Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Role of Natural and Synthetic Flavonoids as Potential Aromatase Inhibitors in Breast Cancer: Structure-Activity Relationship Perspective

Author(s): Umang Shah*, Aarti Patel, Samir Patel, Mehul Patel, Ashish Patel, Swayamprakash Patel, Sandip Patel, Rajesh Maheshwari, Andrew G Mtewa and Karan Gandhi

Volume 22, Issue 11, 2022

Published on: 13 January, 2022

Page: [2063 - 2079] Pages: 17

DOI: 10.2174/1871520621666211026101252

Price: $65

Abstract

World Health Organization categorized breast cancer as one of the leading cancer types in females worldwide, and its treatment remains challenging. Accumulated evidence suggested the role of estrogen and its metabolites in pre- and post-menopausal women.

Upregulation of estrogen-dependent aromatase is significantly involved in the pathogenesis of breast cancer. Several aromatase inhibitors, such as exemestane, formestane, and letrozole, are being used clinically, owing to their estrogen suppression role. Apart from these drugs, several other molecules, such as natural and synthetic flavonoids, have been reported widely for a similar biological activity. However, some reasonable modifications are required for these structures to achieve desired efficacy and to alleviate toxicity. Designing a novel aromatase inhibitor will be possible if we can establish a rational correlation between the chemistry and biological features of the existing molecules. The benzopyranone- ring system, present in the flavonoid molecules, has been reported as a pharmacophore due to its inhibitory activity on aromatase, which helps repress breast cancer progression. This essential feature has been utilized to modify several natural flavonoids into 5 and 7 hydroxy/methoxy flavone, 4-imidazolyl/triazolyl flavone, 5,4’- diamino flavone, 7,8- benzo-4-imidazolyl flavone, α-naphthoflavone, and 2-azole/thiazolyl isoflavone derivatives. These scaffolds have been considered in this review for meticulous study in aspects of the structure-activity relationship for aromatase inhibitory activity, and it would likely pave the way for designing a potential lead candidate in the future.

Keywords: Flavonoids, aromatase, breast cancer, chalcone, structure-activity relationship, CYP 450 enzyme inhibitors.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660.]
[2]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Zhao, J. Breast cancer: epidemiology and etiology. Cell Biochem. Biophys., 2015, 72(2), 333-338.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[3]
Parl, F.F.; Crooke, P.S.; Plummer, W.D. Jr.; Dupont, W.D. Genomic-epidemiologic evidence that estrogens promote breast cancer development. Cancer Epidemiol. Biomarkers Prev., 2018, 27(8), 899-907.
[http://dx.doi.org/10.1158/1055-9965.EPI-17-1174] [PMID: 29789325]
[4]
Althuis, M.D.; Fergenbaum, J.H.; Garcia-Closas, M.; Brinton, L.A.; Madigan, M.P.; Sherman, M.E. Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol. Biomarkers Prev., 2004, 13(10), 1558-1568.
[PMID: 15466970]
[5]
Marchant, D.J. Epidemiology of breast cancer. Clin. Obstet. Gynecol., 1982, 25(2), 387-392.
[http://dx.doi.org/10.1097/00003081-198206000-00021] [PMID: 7105514]
[6]
Preston-Martin, S.; Pike, M.C.; Ross, R.K.; Jones, P.A.; Henderson, B.E. Increased cell division as a cause of human cancer. Cancer Res., 1990, 50(23), 7415-7421.
[PMID: 2174724]
[7]
Preston-Martin, S.; Pike, M.C.; Ross, R.K.; Henderson, B.E. Epidemiologic evidence for the increased cell proliferation model of carcinogenesis. Environ. Health Perspect., 1993, 101(Suppl. 5), 137-138.
[http://dx.doi.org/10.1289/ehp.93101s5137] [PMID: 8013400]
[8]
Cavalieri, E.L.; Rogan, E.G.; Zahid, M. Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson’s disease. Int. J. Cancer, 2017, 141(6), 1078-1090.
[http://dx.doi.org/10.1002/ijc.30728] [PMID: 28388839]
[9]
Cavalieri, E.L.; Rogan, E.G. Depurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention. Clin. Transl. Med., 2016, 5(1), 12.
[http://dx.doi.org/10.1186/s40169-016-0088-3] [PMID: 26979321]
[10]
Cavalieri, E.L.; Rogan, E.G. Depurinating estrogen-DNA adducts in the etiology and prevention of breast and other human cancers. Future Oncol., 2010, 6(1), 75-91.
[http://dx.doi.org/10.2217/fon.09.137] [PMID: 20021210]
[11]
Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J.; Jankowiak, R.; Muti, P.; Rogan, E.; Russo, J.; Santen, R.; Sutter, T. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim. Biophys. Acta, 2006, 1766(1), 63-78.
[http://dx.doi.org/10.1016/j.bbcan.2006.03.001] [PMID: 16675129]
[12]
Chen, W.Y.; Manson, J.E.; Hankinson, S.E.; Rosner, B.; Holmes, M.D.; Willett, W.C.; Colditz, G.A. Unopposed estrogen therapy and the risk of invasive breast cancer. Arch. Intern. Med., 2006, 166(9), 1027-1032.
[http://dx.doi.org/10.1001/archinte.166.9.1027] [PMID: 16682578]
[13]
Clemons, M.; Goss, P. Estrogen and the risk of breast cancer. N. Engl. J. Med., 2001, 344(4), 276-285.
[http://dx.doi.org/10.1056/NEJM200101253440407] [PMID: 11172156]
[14]
Hulka, B.S. Epidemiologic analysis of breast and gynecologic cancers. Prog. Clin. Biol. Res., 1997, 396, 17-29.
[PMID: 9108587]
[15]
Kaaks, R.; Rinaldi, S.; Key, T.J.; Berrino, F.; Peeters, P.H.M.; Biessy, C.; Dossus, L.; Lukanova, A.; Bingham, S.; Khaw, K-T.; Allen, N.E.; Bueno-de-Mesquita, H.B.; van Gils, C.H.; Grobbee, D.; Boeing, H.; Lahmann, P.H.; Nagel, G.; Chang-Claude, J.; Clavel-Chapelon, F.; Fournier, A.; Riboli, E. Postmenopausal serum androgens, oestrogens and breast cancer risk: The European prospective investigation into cancer and nutrition. Endocrine-Related Cancer Endocr Relat Cancer, 2005, 12(4), 1071-1082.
[http://dx.doi.org/10.1677/erc.1.01038]
[16]
Howell, A.; Cuzick, J.; Baum, M.; Buzdar, A.; Dowsett, M.; Forbes, J.F.; Hoctin-Boes, G.; Houghton, J.; Locker, G.Y.; Tobias, J.S. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 2005, 365(9453), 60-62.
[http://dx.doi.org/10.1016/S0140-6736(04)17666-6] [PMID: 15639680]
[17]
Thürlimann, B.; Keshaviah, A.; Coates, A.S.; Mouridsen, H.; Mauriac, L.; Forbes, J.F.; Paridaens, R.; Castiglione-Gertsch, M.; Gelber, R.D.; Rabaglio, M.; Smith, I.; Wardley, A.; Price, K.N.; Goldhirsch, A. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N. Engl. J. Med., 2005, 353(26), 2747-2757.
[http://dx.doi.org/10.1056/NEJMoa052258] [PMID: 16382061]
[18]
Shah, U.; Patel, S.; Patel, M.; Gandhi, K.; Patel, A. Identification of chalcone derivatives as putative non-steroidal aromatase inhibitors potentially useful against breast cancer by molecular docking and ADME prediction. Indian J. Chem. Sect. B, 2020, 59(02), 283-293.
[19]
Ryan, K.J. Conversion of androstenedione to estrone by placental microsomes. Biochim. Biophys. Acta, 1958, 27(3), 658-659.
[http://dx.doi.org/10.1016/0006-3002(58)90408-6] [PMID: 13535661]
[20]
Di Nardo, G.; Gilardi, G. Human aromatase: perspectives in biochemistry and biotechnology. Biotechnol. Appl. Biochem., 2013, 60(1), 92-101.
[http://dx.doi.org/10.1002/bab.1088] [PMID: 23586996]
[21]
Santen, R.J.; Brodie, H.; Simpson, E.R.; Siiteri, P.K.; Brodie, A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr. Rev., 2009, 30(4), 343-375.
[http://dx.doi.org/10.1210/er.2008-0016] [PMID: 19389994]
[22]
Stocco, C. Tissue physiology and pathology of aromatase. Steroids, 2012, 77(1-2), 27-35.
[http://dx.doi.org/10.1016/j.steroids.2011.10.013] [PMID: 22108547]
[23]
Akhtar, M.; Lee-Robichaud, P.; Akhtar, M.E.; Wright, J.N. The impact of aromatase mechanism on other P450s. J. Steroid Biochem. Mol. Biol., 1997, 61(3-6), 127-132.
[http://dx.doi.org/10.1016/S0960-0760(97)80003-9] [PMID: 9365181]
[24]
Simpson, E.R.; Mahendroo, M.S.; Means, G.D.; Kilgore, M.W.; Hinshelwood, M.M.; Graham-Lorence, S.; Amarneh, B.; Ito, Y.; Fisher, C.R.; Michael, M.D. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev., 1994, 15(3), 342-355.
[http://dx.doi.org/10.1210/edrv-15-3-342] [PMID: 8076586]
[25]
Simpson, E.R.; Mahendroo, M.S.; Means, G.D.; Kilgore, M.W.; Corbin, C.J.; Mendelson, C.R. Tissue-specific promoters regulate aromatase cytochrome P450 expression. Clin. Chem., 1993, 39(2), 317-324.
[http://dx.doi.org/10.1093/clinchem/39.2.317] [PMID: 8432022]
[26]
Kellis, J.T. Jr.; Vickery, L.E. Purification and characterization of human placental aromatase cytochrome P-450. J. Biol. Chem., 1987, 262(9), 4413-4420.
[http://dx.doi.org/10.1016/S0021-9258(18)61364-X] [PMID: 3104339]
[27]
Guengerich, F.P. Characterization of human microsomal cytochrome P-450 enzymes. Annu. Rev. Pharmacol. Toxicol., 1989, 29(1), 241-264.
[http://dx.doi.org/10.1146/annurev.pa.29.040189.001325] [PMID: 2658771]
[28]
Miyairi, S.; Fishman, J. Novel method of evaluating biological 19-hydroxylation and aromatization of androgens. Biochem. Biophys. Res. Commun., 1983, 117(2), 392-398.
[http://dx.doi.org/10.1016/0006-291X(83)91213-5] [PMID: 6661234]
[29]
Miyairi, S.; Fishman, J. Radiometric analysis of oxidative reactions in aromatization by placental microsomes. Presence of differential isotope effects. J. Biol. Chem., 1985, 260(1), 320-325.
[http://dx.doi.org/10.1016/S0021-9258(18)89734-4] [PMID: 3880740]
[30]
Jeong, H.J.; Shin, Y.G.; Kim, I.H.; Pezzuto, J.M. Inhibition of aromatase activity by flavonoids. Arch. Pharm. Res., 1999, 22(3), 309-312.
[http://dx.doi.org/10.1007/BF02976369] [PMID: 10403137]
[31]
Osawa, Y.; Shibata, K.; Rohrer, D.; Weeks, C.; Duax, W.L. Letter: Reassignment of the absolute configuration of 19-substituted 19-hydroxysteroids and stereomechanism of estrogen biosynthesis. J. Am. Chem. Soc., 1975, 97(15), 4400-4402.
[http://dx.doi.org/10.1021/ja00848a046] [PMID: 1141602]
[32]
Akhtar, M.; Calder, M.R.; Corina, D.L.; Wright, J.N. Mechanistic studies on C-19 demethylation in oestrogen biosynthesis. Biochem. J., 1982, 201(3), 569-580.
[http://dx.doi.org/10.1042/bj2010569] [PMID: 7092812]
[33]
Hackett, J.C.; Brueggemeier, R.W.; Hadad, C.M. The final catalytic step of cytochrome p450 aromatase: a density functional theory study. J. Am. Chem. Soc., 2005, 127(14), 5224-5237.
[http://dx.doi.org/10.1021/ja044716w] [PMID: 15810858]
[34]
Bulun, S.E.; Takayama, K.; Suzuki, T.; Sasano, H.; Yilmaz, B.; Sebastian, S. Organization of the human aromatase p450 (CYP19) gene. Semin. Reprod. Med., 2004, 22(1), 5-9.
[http://dx.doi.org/10.1055/s-2004-823022] [PMID: 15083376]
[35]
Zhao, H.; Zhou, L.; Shangguan, A.J.; Bulun, S.E. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol., 2016, 57(1), R19-R33.
[http://dx.doi.org/10.1530/JME-15-0310] [PMID: 27067638]
[36]
de Jong, P.C.; Blankenstein, M.A.; van de Ven, J.; Nortier, J.W.; Blijham, G.H.; Thijssen, J.H. Importance of local aromatase activity in hormone-dependent breast cancer: a review. Breast, 2001, 10(2), 91-99.
[http://dx.doi.org/10.1054/brst.2000.0209] [PMID: 14965567]
[37]
Bulun, S.E.; Lin, Z.; Zhao, H.; Lu, M.; Amin, S.; Reierstad, S.; Chen, D. Regulation of aromatase expression in breast cancer tissue. Ann. N. Y. Acad. Sci., 2009, 1155, 121-131.
[http://dx.doi.org/10.1111/j.1749-6632.2009.03705.x] [PMID: 19250199]
[38]
Carreau, S.; Lambard, S.; Delalande, C.; Denis-Galeraud, I.; Bilinska, B.; Bourguiba, S. Aromatase expression and role of estrogens in male gonad: a review. Reprod. Biol. Endocrinol., 2003, 1(1), 35.
[http://dx.doi.org/10.1186/1477-7827-1-35] [PMID: 12747806]
[39]
Kellis, J.T. Jr.; Vickery, L.E. Inhibition of human estrogen synthetase (aromatase) by flavones. Science, 1984, 225(4666), 1032-1034.
[http://dx.doi.org/10.1126/science.6474163] [PMID: 6474163]
[40]
Wang, C.; Mäkelä, T.; Hase, T.; Adlercreutz, H.; Kurzer, M.S. Lignans and flavonoids inhibit aromatase enzyme in human preadipocytes. J. Steroid Biochem. Mol. Biol., 1994, 50(3-4), 205-212.
[http://dx.doi.org/10.1016/0960-0760(94)90030-2] [PMID: 8049151]
[41]
Kao, Y.C.; Zhou, C.; Sherman, M.; Laughton, C.A.; Chen, S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ. Health Perspect., 1998, 106(2), 85-92.
[http://dx.doi.org/10.1289/ehp.9810685] [PMID: 9435150]
[42]
Patel, S.; Shah, U. Synthesis of flavones from 2-hydroxy acetophenone and aromatic aldehyde derivatives by conventional methods and green chemistry approach. Asian J. Pharm. Clin. Res., 2017, 10(2), 403-406.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15928]
[43]
Middleton, E., Jr Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol., 1998, 439, 175-182.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_13] [PMID: 9781303]
[44]
Singh, M.; Kaur, M.; Silakari, O. Flavones: an important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[45]
Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci., 2005, 10(5), 236-242.
[http://dx.doi.org/10.1016/j.tplants.2005.03.002] [PMID: 15882656]
[46]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. Sci. World. J., 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[47]
Balam, F.H.; Ahmadi, Z.S.; Ghorbani, A. Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): A systematic review. Heliyon, 2020, 6(3), e03557.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03557] [PMID: 32181408]
[48]
Adlercreutz, H. Phytoestrogens: epidemiology and a possible role in cancer protection. Environ. Health Perspect., 1995, 103(Suppl. 7), 103-112.
[http://dx.doi.org/10.1289/ehp.95103s7103] [PMID: 8593855]
[49]
Glade, M.J. Food, nutrition, and the prevention of cancer: a global perspective. American institute for cancer research/world cancer research fund, American institute for cancer research, 1997. Nutrition, 1999, 15(6), 523-526.
[http://dx.doi.org/10.1016/S0899-9007(99)00021-0] [PMID: 10378216]
[50]
Grube, B.J.; Eng, E.T.; Kao, Y-C.; Kwon, A.; Chen, S. White button mushroom phytochemicals inhibit aromatase activity and breast cancer cell proliferation. J. Nutr., 2001, 131(12), 3288-3293.
[http://dx.doi.org/10.1093/jn/131.12.3288] [PMID: 11739882]
[51]
Kijima, I.; Phung, S.; Hur, G.; Kwok, S-L.; Chen, S. Grape seed extract is an aromatase inhibitor and a suppressor of aromatase expression. Cancer Res., 2006, 66(11), 5960-5967.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0053] [PMID: 16740737]
[52]
Eng, E.T.; Ye, J.; Williams, D.; Phung, S.; Moore, R.E.; Young, M.K.; Gruntmanis, U.; Braunstein, G.; Chen, S. Suppression of estrogen biosynthesis by procyanidin dimers in red wine and grape seeds. Cancer Res., 2003, 63(23), 8516-8522.
[PMID: 14679019]
[53]
McLachlan, J.A.; Newbold, R.R. Estrogens and development. Environ. Health Perspect., 1987, 75, 25-27.
[http://dx.doi.org/10.1289/ehp.877525] [PMID: 3319561]
[54]
Shutt, D.A.; Cox, R.I. Steroid and phyto-oestrogen binding to sheep uterine receptors in vitro. J. Endocrinol., 1972, 52(2), 299-310.
[http://dx.doi.org/10.1677/joe.0.0520299] [PMID: 5015385]
[55]
Martin, P.M.; Horwitz, K.B.; Ryan, D.S.; McGuire, W.L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology, 1978, 103(5), 1860-1867.
[http://dx.doi.org/10.1210/endo-103-5-1860] [PMID: 570914]
[56]
So, F.V.; Guthrie, N.; Chambers, A.F.; Carroll, K.K. Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett., 1997, 112(2), 127-133.
[http://dx.doi.org/10.1016/S0304-3835(96)04557-0] [PMID: 9066718]
[57]
Goldin, B.R.; Adlercreutz, H.; Dwyer, J.T.; Swenson, L.; Warram, J.H.; Gorbach, S.L. Effect of diet on excretion of estrogens in pre- and postmenopausal women. Cancer Res., 1981, 41(9 Pt 2), 3771-3773.
[PMID: 7260944]
[58]
Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. Nutr. Rev., 1983, 41(6), 180-183.
[PMID: 6353286]
[59]
Adlercreutz, H. Does fiber-rich food containing animal lignan precursors protect against both colon and breast cancer? An extension of the “fiber hypothesis”. Gastroenterology, 1984, 86(4), 761-764.
[http://dx.doi.org/10.1016/S0016-5085(84)80129-8] [PMID: 6321292]
[60]
Goldin, B.R.; Adlercreutz, H.; Gorbach, S.L.; Woods, M.N.; Dwyer, J.T.; Conlon, T.; Bohn, E.; Gershoff, S.N. The relationship between estrogen levels and diets of Caucasian American and Oriental immigrant women. Am. J. Clin. Nutr., 1986, 44(6), 945-953.
[http://dx.doi.org/10.1093/ajcn/44.6.945] [PMID: 3024478]
[61]
Axelson, M.; Sjövall, J.; Gustafsson, B.E.; Setchell, K.D.R. Soya--a dietary source of the non-steroidal oestrogen equol in man and animals. J. Endocrinol., 1984, 102(1), 49-56.
[http://dx.doi.org/10.1677/joe.0.1020049] [PMID: 6539804]
[62]
Setchell, K.D.; Borriello, S.P.; Hulme, P.; Kirk, D.N.; Axelson, M. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am. J. Clin. Nutr., 1984, 40(3), 569-578.
[http://dx.doi.org/10.1093/ajcn/40.3.569] [PMID: 6383008]
[63]
Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western diseases. Ann. Med., 1997, 29(2), 95-120.
[http://dx.doi.org/10.3109/07853899709113696] [PMID: 9187225]
[64]
Adlercreutz, H. Diet, breast cancer, and sex hormone metabolism. Ann. N. Y. Acad. Sci., 1990, 595, 281-290.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb34302.x] [PMID: 2165381]
[65]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[66]
Brueggemeier, R.W.; Gu, X.; Mobley, J.A.; Joomprabutra, S.; Bhat, A.S.; Whetstone, J.L. Effects of phytoestrogens and synthetic combinatorial libraries on aromatase, estrogen biosynthesis, and metabolism. Ann. N. Y. Acad. Sci., 2001, 948(1), 51-66.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03986.x] [PMID: 11795395]
[67]
Lee, D.; Bhat, K.P.L.; Fong, H.H.S.; Farnsworth, N.R.; Pezzuto, J.M.; Kinghorn, A.D. Aromatase inhibitors from Broussonetia papyrifera. J. Nat. Prod., 2001, 64(10), 1286-1293.
[http://dx.doi.org/10.1021/np010288l] [PMID: 11678652]
[68]
Filleur, F.; Le Bail, J.C.; Duroux, J.L.; Simon, A.; Chulia, A.J. Antiproliferative, anti-aromatase, anti-17beta-HSD and antioxidant activities of lignans isolated from Myristica argentea. Planta Med., 2001, 67(8), 700-704.
[http://dx.doi.org/10.1055/s-2001-18349] [PMID: 11731908]
[69]
Sanderson, J.T.; Hordijk, J.; Denison, M.S.; Springsteel, M.F.; Nantz, M.H.; van den Berg, M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol. Sci., 2004, 82(1), 70-79.
[http://dx.doi.org/10.1093/toxsci/kfh257] [PMID: 15319488]
[70]
Pelissero, C.; Lenczowski, M.J.P.; Chinzi, D.; Davail-Cuisset, B.; Sumpter, J.P.; Fostier, A. Effects of flavonoids on aromatase activity, an in vitro study. J. Steroid Biochem. Mol. Biol., 1996, 57(3-4), 215-223.
[http://dx.doi.org/10.1016/0960-0760(95)00261-8] [PMID: 8645631]
[71]
Campbell, D.R.; Kurzer, M.S. Flavonoid inhibition of aromatase enzyme activity in human preadipocytes. J. Steroid Biochem. Mol. Biol., 1993, 46(3), 381-388.
[http://dx.doi.org/10.1016/0960-0760(93)90228-O] [PMID: 9831487]
[72]
Ibrahim, A-R.; Abul-Hajj, Y.J. Aromatase inhibition by flavonoids. J. Steroid Biochem. Mol. Biol., 1990, 37(2), 257-260.
[http://dx.doi.org/10.1016/0960-0760(90)90335-I] [PMID: 2268557]
[73]
Khan, S.I.; Zhao, J.; Khan, I.A.; Walker, L.A.; Dasmahapatra, A.K. Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reprod. Biol. Endocrinol., 2011, 9(1), 91.
[http://dx.doi.org/10.1186/1477-7827-9-91] [PMID: 21693041]
[74]
Kleijnen, J.; Knipschild, P. Ginkgo biloba. Lancet, 1992, 340(8828), 1136-1139.
[http://dx.doi.org/10.1016/0140-6736(92)93158-J] [PMID: 1359218]
[75]
Huang, S-M.; Temple, R.; Throckmorton, D.C.; Lesko, L.J. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin. Pharmacol. Ther., 2007, 81(2), 298-304.
[http://dx.doi.org/10.1038/sj.clpt.6100054] [PMID: 17259955]
[76]
Kohler, P.O.; Bridson, W.E. Isolation of hormone-producing clonal lines of human choriocarcinoma. J. Clin. Endocrinol. Metab., 1971, 32(5), 683-687.
[http://dx.doi.org/10.1210/jcem-32-5-683] [PMID: 5103722]
[77]
Kinghorn, A.D.; Su, B-N.; Jang, D.S.; Chang, L.C.; Lee, D.; Gu, J-Q.; Carcache-Blanco, E.J.; Pawlus, A.D.; Lee, S.K.; Park, E.J.; Cuendet, M.; Gills, J.J.; Bhat, K.; Park, H.S.; Mata-Greenwood, E.; Song, L.L.; Jang, M.; Pezzuto, J.M. Natural inhibitors of carcinogenesis. Planta Med., 2004, 70(8), 691-705.
[http://dx.doi.org/10.1055/s-2004-827198] [PMID: 15326546]
[78]
Park, Y.J.; Choo, W.H.; Kim, H.R.; Chung, K.H.; Oh, S.M. Inhibitory aromatase effects of flavonoids from Ginkgo Biloba extracts on estrogen biosynthesis. Asian Pac. J. Cancer Prev., 2015, 16(15), 6317-6325.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6317] [PMID: 26434836]
[79]
Cuendet, M.; Oteham, C.P.; Moon, R.C.; Pezzuto, J.M. Quinone reductase induction as a biomarker for cancer chemoprevention. J. Nat. Prod., 2006, 69(3), 460-463.
[http://dx.doi.org/10.1021/np050362q] [PMID: 16562858]
[80]
Carcache-Blanco, E.J.; Cuendet, M.; Park, E.J.; Su, B.N.; Rivero-Cruz, J.F.; Farnsworth, N.R.; Pezzuto, J.M.; Douglas Kinghorn, A. Potential cancer chemopreventive agents from Arbutus unedo. Nat. Prod. Res., 2006, 20(4), 327-334.
[http://dx.doi.org/10.1080/14786410500161205] [PMID: 16644527]
[81]
Maiti, A.; Cuendet, M.; Kondratyuk, T.; Croy, V.L.; Pezzuto, J.M.; Cushman, M. Synthesis and cancer chemopreventive activity of zapotin, a natural product from Casimiroa edulis. J. Med. Chem., 2007, 50(2), 350-355.
[http://dx.doi.org/10.1021/jm060915+] [PMID: 17228877]
[82]
Maiti, A.; Cuendet, M.; Croy, V.L.; Endringer, D.C.; Pezzuto, J.M.; Cushman, M. Synthesis and biological evaluation of (+/-)-abyssinone II and its analogues as aromatase inhibitors for chemoprevention of breast cancer. J. Med. Chem., 2007, 50(12), 2799-2806.
[http://dx.doi.org/10.1021/jm070109i] [PMID: 17511439]
[83]
Pouget, C.; Fagnere, C.; Basly, J-P.; Besson, A-E.; Champavier, Y.; Habrioux, G.; Chulia, A-J. Synthesis and aromatase inhibitory activity of flavanones. Pharm. Res., 2002, 19(3), 286-291.
[http://dx.doi.org/10.1023/A:1014490817731] [PMID: 11934235]
[84]
Akama, T.; Ishida, H.; Shida, Y.; Kimura, U.; Gomi, K.; Saito, H.; Fuse, E.; Kobayashi, S.; Yoda, N.; Kasai, M. Design and synthesis of potent antitumor 5,4'-diaminoflavone derivatives based on metabolic considerations. J. Med. Chem., 1997, 40(12), 1894-1900.
[http://dx.doi.org/10.1021/jm9700326] [PMID: 9191967]
[85]
Yahiaoui, S.; Pouget, C.; Fagnere, C.; Champavier, Y.; Habrioux, G.; Chulia, A.J. Synthesis and evaluation of 4-triazolylflavans as new aromatase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(20), 5215-5218.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.090] [PMID: 15380230]
[86]
Yahiaoui, S.; Fagnere, C.; Pouget, C.; Buxeraud, J.; Chulia, A-J. New 7,8-benzoflavanones as potent aromatase inhibitors: synthesis and biological evaluation. Bioorg. Med. Chem., 2008, 16(3), 1474-1480.
[http://dx.doi.org/10.1016/j.bmc.2007.10.057] [PMID: 18042388]
[87]
Hackett, J.C.; Kim, Y-W.; Su, B.; Brueggemeier, R.W. Synthesis and characterization of azole isoflavone inhibitors of aromatase. Bioorg. Med. Chem., 2005, 13(12), 4063-4070.
[http://dx.doi.org/10.1016/j.bmc.2005.03.050] [PMID: 15911319]
[88]
Yahiaoui, S.; Pouget, C.; Buxeraud, J.; Chulia, A.J.; Fagnère, C. Lead optimization of 4-imidazolylflavans: new promising aromatase inhibitors. Eur. J. Med. Chem., 2011, 46(6), 2541-2545.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.043] [PMID: 21497425]
[89]
Kinghorn, A.D.; Pezzuto, J.M.; Robert, W.; Bhat, K.P.L. Aromatase inhibitors from Broussoneta papyrifera U.S. Patent 6737439B2, May 18;2004
[90]
Brueggemeier, R.W.; Kim, Y-W.; Hacket, J.C. Heteroarylcontaining isoflavones asaromatase inhibitors. U.S. Patent EP1802599A2, July 4;2007
[91]
Shah, U.; Patel, S.; Patel, M.; Upadhayay, J. Molecular Docking and in silico ADMET study reveals flavonoids as a potential inhibitor of aromatase. Lett. Drug Des. Discov., 2017, 14(11), 1267-1276.
[http://dx.doi.org/10.2174/1570180814666170327161908]
[92]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer. J. Biomol. Struct. Dyn., 2015, 33(4), 804-819.
[http://dx.doi.org/10.1080/07391102.2014.912152] [PMID: 24702656]
[93]
Prafulla, S.; Lata, P. Molecular docking simulation study of novel flavones and flavonoids as aromatase inhibitors. Der Pharma Chem., 2018, 10(12), 68-74.
[94]
Banjare, L.; Verma, S.K.; Jain, A.K.; Thareja, S. Design and pharmacophoric identification of flavonoid scaffold-based aromatase inhibitors. J. Heterocycl. Chem., 2020, 57(9), 3483-3492.
[http://dx.doi.org/10.1002/jhet.4068]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy