.1007/s10495-017-1360-8] [PMID: 28317089]
[59]
Bernardi, P.; Rasola, A.; Forte, M.; Lippe, G. The mitochondrial permeability transition pore: Channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev., 2015, 95(4), 1111-1155.
[http://dx.doi.org/10.1152/physrev.00001.2015] [PMID: 26269524]
[60]
Alves-Figueiredo, H.; Silva-Platas, C.; Lozano, O.; Vázquez-Garza, E.; Guerrero-Beltrán, C.E.; Zarain-Herzberg, A.; García-Rivas, G. A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(1), 165992.
[http://dx.doi.org/10.1016/j.bbadis.2020.165992] [PMID: 33091565]
[61]
Volodina, O.; Ganesan, S.; Pearce, S.C.; Gabler, N.K.; Baumgard, L.H.; Rhoads, R.P.; Selsby, J.T. Short-term heat stress alters redox balance in porcine skeletal muscle. Physiol. Rep., 2017, 5(8), e13267.
[http://dx.doi.org/10.14814/phy2.13267] [PMID: 28455453]
[62]
Masuku, S.K.S.; Tsoka-Gwegweni, J.; Sartorius, B. HIV and antiretroviral therapy-induced metabolic syndrome in people living with HIV and its implications for care: A critical review. J. Diabetol., 2019, 10(2), 41-47.
[http://dx.doi.org/10.4103/jod.jod_21_18]
[63]
Das, A. Review on cytochrome C. Int. J. Clinicopathol. Correlation, 2019, 3(1), 7-11.
[http://dx.doi.org/10.4103/ijcpc.ijcpc_8_19]
[64]
Öz, A.; Çelik, Ö.; Övey, İ.S. Effects of different doses of curcumin on apoptosis, mitochondrial oxidative stress and calcium influx in DBTRG glioblastoma cells. J. Cell. Neurosci. Oxidat. Stress, 2017, 9(2), 617-629.
[http://dx.doi.org/10.37212/jcnos.330858]
[65]
Diaconeasa, Z.; Ayvaz, H.; Ruginǎ, D.; Leopold, L.; Stǎnilǎ, A.; Socaciu, C.; Tăbăran, F.; Luput, L.; Mada, D.C.; Pintea, A.; Jefferson, A. Melanoma inhibition by anthocyanins is associated with the reduction of oxidative stress biomarkers and changes in mitochondrial membrane potential. Plant Foods Hum. Nutr., 2017, 72(4), 404-410.
[http://dx.doi.org/10.1007/s11130-017-0638-x] [PMID: 29129015]
[66]
Seid Alian, N.; Khodarahmi, P.; Naseh, V. The effect of cadmium on apoptotic genes mRNA expression of Bax and Bcl-2 in small intestine of rats. Iran. J. Pathol., 2018, 13(4), 408-414.
[PMID: 30774679]
[67]
Delbridge, A.R.; Grabow, S.; Strasser, A.; Vaux, D.L. Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer, 2016, 16(2), 99-109.
[http://dx.doi.org/10.1038/nrc.2015.17] [PMID: 26822577]
[68]
Tayarani-Najaran, Z.; Yazdian-Robati, R.; Amini, E.; Salek, F.; Arasteh, F.; Emami, S.A. The mechanism of neuroprotective effect of Viola odorata against serum/glucose deprivation-induced PC12 cell death. Avicenna J. Phytomed., 2019, 9(6), 491-498.
[http://dx.doi.org/10.22038/AJP.2019.13098] [PMID: 31763208]
[69]
Hernández de G. M.M.; Garay F, J.L.; Loureiro, N.E. Neuroprotección por ácido valproico y cambios en la expresión de Bcl-2 y caspasa-3 activada en ratas sometidas a isquemia/reperfusión. Invest. Clin., 2015, 56(4), 377-388.
[PMID: 29938967]
[70]
Gottlieb, E.; Vander Heiden, M.G.; Thompson, C.B. Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol. Cell. Biol., 2000, 20(15), 5680-5689.
[http://dx.doi.org/10.1128/MCB.20.15.5680-5689.2000] [PMID: 10891504]
[71]
Nurdianto, A.R.; Suryokusumo, M.G. Elevation of Bcl2 Expression in spiralis artery of pregnant Rattus norvegicus infected with tachyzoite of Toxoplasma gondii with hyperbaric oxygen therapy. Qanun Medika Jurnal Kedokteran FK UM Surabaya, 2019, 3(2), 157-167.
[72]
Lin, Y.; Zhu, J.; Zhang, X.; Wang, J.; Xiao, W.; Li, B.; Jin, L.; Lian, J.; Zhou, L.; Liu, J. Inhibition of cardiomyocytes hypertrophy by resveratrol is associated with amelioration of endoplasmic reticulum stress. Cell. Physiol. Biochem., 2016, 39(2), 780-789.
[http://dx.doi.org/10.1159/000447788] [PMID: 27467279]
[73]
Nayki, U.; Onk, D.; Balci, G.; Nayki, C.; Onk, A.; Gunay, M. The effects of diabetes mellitus on ovarian injury and reserve: An experimental study. Gynecol. Obstet. Invest., 2016, 81(5), 424-429.
[http://dx.doi.org/10.1159/000442287] [PMID: 26682912]
[74]
Li, W.; Song, D.; Sun, Y.; Lv, Y.; Lv, J. microRNA-124-3p inhibits the progression of congenital hypothyroidism via targeting programmed cell death protein 6. Exp. Ther. Med., 2018, 15(6), 5001-5006.
[http://dx.doi.org/10.3892/etm.2018.6062] [PMID: 29805523]
[75]
Warren, C.F.A.; Wong-Brown, M.W.; Bowden, N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis., 2019, 10(3), 177.
[http://dx.doi.org/10.1038/s41419-019-1407-6] [PMID: 30792387]
[76]
Liu, L.; Xin, Y.; Liu, J.; Zhang, E.; Li, W. Inhibitory effect of chitosan oligosaccharide on human hepatoma cells in vitro. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(4), 272-277.
[http://dx.doi.org/10.21010/ajtcam.v14i4.30] [PMID: 28638890]
[77]
Wang, Y.; Li, G.; Wan, F.; Dai, B.; Ye, D. Prognostic value of D-lactate dehydrogenase in patients with clear cell renal cell carcinoma. Oncol. Lett., 2018, 16(1), 866-874.
[http://dx.doi.org/10.3892/ol.2018.8782] [PMID: 29963157]
[78]
Pineda, J.R.; Callender, R.; Schwartz, S.D.; Schwartz, S.D. Ligand binding and protein dynamics in lactate dehydrogenase. Biophys. J., 2007, 93(5), 1474-1483.
[http://dx.doi.org/10.1529/biophysj.107.106146] [PMID: 17483170]
[79]
Flicek, P.; Ahmed, I.; Amode, M.R.; Barrell, D.; Beal, K.; Brent, S.; Carvalho-Silva, D.; Clapham, P.; Coates, G.; Fairley, S.; Fitzgerald, S.; Gil, L.; García-Girón, C.; Gordon, L.; Hourlier, T.; Hunt, S.; Juettemann, T.; Kähäri, A.K.; Keenan, S.; Komorowska, M.; Kulesha, E.; Longden, I.; Maurel, T.; McLaren, W.M.; Muffato, M.; Nag, R.; Overduin, B.; Pignatelli, M.; Pritchard, B.; Pritchard, E.; Riat, H.S.; Ritchie, G.R.; Ruffier, M.; Schuster, M.; Sheppard, D.; Sobral, D.; Taylor, K.; Thormann, A.; Trevanion, S.; White, S.; Wilder, S.P.; Aken, B.L.; Birney, E.; Cunningham, F.; Dunham, I.; Harrow, J.; Herrero, J.; Hubbard, T.J.; Johnson, N.; Kinsella, R.; Parker, A.; Spudich, G.; Yates, A.; Zadissa, A.; Searle, S.M. Ensembl 2013. Nucleic Acids Res., 2013, 41(Database issue), D48-D55.
[http://dx.doi.org/10.1093/nar/gks1236] [PMID: 23203987]
[80]
Akman, H.O.; Oldfors, A.; DiMauro, S. Glycogen storage diseases of muscle. In: Neuromuscular Disorders of Infancy; Childhood, and Adolescence, 2nd ed; Darras, B.T.; Ryan, M.M.; Jones, H.R. Jr.; De Vivo, D.C., Eds.; Academic Press: Massachusetts, United States, 2015; pp. 735-760.
[http://dx.doi.org/10.1016/C2013-0-00077-1]
[81]
Wang, H.; Tang, X.; Wang, Y.; Feng, Y.; Pu, P.; Men, S.; Zhao, Y.; Peng, Z.; Chen, Q. Function of lactate dehydrogenase in cardiac and skeletal muscle of Phrynocephalus lizard in relation to high-altitude adaptation. Asian Herpetol. Res., 2018, 9(4), 258-274.
[82]
Read, J.A.; Winter, V.J.; Eszes, C.M.; Sessions, R.B.; Brady, R.L. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins, 2001, 43(2), 175-185.
[http://dx.doi.org/10.1002/1097-0134(20010501)43:2<175:AID-PROT1029>3.0.CO;2-#] [PMID: 11276087]
[83]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
[84]
Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[85]
Koukourakis, M.I.; Giatromanolaki, A.; Sivridis, E.; Bougioukas, G.; Didilis, V.; Gatter, K.C.; Harris, A.L. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br. J. Cancer, 2003, 89(5), 877-885.
[http://dx.doi.org/10.1038/sj.bjc.6601205] [PMID: 12942121]
[86]
Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6), 425-434.
[http://dx.doi.org/10.1016/j.ccr.2006.04.023] [PMID: 16766262]
[87]
Koukourakis, M.I.; Giatromanolaki, A.; Sivridis, E.; Gatter, K.C.; Trarbach, T.; Folprecht, G.; Shi, M.M.; Lebwohl, D.; Jalava, T.; Laurent, D.; Meinhardt, G.; Harris, A.L. Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK 222584 (vatalanib) antiangiogenic therapy. Clin. Cancer Res., 2011, 17(14), 4892-4900.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2918] [PMID: 21632858]
[88]
Rong, Y.; Wu, W.; Ni, X.; Kuang, T.; Jin, D.; Wang, D.; Lou, W. Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol., 2013, 34(3), 1523-1530.
[http://dx.doi.org/10.1007/s13277-013-0679-1] [PMID: 23404405]
[89]
Yao, F.; Zhao, T.; Zhong, C.; Zhu, J.; Zhao, H. LDHA is necessary for the tumorigenicity of esophageal squamous cell carcinoma. Tumour Biol., 2013, 34(1), 25-31.
[http://dx.doi.org/10.1007/s13277-012-0506-0] [PMID: 22961700]
[90]
Shi, M.; Cui, J.; Du, J.; Wei, D.; Jia, Z.; Zhang, J.; Zhu, Z.; Gao, Y.; Xie, K. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin. Cancer Res., 2014, 20(16), 4370-4380.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0186] [PMID: 24947925]
[91]
Le, A.; Cooper, C.R.; Gouw, A.M.; Dinavahi, R.; Maitra, A.; Deck, L.M.; Royer, R.E.; Vander Jagt, D.L.; Semenza, G.L.; Dang, C.V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2037-2042.
[http://dx.doi.org/10.1073/pnas.0914433107] [PMID: 20133848]
[92]
Wang, Z.Y.; Loo, T.Y.; Shen, J.G.; Wang, N.; Wang, D.M.; Yang, D.P.; Mo, S.L.; Guan, X.Y.; Chen, J.P. LDH-A silencing suppresses breast cancer tumorigenicity through induction of oxidative stress mediated mitochondrial pathway apoptosis. Breast Cancer Res. Treat., 2012, 131(3), 791-800.
[http://dx.doi.org/10.1007/s10549-011-1466-6] [PMID: 21452021]
[93]
Maftouh, M.; Avan, A.; Sciarrillo, R.; Granchi, C.; Leon, L.G.; Rani, R.; Funel, N.; Smid, K.; Honeywell, R.; Boggi, U.; Minutolo, F.; Peters, G.J.; Giovannetti, E. Synergistic interaction of novel lactate dehydrogenase inhibitors with gemcitabine against pancreatic cancer cells in hypoxia. Br. J. Cancer, 2014, 110(1), 172-182.
[http://dx.doi.org/10.1038/bjc.2013.681] [PMID: 24178759]
[94]
Zhai, X.; Yang, Y.; Wan, J.; Zhu, R.; Wu, Y. Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol. Rep., 2013, 30(6), 2983-2991.
[http://dx.doi.org/10.3892/or.2013.2735] [PMID: 24064966]
[95]
Xie, H.; Valera, V.A.; Merino, M.J.; Amato, A.M.; Signoretti, S.; Linehan, W.M.; Sukhatme, V.P.; Seth, P. LDH-A inhibition, a therapeutic strategy for treatment of hereditary leiomyomatosis and renal cell cancer. Mol. Cancer Ther., 2009, 8(3), 626-635.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-1049] [PMID: 19276158]
[96]
Fiume, L.; Manerba, M.; Vettraino, M.; Di Stefano, G. Impairment of aerobic glycolysis by inhibitors of lactic dehydrogenase hinders the growth of human hepatocellular carcinoma cell lines. Pharmacology, 2010, 86(3), 157-162.
[http://dx.doi.org/10.1159/000317519] [PMID: 20699632]
[97]
Sheng, S.L.; Liu, J.J.; Dai, Y.H.; Sun, X.G.; Xiong, X.P.; Huang, G. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. FEBS J., 2012, 279(20), 3898-3910.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08748.x] [PMID: 22897481]
[98]
Li, J.; Eu, J.Q.; Kong, L.R.; Wang, L.; Lim, Y.C.; Goh, B.C.; Wong, A.L.A. Targeting metabolism in cancer cells and the tumour microenvironment for cancer therapy. Molecules, 2020, 25(20), 4831.
[http://dx.doi.org/10.3390/molecules25204831] [PMID: 33092283]
[99]
Zhou, M.; Zhao, Y.; Ding, Y.; Liu, H.; Liu, Z.; Fodstad, O.; Riker, A.I.; Kamarajugadda, S.; Lu, J.; Owen, L.B.; Ledoux, S.P.; Tan, M. Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer, 2010, 9, 33.
[http://dx.doi.org/10.1186/1476-4598-9-33] [PMID: 20144215]
[100]
Zhao, Y.; Liu, H.; Liu, Z.; Ding, Y.; Ledoux, S.P.; Wilson, G.L.; Voellmy, R.; Lin, Y.; Lin, W.; Nahta, R.; Liu, B.; Fodstad, O.; Chen, J.; Wu, Y.; Price, J.E.; Tan, M. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res., 2011, 71(13), 4585-4597.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0127] [PMID: 21498634]
[101]
Arata, Y.; Takagi, H. Quantitative studies for cell-division cycle control. Front. Physiol., 2019, 10, 1022.
[http://dx.doi.org/10.3389/fphys.2019.01022] [PMID: 31496950]
[102]
Dibner, C.; Schibler, U. Circadian timing of metabolism in animal models and humans. J. Intern. Med., 2015, 277(5), 513-527.
[http://dx.doi.org/10.1111/joim.12347] [PMID: 25599827]
[103]
Masaki, A.; Ishida, T.; Maeda, Y.; Ito, A.; Suzuki, S.; Narita, T.; Kinoshita, S.; Yoshida, T.; Ri, M.; Kusumoto, S.; Komatsu, H.; Inagaki, H.; Ueda, R.; Choi, I.; Suehiro, Y.; Iida, S. Clinical significance of tryptophan catabolism in follicular lymphoma. Hematol. Oncol., 2020, 38(5), 742-753.
[http://dx.doi.org/10.1002/hon.2804] [PMID: 32940915]
[104]
Donmez, A.; Kabaroglu, C.; Gokmen, N.; Tombuloglu, M. The difference in lactate dehydrogenase activity between pre- and post-mobilization periods is a good indicator of successful stem cell mobilization. Transfus. Apheresis Sci., 2013, 48(1), 83-86.
[http://dx.doi.org/10.1016/j.transci.2012.05.019] [PMID: 22709439]
[105]
Egan, K.; Singh, V.; Gidron, A.; Mehta, J. Correlation between serum lactate dehydrogenase and stem cell mobilization. Bone Marrow Transplant., 2007, 40(10), 931-934.
[http://dx.doi.org/10.1038/sj.bmt.1705851] [PMID: 17846596]
[106]
Jeong, D.W.; Cho, I.T.; Kim, T.S.; Bae, G.W.; Kim, I.H.; Kim, I.Y. Effects of lactate dehydrogenase suppression and glycerol-3-phosphate dehydrogenase overexpression on cellular metabolism. Mol. Cell. Biochem., 2006, 284(1-2), 1-8.
[http://dx.doi.org/10.1007/s11010-005-9004-7] [PMID: 16477389]
[107]
Prosser, B.L.; Ward, C.W.; Lederer, W.J. X-ROS signaling: Rapid mechano-chemo transduction in heart. Science, 2011, 333(6048), 1440-1445.
[http://dx.doi.org/10.1126/science.1202768] [PMID: 21903813]
[108]
Vousden, K.H.; Ryan, K.M. p53 and metabolism. Nat. Rev. Cancer, 2009, 9(10), 691-700.
[http://dx.doi.org/10.1038/nrc2715] [PMID: 19759539]
[109]
Allison, S.J.; Knight, J.R.P.; Granchi, C.; Rani, R.; Minutolo, F.; Milner, J.; Phillips, R.M. Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogenesis, 2014, 3(5), e102.
[http://dx.doi.org/10.1038/oncsis.2014.16] [PMID: 24819061]
[110]
Zhuang, L.; Scolyer, R.A.; Murali, R.; McCarthy, S.W.; Zhang, X.D.; Thompson, J.F.; Hersey, P. Lactate dehydrogenase 5 expression in melanoma increases with disease progression and is associated with expression of Bcl-XL and Mcl-1, but not Bcl-2 proteins. Mod. Pathol., 2010, 23(1), 45-53.
[http://dx.doi.org/10.1038/modpathol.2009.129] [PMID: 19838163]
[111]
Ni, Y.; Gong, X.G.; Lu, M.; Chen, H.M.; Wang, Y. Mitochondrial ROS burst as an early sign in sarsasapogenin-induced apoptosis in HepG2 cells. Cell Biol. Int., 2008, 32(3), 337-343.
[http://dx.doi.org/10.1016/j.cellbi.2007.12.004] [PMID: 18262806]
[112]
Indo, H.P.; Davidson, M.; Yen, H.C.; Suenaga, S.; Tomita, K.; Nishii, T.; Higuchi, M.; Koga, Y.; Ozawa, T.; Majima, H.J. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion, 2007, 7(1-2), 106-118.
[http://dx.doi.org/10.1016/j.mito.2006.11.026] [PMID: 17307400]
[113]
Samudio, I.; Fiegl, M.; Andreeff, M. Mitochondrial uncoupling and the Warburg effect: Molecular basis for the reprogramming of cancer cell metabolism. Cancer Res., 2009, 69(6), 2163-2166.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3722] [PMID: 19258498]
[114]
Shen, L.; Fang, H.; Chen, T.; He, J.; Zhang, M.; Wei, X.; Xin, Y.; Jiang, Y.; Ding, Z.; Ji, J.; Lu, J.; Bai, Y. Evaluating mitochondrial DNA in cancer occurrence and development. Ann. N. Y. Acad. Sci., 2010, 1201, 26-33.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05635.x] [PMID: 20649535]
[115]
Kulawiec, M.; Owens, K.M.; Singh, K.K. Cancer cell mitochondria confer apoptosis resistance and promote metastasis. Cancer Biol. Ther., 2009, 8(14), 1378-1385.
[http://dx.doi.org/10.4161/cbt.8.14.8751] [PMID: 19556849]
[116]
Ruckenstuhl, C.; Büttner, S.; Carmona-Gutierrez, D.; Eisenberg, T.; Kroemer, G.; Sigrist, S.J.; Fröhlich, K.U.; Madeo, F. The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PLoS One, 2009, 4(2), e4592.
[http://dx.doi.org/10.1371/journal.pone.0004592] [PMID: 19240798]
[117]
Kim, J.S.; Ahn, K.J.; Kim, J.A.; Kim, H.M.; Lee, J.D.; Lee, J.M.; Kim, S.J.; Park, J.H. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J. Bioenerg. Biomembr., 2008, 40(6), 607-618.
[http://dx.doi.org/10.1007/s10863-008-9188-0] [PMID: 19067133]
[118]
Danos, M.; Taylor, W.A.; Hatch, G.M. Mitochondrial monolysocardiolipin acyltransferase is elevated in the surviving population of H9c2 cardiac myoblast cells exposed to 2-deoxyglucose-induced apoptosis. Biochem. Cell Biol., 2008, 86(1), 11-20.
[http://dx.doi.org/10.1139/O07-156] [PMID: 18364741]
[119]
Lu, Q.Y.; Zhang, L.; Yee, J.K.; Go, V.W.; Lee, W.N. Metabolic consequences of LDHA inhibition by epigallocatechin gallate and oxamate in MIA PaCa-2 pancreatic cancer cells. Metabolomics, 2015, 11(1), 71-80.
[http://dx.doi.org/10.1007/s11306-014-0672-8] [PMID: 26246802]
[120]
Thornburg, J.M.; Nelson, K.K.; Clem, B.F.; Lane, A.N.; Arumugam, S.; Simmons, A.; Eaton, J.W.; Telang, S.; Chesney, J. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res., 2008, 10(5), R84.
[http://dx.doi.org/10.1186/bcr2154] [PMID: 18922152]
[121]
Fiume, L.; Vettraino, M.; Manerba, M.; Di Stefano, G. Inhibition of lactic dehydrogenase as a way to increase the anti-proliferative effect of multi-targeted kinase inhibitors. Pharmacol. Res., 2011, 63(4), 328-334.
[http://dx.doi.org/10.1016/j.phrs.2010.12.005] [PMID: 21168502]
[122]
Nitulescu, G.M.; Matei, L.; Aldea, I.M.; Draghici, C.; Olaru, O.T.; Bleotu, C. Ultrasound-assisted synthesis and anticancer evaluation of new pyrazole derivatives as cell cycle inhibitors. Arab. J. Chem., 2019, 12(6), 816-824.
[http://dx.doi.org/10.1016/j.arabjc.2015.12.006]
[123]
Duraj, T.; García-Romero, N.; Carrión-Navarro, J.; Madurga, R.; Mendivil, A.O.D.; Prat-Acin, R.; Garcia-Cañamaque, L.; Ayuso-Sacido, A. Beyond the Warburg effect: Oxidative and glycolytic phenotypes coexist within the metabolic heterogeneity of glioblastoma. Cells, 2021, 10(2), 202.
[http://dx.doi.org/10.3390/cells10020202] [PMID: 33498369]
[124]
Findlay, J.S.; Ulaeto, D. Semliki Forest virus and Sindbis virus, but not vaccinia virus, require glycolysis for optimal replication. J. Gen. Virol., 2015, 96(9), 2693-2696.
[http://dx.doi.org/10.1099/jgv.0.000226] [PMID: 26297236]
[125]
Granchi, C.; Bertini, S.; Macchia, M.; Minutolo, F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr. Med. Chem., 2010, 17(7), 672-697.
[http://dx.doi.org/10.2174/092986710790416263] [PMID: 20088761]
[126]
Granchi, C.; Roy, S.; Giacomelli, C.; Macchia, M.; Tuccinardi, T.; Martinelli, A.; Lanza, M.; Betti, L.; Giannaccini, G.; Lucacchini, A.; Funel, N.; León, L.G.; Giovannetti, E.; Peters, G.J.; Palchaudhuri, R.; Calvaresi, E.C.; Hergenrother, P.J.; Minutolo, F. Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. J. Med. Chem., 2011, 54(6), 1599-1612.
[http://dx.doi.org/10.1021/jm101007q] [PMID: 21332213]
[127]
Wang, Z.; Wang, N.; Chen, J.; Shen, J. Emerging glycolysis targeting and drug discovery from Chinese medicine in cancer therapy. Evid. Based Complement. Alternat. Med., 2012, 2012, 873175.
[http://dx.doi.org/10.1155/2012/873175] [PMID: 22844340]
[128]
Pelicano, H.; Martin, D.S.; Xu, R.H.; Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene, 2006, 25(34), 4633-4646.
[http://dx.doi.org/10.1038/sj.onc.1209597] [PMID: 16892078]
[129]
Bachmann, M.; Pontarin, G.; Szabo, I. The contribution of mitochondrial ion channels to cancer development and progression. Cell. Physiol. Biochem., 2019, 53(S1), 63-78.
[http://dx.doi.org/10.33594/000000198] [PMID: 31860207]
[130]
Peng, Q.; Zhou, Q.; Zhou, J.; Zhong, D.; Pan, F.; Liang, H. Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo. Cancer Biol. Ther., 2008, 7(7), 1128-1135.
[http://dx.doi.org/10.4161/cbt.7.7.6199] [PMID: 18535403]
[131]
Sattler, U.G.; Hirschhaeuser, F.; Mueller-Klieser, W.F. Manipulation of glycolysis in malignant tumors: Fantasy or therapy? Curr. Med. Chem., 2010, 17(2), 96-108.
[http://dx.doi.org/10.2174/092986710790112657] [PMID: 19941476]
[132]
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[133]
Pelicano, H.; Lu, W.; Zhou, Y.; Zhang, W.; Chen, Z.; Hu, Y.; Huang, P. Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res., 2009, 69(6), 2375-2383.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3359] [PMID: 19276362]
[134]
Lunt, S.Y.; Vander Heiden, M.G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol., 2011, 27, 441-464.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154237] [PMID: 21985671]
[135]
Razungles, J.; Cavaillès, V.; Jalaguier, S.; Teyssier, C. The Warburg effect: From theory to therapeutic applications in cancer. Med. Sci. (Paris), 2013, 29(11), 1026-1033.
[http://dx.doi.org/10.1051/medsci/20132911020] [PMID: 24280507]
[136]
Courtnay, R.; Ngo, D.C.; Malik, N.; Ververis, K.; Tortorella, S.M.; Karagiannis, T.C. Cancer metabolism and the Warburg effect: The role of HIF-1 and PI3K. Mol. Biol. Rep., 2015, 42(4), 841-851.
[http://dx.doi.org/10.1007/s11033-015-3858-x] [PMID: 25689954]
[137]
Upadhyay, M.; Samal, J.; Kandpal, M.; Singh, O.V.; Vivekanandan, P. The Warburg effect: Insights from the past decade. Pharmacol. Ther., 2013, 137(3), 318-330.
[http://dx.doi.org/10.1016/j.pharmthera.2012.11.003] [PMID: 23159371]
[138]
Strunová, M.; Pavlišta, D.; Kobilková, J.; Pokorný, J.; Janoušek, M.; Bauerová, L.; Jandová, A. Is the small size of a breast cancer tumor the crucial point for successful medical treatment? Prague Med. Rep., 2014, 115(3-4), 134-140.
[http://dx.doi.org/10.14712/23362936.2014.44] [PMID: 25626332]
[139]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[140]
Teng, Y.; Zhang, Y.; Qu, K.; Yang, X.; Fu, J.; Chen, W.; Li, X. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget, 2015, 6(38), 40799-40814.
[http://dx.doi.org/10.18632/oncotarget.5695] [PMID: 26512921]
[141]
Valvona, C.J.; Fillmore, H.L.; Nunn, P.B.; Pilkington, G.J. The regulation and function of lactate dehydrogenase A: Therapeutic potential in brain tumor. Brain Pathol., 2016, 26(1), 3-17.
[http://dx.doi.org/10.1111/bpa.12299] [PMID: 26269128]
[142]
Miao, P.; Sheng, S.; Sun, X.; Liu, J.; Huang, G. Lactate dehydrogenase A in cancer: A promising target for diagnosis and therapy. IUBMB Life, 2013, 65(11), 904-910.
[http://dx.doi.org/10.1002/iub.1216] [PMID: 24265197]
[143]
Wang, X.; Xu, L.; Wu, Q.; Liu, M.; Tang, F.; Cai, Y.; Fan, W.; Huang, H.; Gu, X. Inhibition of LDHA deliver potential anticancer performance in renal cell carcinoma. Urol. Int., 2017, 99(2), 237-244.
[http://dx.doi.org/10.1159/000445125] [PMID: 27027898]
[144]
Xian, Z.Y.; Liu, J.M.; Chen, Q.K.; Chen, H.Z.; Ye, C.J.; Xue, J.; Yang, H.Q.; Li, J.L.; Liu, X.F.; Kuang, S.J. Inhibition of LDHA suppresses tumor progression in prostate cancer. Tumour Biol., 2015, 36(10), 8093-8100.
[http://dx.doi.org/10.1007/s13277-015-3540-x] [PMID: 25983002]
[145]
Indran, I.R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta, 2011, 1807(6), 735-745.
[http://dx.doi.org/10.1016/j.bbabio.2011.03.010] [PMID: 21453675]
[146]
Kim, E.Y.; Chung, T.W.; Han, C.W.; Park, S.Y.; Park, K.H.; Jang, S.B.; Ha, K.T. A novel lactate dehydrogenase inhibitor, 1-(phenylseleno)-4-(trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death. Sci. Rep., 2019, 9(1), 3969.
[http://dx.doi.org/10.1038/s41598-019-40617-3] [PMID: 30850682]
[147]
Fulda, S.; Galluzzi, L.; Kroemer, G. Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov., 2010, 9(6), 447-464.
[http://dx.doi.org/10.1038/nrd3137] [PMID: 20467424]
[148]
El Hassouni, B.; Granchi, C.; Vallés-Martí, A.; Supadmanaba, I.G.P.; Bononi, G.; Tuccinardi, T.; Funel, N.; Jimenez, C.R.; Peters, G.J.; Giovannetti, E.; Minutolo, F. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies. Semin. Cancer Biol., 2020, 60, 238-248.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.025] [PMID: 31445217]
[149]
Liu, Y.; Cao, Y.; Zhang, W.; Bergmeier, S.; Qian, Y.; Akbar, H.; Colvin, R.; Ding, J.; Tong, L.; Wu, S.; Hines, J.; Chen, X. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther., 2012, 11(8), 1672-1682.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0131] [PMID: 22689530]
[150]
Chan, D.A.; Sutphin, P.D.; Nguyen, P.; Turcotte, S.; Lai, E.W.; Banh, A.; Reynolds, G.E.; Chi, J.T.; Wu, J.; Solow-Cordero, D.E.; Bonnet, M. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med., 2011, 3(94), 94ra70.
[http://dx.doi.org/10.1126/scitranslmed.3002394]
[151]
Raez, L.E.; Papadopoulos, K.; Ricart, A.D.; Chiorean, E.G.; Dipaola, R.S.; Stein, M.N.; Rocha Lima, C.M.; Schlesselman, J.J.; Tolba, K.; Langmuir, V.K.; Kroll, S.; Jung, D.T.; Kurtoglu, M.; Rosenblatt, J.; Lampidis, T.J. A phase I dose-escalation trial of 2-deoxy-D-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2013, 71(2), 523-530.
[http://dx.doi.org/10.1007/s00280-012-2045-1] [PMID: 23228990]
[152]
Stein, M.; Lin, H.; Jeyamohan, C.; Dvorzhinski, D.; Gounder, M.; Bray, K.; Eddy, S.; Goodin, S.; White, E.; Dipaola, R.S. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate, 2010, 70(13), 1388-1394.
[http://dx.doi.org/10.1002/pros.21172] [PMID: 20687211]
[153]
Shi, X.; Zhang, W.; Gu, C.; Ren, H.; Wang, C.; Yin, N.; Wang, Z.; Yu, J.; Liu, F.; Zhang, H. NAD+ depletion radiosensitizes 2-DG-treated glioma cells by abolishing metabolic adaptation. Free Radic. Biol. Med., 2021, 162, 514-522.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.007] [PMID: 33197538]
[154]
Zhao, Z.; Han, F.; Yang, S.; Wu, J.; Zhan, W. Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: Involvement of the Akt-mTOR signaling pathway. Cancer Lett., 2015, 358(1), 17-26.
[http://dx.doi.org/10.1016/j.canlet.2014.11.046] [PMID: 25524555]
[155]
Messeha, S.S.; Zarmouh, N.O.; Mendonca, P.; Alwagdani, H.; Cotton, C.; Soliman, K.F.A. Effects of gossypol on apoptosis related gene expression in racially distinct triple negative breast cancer cells. Oncol. Rep., 2019, 42(2), 467-478.
[http://dx.doi.org/10.3892/or.2019.7179] [PMID: 31173249]
[156]
Clément, M.O. Gossypol: A potential promising anticancer agent. Sch. Acad. J. Pharm., 2017, 6(6), 236-244.
[157]
Van Poznak, C.; Seidman, A.D.; Reidenberg, M.M.; Moasser, M.M.; Sklarin, N.; Van Zee, K.; Borgen, P.; Gollub, M.; Bacotti, D.; Yao, T.J.; Bloch, R.; Ligueros, M.; Sonenberg, M.; Norton, L.; Hudis, C. Oral gossypol in the treatment of patients with refractory metastatic breast cancer: A phase I/II clinical trial. Breast Cancer Res. Treat., 2001, 66(3), 239-248.
[http://dx.doi.org/10.1023/A:1010686204736] [PMID: 11510695]
[158]
Nakashima, C.; Kirita, T.; Yamamoto, K.; Mori, S.; Luo, Y.; Sasaki, T.; Fujii, K.; Ohmori, H.; Kawahara, I.; Mori, T.; Goto, K.; Kishi, S.; Fujiwara-Tani, R.; Kuniyasu, H. Malic enzyme 1 is associated with tumor budding in oral squamous cell carcinomas. Int. J. Mol. Sci., 2020, 21(19), 7149.
[http://dx.doi.org/10.3390/ijms21197149] [PMID: 32998265]
[159]
Rajeshkumar, N.V.; Dutta, P.; Yabuuchi, S.; de Wilde, R.F.; Martinez, G.V.; Le, A.; Kamphorst, J.J.; Rabinowitz, J.D.; Jain, S.K.; Hidalgo, M.; Dang, C.V.; Gillies, R.J.; Maitra, A. Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res., 2015, 75(16), 3355-3364.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0108] [PMID: 26113084]
[160]
Kohlmann, A.; Zech, S.G.; Li, F.; Zhou, T.; Squillace, R.M.; Commodore, L.; Greenfield, M.T.; Lu, X.; Miller, D.P.; Huang, W.S.; Qi, J.; Thomas, R.M.; Wang, Y.; Zhang, S.; Dodd, R.; Liu, S.; Xu, R.; Xu, Y.; Miret, J.J.; Rivera, V.; Clackson, T.; Shakespeare, W.C.; Zhu, X.; Dalgarno, D.C. Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors. J. Med. Chem., 2013, 56(3), 1023-1040.
[http://dx.doi.org/10.1021/jm3014844] [PMID: 23302067]
[161]
Billiard, J.; Dennison, J.B.; Briand, J.; Annan, R.S.; Chai, D.; Colón, M.; Dodson, C.S.; Gilbert, S.A.; Greshock, J.; Jing, J.; Lu, H.; McSurdy-Freed, J.E.; Orband-Miller, L.A.; Mills, G.B.; Quinn, C.J.; Schneck, J.L.; Scott, G.F.; Shaw, A.N.; Waitt, G.M.; Wooster, R.F.; Duffy, K.J. Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells. Cancer Metab., 2013, 1(1), 19.
[http://dx.doi.org/10.1186/2049-3002-1-19] [PMID: 24280423]
[162]
Farabegoli, F.; Vettraino, M.; Manerba, M.; Fiume, L.; Roberti, M.; Di Stefano, G. Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur. J. Pharm. Sci., 2012, 47(4), 729-738.
[http://dx.doi.org/10.1016/j.ejps.2012.08.012] [PMID: 22954722]
[163]
Fiume, L.; Vettraino, M.; Carnicelli, D.; Arfilli, V.; Di Stefano, G.; Brigotti, M. Galloflavin prevents the binding of lactate dehydrogenase A to single stranded DNA and inhibits RNA synthesis in cultured cells. Biochem. Biophys. Res. Commun., 2013, 430(2), 466-469.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.013] [PMID: 23237800]
[164]
Manerba, M.; Vettraino, M.; Fiume, L.; Di Stefano, G.; Sartini, A.; Giacomini, E.; Buonfiglio, R.; Roberti, M.; Recanatini, M. Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase. ChemMedChem, 2012, 7(2), 311-317.
[http://dx.doi.org/10.1002/cmdc.201100471] [PMID: 22052811]
[165]
O’Neill, L.A.; Pearce, E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med., 2016, 213(1), 15-23.
[http://dx.doi.org/10.1084/jem.20151570] [PMID: 26694970]
[166]
Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; Ding, J.; Czyz, D.; Hu, R.; Ye, Z.; He, M.; Zheng, Y.G.; Shuman, H.A.; Dai, L.; Ren, B.; Roeder, R.G.; Becker, L.; Zhao, Y. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779), 575-580.
[http://dx.doi.org/10.1038/s41586-019-1678-1] [PMID: 31645732]
[167]
Diskin, C.; Ryan, T.A.J.; O’Neill, L.A.J. Modification of proteins by metabolites in Immunity. Immunity, 2021, 54(1), 19-31.
[http://dx.doi.org/10.1016/j.immuni.2020.09.014] [PMID: 33220233]
[168]
Irizarry-Caro, R.A.; McDaniel, M.M.; Overcast, G.R.; Jain, V.G.; Troutman, T.D.; Pasare, C. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc. Natl. Acad. Sci. USA, 2020, 117(48), 30628-30638.
[http://dx.doi.org/10.1073/pnas.2009778117] [PMID: 33199625]
[169]
Katzenelenbogen, Y.; Sheban, F.; Yalin, A.; Yofe, I.; Svetlichnyy, D.; Jaitin, D.A.; Bornstein, C.; Moshe, A.; Keren-Shaul, H.; Cohen, M.; Wang, S.Y.; Li, B.; David, E.; Salame, T.M.; Weiner, A.; Amit, I. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell, 2020, 182(4), 872-885.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.032] [PMID: 32783915]
[170]
Molgora, M.; Esaulova, E.; Vermi, W.; Hou, J.; Chen, Y.; Luo, J.; Brioschi, S.; Bugatti, M.; Omodei, A.S.; Ricci, B.; Fronick, C.; Panda, S.K.; Takeuchi, Y.; Gubin, M.M.; Faccio, R.; Cella, M.; Gilfillan, S.; Unanue, E.R.; Artyomov, M.N.; Schreiber, R.D.; Colonna, M. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell, 2020, 182(4), 886-900.e17.
[http://dx.doi.org/10.1016/j.cell.2020.07.013] [PMID: 32783918]
[171]
Carmona-Fontaine, C.; Deforet, M.; Akkari, L.; Thompson, C.B.; Joyce, J.A.; Xavier, J.B. Metabolic origins of spatial organization in the tumor microenvironment. Proc. Natl. Acad. Sci. USA, 2017, 114(11), 2934-2939.
[http://dx.doi.org/10.1073/pnas.1700600114] [PMID: 28246332]
[172]
Colegio, O.R.; Chu, N.Q.; Szabo, A.L.; Chu, T.; Rhebergen, A.M.; Jairam, V.; Cyrus, N.; Brokowski, C.E.; Eisenbarth, S.C.; Phillips, G.M.; Cline, G.W.; Phillips, A.J.; Medzhitov, R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 2014, 513(7519), 559-563.
[http://dx.doi.org/10.1038/nature13490] [PMID: 25043024]
[173]
Arlauckas, S.P.; Garren, S.B.; Garris, C.S.; Kohler, R.H.; Oh, J.; Pittet, M.J.; Weissleder, R. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics, 2018, 8(21), 5842-5854.
[http://dx.doi.org/10.7150/thno.26888] [PMID: 30613266]
[174]
Zhang, J.; Muri, J.; Fitzgerald, G.; Gorski, T.; Gianni-Barrera, R.; Masschelein, E.; D’Hulst, G.; Gilardoni, P.; Turiel, G.; Fan, Z.; Wang, T.; Planque, M.; Carmeliet, P.; Pellerin, L.; Wolfrum, C.; Fendt, S.M.; Banfi, A.; Stockmann, C.; Soro-Arnáiz, I.; Kopf, M.; De Bock, K. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab., 2020, 31(6), 1136-1153.e7.
[http://dx.doi.org/10.1016/j.cmet.2020.05.004] [PMID: 32492393]
[175]
Dichtl, S.; Lindenthal, L.; Zeitler, L.; Behnke, K.; Schlösser, D.; Strobl, B.; Scheller, J.; El Kasmi, K.C.; Murray, P.J. Lactate and IL6 define separable paths of inflammatory metabolic adaptation. Sci. Adv., 2021, 7(26), eabg3505.
[http://dx.doi.org/10.1126/sciadv.abg3505] [PMID: 34162546]
[176]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[177]
Palsson-McDermott, E.M.; O’Neill, L.A. The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 2013, 35(11), 965-973.
[http://dx.doi.org/10.1002/bies.201300084] [PMID: 24115022]
[178]
Liu, X.; Cooper, D.E.; Cluntun, A.A.; Warmoes, M.O.; Zhao, S.; Reid, M.A.; Liu, J.; Lund, P.J.; Lopes, M.; Garcia, B.A.; Wellen, K.E.; Kirsch, D.G.; Locasale, J.W. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell, 2018, 175(2), 502-513.e13.
[http://dx.doi.org/10.1016/j.cell.2018.08.040] [PMID: 30245009]
[179]
Semenza, G.L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol., 2014, 9, 47-71.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104720] [PMID: 23937437]
[180]
Haas, R.; Cucchi, D.; Smith, J.; Pucino, V.; Macdougall, C.E.; Mauro, C. Intermediates of metabolism: From bystanders to signalling molecules. Trends Biochem. Sci., 2016, 41(5), 460-471.
[http://dx.doi.org/10.1016/j.tibs.2016.02.003] [PMID: 26935843]
[181]
Martinez-Outschoorn, U.E.; Prisco, M.; Ertel, A.; Tsirigos, A.; Lin, Z.; Pavlides, S.; Wang, C.; Flomenberg, N.; Knudsen, E.S.; Howell, A.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle, 2011, 10(8), 1271-1286.
[http://dx.doi.org/10.4161/cc.10.8.15330] [PMID: 21512313]
[182]
Urbańska, K.; Orzechowski, A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int. J. Mol. Sci., 2019, 20(9), 2085.
[http://dx.doi.org/10.3390/ijms20092085] [PMID: 31035592]
[183]
Galván-Peña, S.; O’Neill, L.A. Metabolic reprograming in macrophage polarization. Front. Immunol., 2014, 5, 420.
[http://dx.doi.org/10.3389/fimmu.2014.00420] [PMID: 25228902]
[184]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[185]
Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 2011, 11(5), 325-337.
[http://dx.doi.org/10.1038/nrc3038] [PMID: 21508971]
[186]
Yu, J.; Chai, P.; Xie, M.; Ge, S.; Ruan, J.; Fan, X.; Jia, R. Histone lactylation drives oncogenesis by facilitating m 6 A reader protein YTHDF2 expression in ocular melanoma. Genome Biol., 2021, 22(1), 1-21.
[http://dx.doi.org/10.1186/s13059-021-02308-z] [PMID: 33397451]
[187]
Izzo, L.T.; Wellen, K.E. Histone lactylation links metabolism and gene regulation. Nature, 2019, 574(7779), 492-493.
[http://dx.doi.org/10.1038/d41586-019-03122-1] [PMID: 31645737]
[188]
Liberti, M.V.; Locasale, J.W. Histone lactylation: A new role for glucose metabolism. Trends Biochem. Sci., 2020, 45(3), 179-182.
[http://dx.doi.org/10.1016/j.tibs.2019.12.004] [PMID: 31901298]
[189]
Visan, I. Histone lactylation. Nat. Immunol., 2019, 20(12), 1558.
[PMID: 31745344]
[190]
Khadka, S.; Barekatain, Y.; Muller, F. 2020. Re-evaluating the mechanism of histone lactylation.
[http://dx.doi.org/10.31219/osf.io/kyab5]
[191]
Luengo, A.; Abbott, K.L.; Davidson, S.M.; Hosios, A.M.; Faubert, B.; Chan, S.H.; Freinkman, E.; Zacharias, L.G.; Mathews, T.P.; Clish, C.B.; DeBerardinis, R.J.; Lewis, C.A.; Vander Heiden, M.G. Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat. Commun., 2019, 10(1), 5604.
[http://dx.doi.org/10.1038/s41467-019-13419-4] [PMID: 31811141]
[192]
Gaffney, D.O.; Jennings, E.Q.; Anderson, C.C.; Marentette, J.O.; Shi, T.; Schou Oxvig, A.M.; Streeter, M.D.; Johannsen, M.; Spiegel, D.A.; Chapman, E.; Roede, J.R.; Galligan, J.J. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem. Biol., 2020, 27(2), 206-213.e6.
[http://dx.doi.org/10.1016/j.chembiol.2019.11.005] [PMID: 31767537]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy