Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Contribution of Stemness-Linked Transcription Regulators to the Progression of Breast Cancer

Author(s): David Segura-Bautista, Guadalupe Maya-Nunez, Arturo Aguilar-Rojas, Maira Huerta-Reyes and Marco Allan Pérez-Solis*

Volume 22, Issue 9, 2022

Published on: 14 January, 2022

Page: [766 - 778] Pages: 13

DOI: 10.2174/1566524021666211124154803

Price: $65

Abstract

Although there are currently several factors that allow measuring the risk of having breast cancer or predicting its progression, the underlying causes of this malignancy have remained unknown. Several molecular studies have described some mechanisms involved in the progress of breast cancer. These have helped in identifying new targets with therapeutic potential. However, despite the therapeutic strategies implemented from the advances achieved in breast cancer research, a large percentage of patients with breast cancer die due to the spread of malignant cells to other tissues or organs, such as bones and lungs. Therefore, determining the processes that promote the migration of malignant cells remains one of the greatest challenges for oncological research. Several research groups have reported evidence on how the dedifferentiation of tumor cells leads to the acquisition of stemness characteristics, such as invasion, metastasis, the capability to evade the immunological response, and resistance to several cytotoxic drugs. These phenotypic changes have been associated with a complex reprogramming of gene expression in tumor cells during the Epithelial- Mesenchymal Transition (EMT). Considering the determining role that the transcriptional regulation plays in the expression of the specific characteristics and attributes of breast cancer during ETM, in the present work, we reviewed and analyzed several transcriptional mechanisms that support the mesenchymal phenotype. In the same way, we established the importance of transcription factors with a therapeutic perspective in the progress of breast cancer.

Keywords: breast cancer, EMT, transcription, metastasis, ductal adenocarcinoma, adenocarcinoma.

[1]
Afonja O, Raaka BM, Huang A, et al. RAR agonists stimulate SOX9 gene expression in breast cancer cell lines: evidence for a role in retinoid-mediated growth inhibition. Oncogene 2002; 21(51): 7850-60.
[http://dx.doi.org/10.1038/sj.onc.1205985] [PMID: 12420222]
[2]
Amatangelo MD, Stearns ME. Reactivation of epithelialmesenchymal transition in invasive and metastatic cancer. In: Fatatis A, Ed. Signaling Pathways and Molecular Mediators in Metastasis. 1st ed. New York: Springer 2011; pp. 13-69.
[http://dx.doi.org/10.1007/978-94-007-2558-4_2]
[3]
Asselin-Labat ML, Sutherland KD, Barker H, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9(2): 201-9.
[http://dx.doi.org/10.1038/ncb1530] [PMID: 17187062]
[4]
Baert JL, Beaudoin C, Monte D, Degerny C, Mauen S, de Launoit Y. The 26S proteasome system degrades the ERM transcription factor and regulates its transcription-enhancing activity. Oncogene 2007; 26(3): 415-24.
[http://dx.doi.org/10.1038/sj.onc.1209801] [PMID: 16832340]
[5]
Barrett JM, Puglia MA, Singh G, Tozer RG. Expression of Ets-related transcription factors and matrix metalloproteinase genes in human breast cancer cells. Breast Cancer Res Treat 2002; 72(3): 227-32.
[http://dx.doi.org/10.1023/A:1014993006190] [PMID: 12058964]
[6]
Batlle E, Sancho E, Francí C, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2(2): 84-9.
[http://dx.doi.org/10.1038/35000034] [PMID: 10655587]
[7]
Bell R, Barraclough R, Vasieva O. Gene expression meta-analysis of potential metastatic breast cancer markers. Curr Mol Med 2017; 17(3): 200-10.
[http://dx.doi.org/10.2174/1566524017666170807144946] [PMID: 28782484]
[8]
Bergamaschi A, Kim YH, Wang P, et al. Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 2006; 45(11): 1033-40.
[http://dx.doi.org/10.1002/gcc.20366] [PMID: 16897746]
[9]
Blache P, van de Wetering M, Duluc I, et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol 2004; 166(1): 37-47.
[http://dx.doi.org/10.1083/jcb.200311021] [PMID: 15240568]
[10]
Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 2005; 120(3): 303-13.
[http://dx.doi.org/10.1016/j.cell.2004.12.018] [PMID: 15707890]
[11]
Bosc DG, Goueli BS, Janknecht R. HER2/Neu-mediated activation of the ETS transcription factor ER81 and its target gene MMP-1. Oncogene 2001; 20(43): 6215-24.
[http://dx.doi.org/10.1038/sj.onc.1204820] [PMID: 11593430]
[12]
Burgio E, Migliore L. Towards a systemic paradigm in carcinogenesis: Linking epigenetics and genetics. Mol Biol Rep 2015; 42(4): 777-90.
[http://dx.doi.org/10.1007/s11033-014-3804-3] [PMID: 25387435]
[13]
Cano A, Pérez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2(2): 76-83.
[http://dx.doi.org/10.1038/35000025] [PMID: 10655586]
[14]
Chakravarty G, Moróz K, Makridakis NM, et al. Prognostic significance of cytoplasmic SOX9 in invasive ductal carcinoma and metastatic breast cancer. Exp Biol Med (Maywood) 2011; 236(2): 145-55.
[http://dx.doi.org/10.1258/ebm.2010.010086] [PMID: 21321311]
[15]
Chakravarty G, Rider B, Mondal D. Cytoplasmic compartmentalization of SOX9 abrogates the growth arrest response of breast cancer cells that can be rescued by trichostatin A treatment. Cancer Biol Ther 2011; 11(1): 71-83.
[http://dx.doi.org/10.4161/cbt.11.1.13952] [PMID: 21084857]
[16]
Chen Y, Shi L, Zhang L, et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 2008; 283(26): 17969-78.
[http://dx.doi.org/10.1074/jbc.M802917200] [PMID: 18456656]
[17]
Cho JH, Dimri M, Dimri GP. A positive feedback loop regulates the expression of polycomb group protein BMI1 via WNT signaling pathway. J Biol Chem 2013; 288(5): 3406-18.
[http://dx.doi.org/10.1074/jbc.M112.422931] [PMID: 23239878]
[18]
Chotteau-Lelievre A, Dolle P, Peronne V, Coutte L, de Launoit Y, Desbiens X. Expression patterns of the Ets transcription factors from the PEA3 group during early stages of mouse development. Mech Dev 2001; 108(1-2): 191-5.
[http://dx.doi.org/10.1016/S0925-4773(01)00480-4] [PMID: 11578874]
[19]
Chotteau-Lelievre A, Montesano R, Soriano J, Soulie P, Desbiens X, de Launoit Y. PEA3 transcription factors are expressed in tissues undergoing branching morphogenesis and promote formation of duct-like structures by mammary epithelial cells in vitro. Dev Biol 2003; 259(2): 241-57.
[http://dx.doi.org/10.1016/S0012-1606(03)00182-9] [PMID: 12871699]
[20]
Chu IM, Lai WC, Aprelikova O, El Touny LH, Kouros-Mehr H, Green JE. Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLoS One 2013; 8(4): e61125.
[http://dx.doi.org/10.1371/journal.pone.0061125] [PMID: 23577196]
[21]
Clementz AG, Rogowski A, Pandya K, Miele L, Osipo C. NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: Novel therapeutic implications. Breast Cancer Res 2011; 13(3): R63.
[http://dx.doi.org/10.1186/bcr2900] [PMID: 21679465]
[22]
Côme C, Arnoux V, Bibeau F, Savagner P. Roles of the transcription factors snail and slug during mammary morphogenesis and breast carcinoma progression. J Mammary Gland Biol Neoplasia 2004; 9(2): 183-93.
[http://dx.doi.org/10.1023/B:JOMG.0000037161.91969.de] [PMID: 15300012]
[23]
De Francesco EM, Maggiolini M, Musti AM. Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 9(7): 2011.
[http://dx.doi.org/10.3390/ijms19072011]
[24]
de Launoit Y, Chotteau-Lelievre A, Beaudoin C, et al. The PEA3 Group of ETS-related Transcription Factors. In: Mol JA, Clegg RA, Eds. Biology of the Mammary Gland, Advances in Experimental Medicine and Biology. Boston: Springer 2002; Vol. 480: pp. 107-16.
[http://dx.doi.org/10.1007/0-306-46832-8_13]
[25]
de Launoit Y, Baert JL, Chotteau-Lelievre A, et al. The Ets transcription factors of the PEA3 group: Transcriptional regulators in metastasis. Biochim Biophys Acta 2006; 1766(1): 79-87.
[PMID: 16546322]
[26]
Doi A, Ishikawa K, Shibata N, et al. Enhanced expression of Retinoic Acid Receptor Alpha (RARA) induces epithelial-to-mesenchymal transition and disruption of mammary acinar structures. Mol Oncol 2015; 9(2): 355-64.
[http://dx.doi.org/10.1016/j.molonc.2014.09.005] [PMID: 25300573]
[27]
Domenici G, Aurrekoetxea-Rodríguez I, Simões BM, et al. A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene 2019; 38(17): 3151-69.
[http://dx.doi.org/10.1038/s41388-018-0656-7] [PMID: 30622340]
[28]
Dravis C, Spike BT, Harrell JC, et al. Sox10 regulates stem/progenitor and mesenchymal cell states in mammary epithelial cells. Cell Rep 2015; 12(12): 2035-48.
[http://dx.doi.org/10.1016/j.celrep.2015.08.040] [PMID: 26365194]
[29]
Dupont S, Dennefeld C, Krust A, Chambon P, Mark M. Expression of Sox9 in granulosa cells lacking the estrogen receptors, ERalpha and ERbeta. Dev Dyn 2003; 226(1): 103-6.
[http://dx.doi.org/10.1002/dvdy.10202] [PMID: 12508230]
[30]
Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS. The cancer stem cell paradigm: A new understanding of tumor development and treatment. Expert Opin Ther Targets 2010; 14(6): 621-32.
[http://dx.doi.org/10.1517/14712598.2010.485186] [PMID: 20426697]
[31]
Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M. Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 2007; 67(13): 6477-83.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0746] [PMID: 17616709]
[32]
Euhus D, Bu D, Xie XJ, et al. Tamoxifen downregulates ets oncogene family members ETV4 and ETV5 in benign breast tissue: Implications for durable risk reduction. Cancer Prev Res (Phila) 2011; 4(11): 1852-62.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0186] [PMID: 21778330]
[33]
Fazilaty H, Gardaneh M, Akbari P, Zekri A, Behnam B. SLUG and SOX9 cooperatively regulate tumor initiating niche factors in breast cancer. Cancer Microenviron 2016; 9(1): 71-4.
[http://dx.doi.org/10.1007/s12307-015-0176-8] [PMID: 26412079]
[34]
Fingleton B, Vargo-Gogola T, Crawford HC, Matrisian LM. Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia 2001; 3(6): 459-68.
[http://dx.doi.org/10.1038/sj.neo.7900190] [PMID: 11774028]
[35]
Fitzgerald P, Teng M, Chandraratna RA, Heyman RA, Allegretto EA. Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res 1997; 57(13): 2642-50.
[PMID: 9205071]
[36]
Flores-Rozas H, Kelman Z, Dean FB, et al. Cdk-interacting protein 1 directly binds with proliferating cell nuclear antigen and inhibits DNA replication catalyzed by the DNA polymerase delta holoenzyme. Proc Natl Acad Sci USA 1994; 91(18): 8655-9.
[http://dx.doi.org/10.1073/pnas.91.18.8655] [PMID: 7915843]
[37]
Georges A, L’Hôte D, Todeschini AL, et al. The transcription factor FOXL2 mobilizes estrogen signaling to maintain the identity of ovarian granulosa cells. eLife 2014; 3: e04207.
[http://dx.doi.org/10.7554/eLife.04207] [PMID: 25369636]
[38]
Goueli BS, Janknecht R. Upregulation of the catalytic telomerase subunit by the transcription factor ER81 and oncogenic HER2/Neu, Ras, or Raf. Mol Cell Biol 2004; 24(1): 25-35.
[http://dx.doi.org/10.1128/MCB.24.1.25-35.2004] [PMID: 14673140]
[39]
Gu X, Shin BH, Akbarali Y, et al. Tel-2 is a novel transcriptional repressor related to the Ets factor Tel/ETV-6. J Biol Chem 2001; 276(12): 9421-36.
[http://dx.doi.org/10.1074/jbc.M010070200] [PMID: 11108721]
[40]
Guo W, Keckesova Z, Donaher JL, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148(5): 1015-28.
[http://dx.doi.org/10.1016/j.cell.2012.02.008] [PMID: 22385965]
[41]
Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62(6): 1613-8.
[PMID: 11912130]
[42]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[43]
He J, Pan Y, Hu J, Albarracín C, Wu Y, Dai JL. Profile of Ets gene expression in human breast carcinoma. Cancer Biol Ther 2007; 6(1): 76-82.
[http://dx.doi.org/10.4161/cbt.6.1.3551] [PMID: 17172821]
[44]
Ho IC, Tai TS, Pai SY. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 2009; 9(2): 125-35.
[http://dx.doi.org/10.1038/nri2476] [PMID: 19151747]
[45]
Horiuchi S, Yamamoto H, Min Y, Adachi Y, Itoh F, Imai K. Association of ets-related transcriptional factor E1AF expression with tumour progression and overexpression of MMP-1 and matrilysin in human colorectal cancer. J Pathol 2003; 200(5): 568-76.
[http://dx.doi.org/10.1002/path.1387] [PMID: 12898592]
[46]
Hosseini H. Obradović MMS, Hoffmann M, et al. Early dissemination seeds metastasis in breast cancer. Nature 2016; 540(7634): 552-8.
[http://dx.doi.org/10.1038/nature20785] [PMID: 27974799]
[47]
Irvin BJ, Wood LD, Wang L, et al. TEL, a putative tumor suppressor, induces apoptosis and represses transcription of Bcl-XL. J Biol Chem 2003; 278(47): 46378-86.
[http://dx.doi.org/10.1074/jbc.M305189200] [PMID: 12960174]
[48]
Jeselsohn R, Cornwell M, Pun M, et al. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci USA 2017; 114(22): E4482-91.
[http://dx.doi.org/10.1073/pnas.1620993114] [PMID: 28507152]
[49]
Kiefer JC. Back to basics: Sox genes. Dev Dyn 2007; 236(8): 2356-66.
[http://dx.doi.org/10.1002/dvdy.21218] [PMID: 17584862]
[50]
Kim M, Jang K, Miller P, et al. VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene 2017; 36(36): 5199-211.
[http://dx.doi.org/10.1038/onc.2017.4] [PMID: 28504716]
[51]
Kondoh H, Kamachi Y. SOX-partner code for cell specification: Regulatory target selection and underlying molecular mechanisms. Int J Biochem Cell Biol 2010; 42(3): 391-9.
[http://dx.doi.org/10.1016/j.biocel.2009.09.003] [PMID: 19747562]
[52]
Kouros-Mehr H, Bechis SK, Slorach EM, et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 2008; 13(2): 141-52.
[http://dx.doi.org/10.1016/j.ccr.2008.01.011] [PMID: 18242514]
[53]
Kouros-Mehr H, Kim JW, Bechis SK, Werb Z. GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 2008; 20(2): 164-70.
[http://dx.doi.org/10.1016/j.ceb.2008.02.003] [PMID: 18358709]
[54]
Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127(5): 1041-55.
[http://dx.doi.org/10.1016/j.cell.2006.09.048] [PMID: 17129787]
[55]
Lapierre M, Linares A, Dalvai M, et al. Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors. Oncotarget 2016; 7(15): 19693-708.
[http://dx.doi.org/10.18632/oncotarget.7564] [PMID: 26930713]
[56]
Lawson DA, Bhakta NR, Kessenbrock K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 2015; 526(7571): 131-5.
[http://dx.doi.org/10.1038/nature15260] [PMID: 26416748]
[57]
Le Pape F, Vargas G, Clézardin P. The role of osteoclasts in breast cancer bone metastasis. J Bone Oncol 2016; 5(3): 93-5.
[http://dx.doi.org/10.1016/j.jbo.2016.02.008] [PMID: 27761364]
[58]
Lee J, Tiwari A, Shum V, et al. Unraveling the regulatory connections between two controllers of breast cancer cell fate. Nucleic Acids Res 2014; 42(11): 6839-49.
[http://dx.doi.org/10.1093/nar/gku360] [PMID: 24792166]
[59]
Leis O, Eguiara A, López-Arribillaga E, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31(11): 1354-65.
[http://dx.doi.org/10.1038/onc.2011.338] [PMID: 21822303]
[60]
Lengerke C, Fehm T, Kurth R, et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 2011; 11: 42.
[http://dx.doi.org/10.1186/1471-2407-11-42] [PMID: 21276239]
[61]
Leung CO, Mak WN, Kai AK, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/β-catenin signaling. Oncotarget 2016; 7(20): 29371-86.
[http://dx.doi.org/10.18632/oncotarget.8835] [PMID: 27105493]
[62]
Li J, Lai Y, Ma J, et al. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC Cancer 2017; 17(1): 745.
[http://dx.doi.org/10.1186/s12885-017-3674-x] [PMID: 29126392]
[63]
Lovén J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153(2): 320-34.
[http://dx.doi.org/10.1016/j.cell.2013.03.036] [PMID: 23582323]
[64]
Lu WC, Liu YN, Kang BB, Chen JH. Trans-activation of heparanase promoter by ETS transcription factors. Oncogene 2003; 22(6): 919-23.
[http://dx.doi.org/10.1038/sj.onc.1206201] [PMID: 12584571]
[65]
Lu X, Wang Q, Hu G, et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 2009; 23(16): 1882-94.
[http://dx.doi.org/10.1101/gad.1824809] [PMID: 19608765]
[66]
Luanpitpong S, Li J, Manke A, et al. SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene 2016; 35(22): 2824-33.
[http://dx.doi.org/10.1038/onc.2015.351] [PMID: 26387547]
[67]
Lynch CC, Vargo-Gogola T, Martin MD, Fingleton B, Crawford HC, Matrisian LM. Matrix metalloproteinase 7 mediates mammary epithelial cell tumorigenesis through the ErbB4 receptor. Cancer Res 2007; 67(14): 6760-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0026] [PMID: 17638887]
[68]
Ma F, Ye H, He HH, et al. SOX9 drives WNT pathway activation in prostate cancer. J Clin Invest 2016; 126(5): 1745-58.
[http://dx.doi.org/10.1172/JCI78815] [PMID: 27043282]
[69]
Malhotra GK, Zhao X, Edwards E, et al. The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells. BMC Dev Biol 2014; 14: 47.
[http://dx.doi.org/10.1186/s12861-014-0047-4] [PMID: 25527186]
[70]
Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-15.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[71]
Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 2000; 92(14): 1126-35.
[http://dx.doi.org/10.1093/jnci/92.14.1126] [PMID: 10904085]
[72]
Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 2005; 12(6): 488-96.
[http://dx.doi.org/10.1245/ASO.2005.04.010] [PMID: 15864483]
[73]
Matheu A, Collado M, Wise C, et al. Oncogenicity of the developmental transcription factor Sox9. Cancer Res 2012; 72(5): 1301-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3660] [PMID: 22246670]
[74]
Millar EKA, Graham PH, O’Toole SA, et al. Prediction of local recurrence, distant metastases, and death after breast-conserving therapy in early-stage invasive breast cancer using a five-biomarker panel. J Clin Oncol 2009; 27(28): 4701-8.
[http://dx.doi.org/10.1200/JCO.2008.21.7075] [PMID: 19720911]
[75]
Mitsiades N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 2001; 61(2): 577-81.
[PMID: 11212252]
[76]
Mittal MK, Myers JN, Misra S, Bailey CK, Chaudhuri G. In vivo binding to and functional repression of the VDR gene promoter by SLUG in human breast cells. Biochem Biophys Res Commun 2008; 372(1): 30-4.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.187] [PMID: 18485278]
[77]
Mohammadi-Yeganeh S, Paryan M, Arefian E, et al. MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway. Tumour Biol 2016; 37(7): 8993-9000.
[http://dx.doi.org/10.1007/s13277-015-4513-9] [PMID: 26758430]
[78]
Müller P, Crofts JD, Newman BS, et al. SOX9 mediates the retinoic acid-induced HES-1 gene expression in human breast cancer cells. Breast Cancer Res Treat 2010; 120(2): 317-26.
[http://dx.doi.org/10.1007/s10549-009-0381-6] [PMID: 19322650]
[79]
Nassour M, Idoux-Gillet Y, Selmi A, et al. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. PLoS One 2012; 7(12): e53498.
[http://dx.doi.org/10.1371/journal.pone.0053498] [PMID: 23300933]
[80]
Noë V, Fingleton B, Jacobs K, et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001; 114(Pt 1): 111-8.
[http://dx.doi.org/10.1242/jcs.114.1.111] [PMID: 11112695]
[81]
Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194(4260): 23-8.
[http://dx.doi.org/10.1126/science.959840] [PMID: 959840]
[82]
O’Neill CF, Urs S, Cinelli C, et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am J Pathol 2007; 171(3): 1023-36.
[http://dx.doi.org/10.2353/ajpath.2007.061029] [PMID: 17675579]
[83]
Oakes SR, Naylor MJ, Asselin-Labat ML, et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 2008; 22(5): 581-6.
[http://dx.doi.org/10.1101/gad.1614608] [PMID: 18316476]
[84]
Oh S, Shin S, Janknecht R. ETV1, 4 and 5: An oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta 2012; 1826(1): 1-12.
[PMID: 22425584]
[85]
Oliver JR, Kushwah R, Hu J. Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. Lab Invest 2012; 92(3): 320-30.
[http://dx.doi.org/10.1038/labinvest.2011.186] [PMID: 22157719]
[86]
Park SB, Seo KW, So AY, et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ 2012; 19(3): 534-45.
[http://dx.doi.org/10.1038/cdd.2011.137] [PMID: 22015605]
[87]
Peddi PF, Ellis MJ, Ma C. Molecular basis of triple negative breast cancer and implications for therapy. Int J Breast Cancer 2012; 2012: 217185.
[http://dx.doi.org/10.1155/2012/217185] [PMID: 22295242]
[88]
Pérez-Solis MA, Maya-Nuñez G, Casas-González P, Olivares A, Aguilar-Rojas A. Effects of the lifestyle habits in breast cancer transcriptional regulation. Cancer Cell Int 2016; 16: 7.
[http://dx.doi.org/10.1186/s12935-016-0284-7] [PMID: 26877711]
[89]
Phillips S, Kuperwasser C. SLUG: critical regulator of epithelial cell identity in breast development and cancer. Cell Adhes Migr 2014; 8(6): 578-87.
[http://dx.doi.org/10.4161/19336918.2014.972740] [PMID: 25482617]
[90]
Pistelli M, Pagliacci A, Battelli N, et al. Prognostic factors in early-stage triple-negative breast cancer: lessons and limits from clinical practice. Anticancer Res 2013; 33(6): 2737-42.
[PMID: 23749934]
[91]
Prat A, Adamo B, Cheang MC, Anders CK, Carey LA, Perou CM. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist 2013; 18(2): 123-33.
[http://dx.doi.org/10.1634/theoncologist.2012-0397] [PMID: 23404817]
[92]
Pukrop T, Klemm F, Hagemann T, et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA 2006; 103(14): 5454-9.
[http://dx.doi.org/10.1073/pnas.0509703103] [PMID: 16569699]
[93]
Qin L, Liu Z, Chen H, Xu J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res 2009; 69(9): 3819-27.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4389] [PMID: 19383905]
[94]
Rodríguez-Pinilla SM, Sarrió D, Moreno-Bueno G, et al. Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 2007; 20(4): 474-81.
[http://dx.doi.org/10.1038/modpathol.3800760] [PMID: 17334350]
[95]
Rogers CD, Phillips JL, Bronner ME. Elk3 is essential for the progression from progenitor to definitive neural crest cell. Dev Biol 2013; 374(2): 255-63.
[http://dx.doi.org/10.1016/j.ydbio.2012.12.009] [PMID: 23266330]
[96]
Ronchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21(17): 5925-34.
[http://dx.doi.org/10.1128/MCB.21.17.5925-5934.2001] [PMID: 11486031]
[97]
Ross-Innes CS, Stark R, Holmes KA, et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev 2010; 24(2): 171-82.
[http://dx.doi.org/10.1101/gad.552910] [PMID: 20080953]
[98]
Sänger N, Effenberger KE, Riethdorf S, et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer 2011; 129(10): 2522-6.
[http://dx.doi.org/10.1002/ijc.25895] [PMID: 21207426]
[99]
Segura-Bautista D, Olivares A, Casas-González P, Bonilla E, Salazar Z, Pérez-Solis MA. GPR30 expression and function in breast cancer cells are induced through a cis acting element targeted by ETS factors. Oncol Rep 2020; 43(5): 1669-82.
[http://dx.doi.org/10.3892/or.2020.7540] [PMID: 32323852]
[100]
Shin S, Oh S, An S, Janknecht R. ETS variant 1 regulates matrix metalloproteinase-7 transcription in LNCaP prostate cancer cells. Oncol Rep 2013; 29(1): 306-14.
[http://dx.doi.org/10.3892/or.2012.2079] [PMID: 23076342]
[101]
Singh DK, Kollipara RK, Vemireddy V, et al. Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma. Cell Rep 2017; 18(4): 961-76.
[http://dx.doi.org/10.1016/j.celrep.2016.12.064] [PMID: 28122245]
[102]
Smith JM, Koopman PA. The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet 2004; 20(1): 4-8.
[http://dx.doi.org/10.1016/j.tig.2003.11.007] [PMID: 14698613]
[103]
Song Y, Tian T, Fu X, et al. GATA6 is overexpressed in breast cancer and promotes breast cancer cell epithelial-mesenchymal transition by upregulating slug expression. Exp Mol Pathol 2015; 99(3): 617-27.
[http://dx.doi.org/10.1016/j.yexmp.2015.10.005] [PMID: 26505174]
[104]
Ström A, Arai N, Leers J, Gustafsson JA. The Hairy and Enhancer of Split homologue-1 (HES-1) mediates the proliferative effect of 17beta-estradiol on breast cancer cell lines. Oncogene 2000; 19(51): 5951-3.
[http://dx.doi.org/10.1038/sj.onc.1203990] [PMID: 11127827]
[105]
Sun J, He H, Pillai S, et al. GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem 2013; 288(52): 36971-82.
[http://dx.doi.org/10.1074/jbc.M113.506535] [PMID: 24235142]
[106]
Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science 2013; 339(6127): 1567-70.
[http://dx.doi.org/10.1126/science.1230184] [PMID: 23539597]
[107]
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: Targeting the roots of breast cancer for prevention. EMBO J 2019; 38(14): e100852.
[http://dx.doi.org/10.15252/embj.2018100852] [PMID: 31267556]
[108]
Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017; 355(6331): 1330-4.
[http://dx.doi.org/10.1126/science.aaf9011] [PMID: 28336671]
[109]
Topol L, Chen W, Song H, Day TF, Yang Y. Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J Biol Chem 2009; 284(5): 3323-33.
[http://dx.doi.org/10.1074/jbc.M808048200] [PMID: 19047045]
[110]
Tripathi MK, Misra S, Chaudhuri G. Negative regulation of the expressions of cytokeratins 8 and 19 by SLUG repressor protein in human breast cells. Biochem Biophys Res Commun 2005; 329(2): 508-15.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.006] [PMID: 15737616]
[111]
Tripathi MK, Misra S, Khedkar SV, et al. Regulation of BRCA2 gene expression by the SLUG repressor protein in human breast cells. J Biol Chem 2005; 280(17): 17163-71.
[http://dx.doi.org/10.1074/jbc.M501375200] [PMID: 15734731]
[112]
Tugores A, Le J, Sorokina I, et al. The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent transcriptional repressor downstream of MAPK signaling cascades. J Biol Chem 2001; 276(23): 20397-406.
[http://dx.doi.org/10.1074/jbc.M010930200] [PMID: 11259407]
[113]
Turner ME, Ely D, Prokop J, Milsted A. Sry, more than testis determination? Am J Physiol Regul Integr Comp Physiol 2011; 301(3): R561-71.
[http://dx.doi.org/10.1152/ajpregu.00645.2010] [PMID: 21677270]
[114]
Vuoriluoto K, Haugen H, Kiviluoto S, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 2011; 30(12): 1436-48.
[http://dx.doi.org/10.1038/onc.2010.509] [PMID: 21057535]
[115]
Wainwright EN, Scaffidi P. Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity. Trends Cancer 2017; 3(5): 372-86.
[http://dx.doi.org/10.1016/j.trecan.2017.04.004] [PMID: 28718414]
[116]
Wang H, He L, Ma F, et al. SOX9 regulates low density Lipoprotein Receptor-related Protein 6 (LRP6) and T-Cell Factor 4 (TCF4) expression and Wnt/β-catenin activation in breast cancer. J Biol Chem 2013; 288(9): 6478-87.
[http://dx.doi.org/10.1074/jbc.M112.419184] [PMID: 23306204]
[117]
Wang L, Zhang Z, Yu X, et al. Unbalanced YAP-SOX9 circuit drives stemness and malignant progression in esophageal squamous cell carcinoma. Oncogene 2019; 38(12): 2042-55.
[http://dx.doi.org/10.1038/s41388-018-0476-9] [PMID: 30401982]
[118]
Weng AP, Millholland JM, Yashiro-Ohtani Y, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20(15): 2096-109.
[http://dx.doi.org/10.1101/gad.1450406] [PMID: 16847353]
[119]
Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013; 153(2): 307-19.
[http://dx.doi.org/10.1016/j.cell.2013.03.035] [PMID: 23582322]
[120]
Xin JH, Cowie A, Lachance P, Hassell JA. Molecular cloning and characterization of PEA3, a new member of the Ets oncogene family that is differentially expressed in mouse embryonic cells. Genes Dev 1992; 6(3): 481-96.
[http://dx.doi.org/10.1101/gad.6.3.481] [PMID: 1547944]
[121]
Yan W, Cao QJ, Arenas RB, Bentley B, Shao R. GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 2010; 285(18): 14042-51.
[http://dx.doi.org/10.1074/jbc.M110.105262] [PMID: 20189993]
[122]
Yang L, Ostrowski J, Reczek P, Brown P. The retinoic acid receptor antagonist, BMS453, inhibits normal breast cell growth by inducing active TGFbeta and causing cell cycle arrest. Oncogene 2001; 20(55): 8025-35.
[http://dx.doi.org/10.1038/sj.onc.1204911] [PMID: 11753686]
[123]
Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117(7): 927-39.
[http://dx.doi.org/10.1016/j.cell.2004.06.006] [PMID: 15210113]
[124]
Yuan ZY, Dai T, Wang SS, et al. Overexpression of ETV4 protein in triple-negative breast cancer is associated with a higher risk of distant metastasis. OncoTargets Ther 2014; 7: 1733-42.
[http://dx.doi.org/10.2147/OTT.S66692] [PMID: 25328406]
[125]
Yuen HF, Chan YK, Grills C, et al. Polyomavirus enhancer activator 3 protein promotes breast cancer metastatic progression through Snail-induced epithelial-mesenchymal transition. J Pathol 2011; 224(1): 78-89.
[http://dx.doi.org/10.1002/path.2859] [PMID: 21404275]
[126]
Zaidan N, Ottersbach K. The multi-faceted role of Gata3 in developmental haematopoiesis. Open Biol 2018; 8(11): 180152.
[http://dx.doi.org/10.1098/rsob.180152] [PMID: 30463912]
[127]
Zhao D, Pan C, Sun J, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2015; 34(24): 3107-19.
[http://dx.doi.org/10.1038/onc.2014.257] [PMID: 25151964]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy