Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanotechnology Applications in Plant Tissue Culture and Molecular Genetics: A Holistic Approach

Author(s): Tamara Al-Qudah, Sami H. Mahmood*, Rund Abu-Zurayk, Rida Shibli, Aya Khalaf, Trimurti L. Lambat and Ratiram G. Chaudhary

Volume 18, Issue 4, 2022

Published on: 12 January, 2022

Page: [442 - 464] Pages: 23

DOI: 10.2174/1573413717666211118111333

Price: $65

Abstract

Nanotechnology is one of the most important modern sciences that has integrated all sectors of science. Nanotechnology has been applied in the agricultural sector in the last ten years in pursuit of increasing agricultural production and ensuring food security. Plant biotechnology is an essential science that is concerned with plant production. The use of nanotechnology in plant biotechnology under controlled conditions has facilitated the understanding of important internal mechanisms of the plant biological system. The application of nanoparticles (NPs) in plant biotechnology has demonstrated an interesting impact on in vitro plant growth and development. This includes the positive effect of the NPs on micropropagation, callus induction, somatic embryogenesis, cell suspension culture, and plant disinfection. In addition, other biotechnology processes, including the genetic transformation of plants, plant conservation, and secondary metabolite production have improved by the use of NPs. Furthermore, nanotechnology is used to improve plant tolerance to different stress conditions that limit plant production. In this review article, we attempt to consolidate the achievements of nanotechnology and plant biotechnology and discuss advances in the applications of nanotechnology in plant biotechnology. It has been concluded that more research is needed to understand the mechanism of nanoparticle delivery and translocation in plants in order to avoid any future hazardous effects of nanomaterials. This will be key to the achievement of magnificent progress in plant nanobiotechnology.

Keywords: Biotechnology, genetic transformation, nanotechnology, nanoparticles synthesis, plant tissue culture, secondary metabolites.

Graphical Abstract

[1]
Khasim, S.M.; Long, C.; Thammasiri, K.; Lutken, H. Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation; Springer, 2020.
[http://dx.doi.org/10.1007/978-981-15-1636-8]
[2]
Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol., 2014, 203(1), 32-43.
[http://dx.doi.org/10.1111/nph.12797] [PMID: 24720847]
[3]
Edwards, C.A. Sustainable Agricultural Systems; CRC Press, 2020.
[http://dx.doi.org/10.1201/9781003070474]
[4]
Benson, E. Plant Conservation Biotechnology; CRC Press, 1999.
[http://dx.doi.org/10.1201/9781482273038]
[5]
Kumar, P.; Gupta, V.; Misra, A.; Modi, D.; Pandey, B. Potential of molecular markers in plant biotechnology. Plant Omics, 2009, 2(4), 141-162.
[6]
Heimeriks, G. Interdisciplinarity in biotechnology, genomics and nanotechnology. Sci. Public Policy, 2013, 40(1), 97-112.
[http://dx.doi.org/10.1093/scipol/scs070]
[7]
‏ Al-Qudah, T.S.; Discovering antimicrobial powers of some herbs used by Bedouin in the Jordanian Petra. Eco. Env. Cons., 2020, 26(1), 433-440.
[8]
Tariq, A.; Ilyas, S.; Naz, S. Nanotechnology and plant tissue culture.Nanoagronomy; Springer, 2020, pp. 23-35.
[http://dx.doi.org/10.1007/978-3-030-41275-3_2]
[9]
Al-Abdallat, A.M.; Shibli, R.A.; Akash, M.W.; Rabbaa, M.; Al-Qudah, T. In vitro preservation of transgenic tomato (Solanum lycopersicum L.) plants overexpressing the stress-related SlAREB1 transcription factor. Int. J. Mol. Sci., 2017, 18(7), 1477.
[http://dx.doi.org/10.3390/ijms18071477] [PMID: 28753977]
[10]
Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol., 2017, 8, 1014.
[http://dx.doi.org/10.3389/fmicb.2017.01014] [PMID: 28676790]
[11]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[12]
Roco, M.C. The long view of nanotechnology development: the national nanotechnology initiative at 10 years. J. Nanopart. Res., 2011, 13(2), 427-445.
[http://dx.doi.org/10.1007/s11051-010-0192-z]
[13]
Wang, P.; Lombi, E.; Zhao, F-J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci., 2016, 21(8), 699-712.
[http://dx.doi.org/10.1016/j.tplants.2016.04.005] [PMID: 27130471]
[14]
Khan, M.A.; Khan, T.; Riaz, M.S.; Ullah, N.; Ali, H.; Nadhman, A. Plant cell nanomaterials interaction: Growth, physiology and secondary metabolism. In: Comprehensive Analytical Chemistry; Elsevier, 2019; p. 84, pp. 23-54.
[15]
Mahendran, D.; Geetha, N.; Venkatachalam, P. Role of Silver Nitrate and Silver Nanoparticles on Tissue Culture Medium and Enhanced the Plant Growth and Development. In: In vitro Plant Breeding towards Novel Agronomic Traits; Springer, 2019; pp. 59-74.
[http://dx.doi.org/10.1007/978-981-32-9824-8_4]
[16]
Yilmaz, S.S.; Khawar, K.M. Tissue culture, genetic engineering, and nanotechnology in bitter gourd. In: Bitter Gourd Genome; , 2020; p. 83-89.
[17]
Agrawal, S.; Rathore, P. Nanotechnology pros and cons to agriculture: A review. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(3), 43-55.
[18]
Shang, Y.; Hasan, M.K.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 2019, 24(14), 2558.
[http://dx.doi.org/10.3390/molecules24142558] [PMID: 31337070]
[19]
Fincheira, P.; Tortella, G.; Duran, N.; Seabra, A.B.; Rubilar, O. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Crit. Rev. Biotechnol., 2020, 40(1), 15-30.
[http://dx.doi.org/10.1080/07388551.2019.1681931] [PMID: 31658818]
[20]
Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem., 2020, 68(7), 1935-1947.
[http://dx.doi.org/10.1021/acs.jafc.9b06615] [PMID: 32003987]
[21]
Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev., 2020, 13(3), 223-245.
[http://dx.doi.org/10.1080/17518253.2020.1802517]
[22]
Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv., 2019, 1(3), 937-947.
[http://dx.doi.org/10.1039/C8NA00238J]
[23]
Salah, N.; Habib, S.S.; Khan, Z.H.; Memic, A.; Azam, A.; Alarfaj, E.; Zahed, N.; Al-Hamedi, S. High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomedicine, 2011, 6, 863-869.
[http://dx.doi.org/10.2147/IJN.S18267] [PMID: 21720499]
[24]
Hosseini, S.G.; Ayoman, E. Synthesis of α-Fe2O3 nanoparticles by dry high-energy ball-milling method and investigation of their catalytic activity. J. Therm. Anal. Calorim., 2017, 128(2), 915-924.
[http://dx.doi.org/10.1007/s10973-016-5969-6]
[25]
Darvina, Y.; Yulfriska, N.; Rifai, H.; Dwiridal, L.; Ramli, R. Synthesis of magnetite nanoparticles from iron sand by ball-milling. IOP Publishing, 2019, 1185012017
[http://dx.doi.org/10.1088/1742-6596/1185/1/012017]
[26]
Phanthong, P.; Guan, G.; Ma, Y.; Hao, X.; Abudula, A. Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. J. Taiwan Inst. Chem. Eng., 2016, 60, 617-622.
[http://dx.doi.org/10.1016/j.jtice.2015.11.001]
[27]
Ferreira, R.R.; Souza, A.G.; Nunes, L.L.; Shahi, N.; Rangari, V.K.; dos Santos Rosa, D. Use of ball mill to prepare nanocellulose from eucalyptus biomass: Challenges and process optimization by combined method. Mater. Today Commun., 2020, 22100755
[http://dx.doi.org/10.1016/j.mtcomm.2019.100755]
[28]
Naser, H.; Alghoul, M.; Hossain, M.K.; Asim, N.; Abdullah, M.; Ali, M.S.; Alzubi, F.G.; Amin, N. The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. J. Nanopart. Res., 2019, 21(11), 1-28.
[http://dx.doi.org/10.1007/s11051-019-4690-3]
[29]
Sportelli, M.C.; Izzi, M.; Volpe, A.; Clemente, M.; Picca, R.A.; Ancona, A.; Lugarà, P.M.; Palazzo, G.; Cioffi, N. The pros and cons of the use of laser ablation synthesis for the production of silver nano-antimicrobials. Antibiotics (Basel), 2018, 7(3), 67.
[http://dx.doi.org/10.3390/antibiotics7030067] [PMID: 30060553]
[30]
Mafuné, F.; Kohno, J.; Takeda, Y.; Kondow, T.; Sawabe, H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B, 2000, 104(39), 9111-9117.
[http://dx.doi.org/10.1021/jp001336y]
[31]
Herrera, G.M.; Padilla, A.C.; Hernandez-Rivera, S.P. Surface Enhanced Raman Scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nanomaterials (Basel), 2013, 3(1), 158-172.
[http://dx.doi.org/10.3390/nano3010158] [PMID: 28348328]
[32]
Solati, E.; Dorranian, D. Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Cluster Sci., 2015, 26(3), 727-742.
[http://dx.doi.org/10.1007/s10876-014-0732-2]
[33]
Ruchita, S.R.; Yadav, B. Nanolithography: Processing methods for nanofabrication development. Imp. J. Interdisci. Res., 2016, 2, 275-284.
[34]
Pimpin, A.; Srituravanich, W. Review on micro-and nanolithography techniques and their applications. Eng. J. (N.Y.), 2012, 16(1), 37-56.
[http://dx.doi.org/10.4186/ej.2012.16.1.37]
[35]
Da Silva, A.; Da Silva, M.; Fachini, E. Nanofibers and thin films as a selective membrane for sensors and MicroTAS. IOP Publishing, 2013, 421012013
[http://dx.doi.org/10.1088/1742-6596/421/1/012013]
[36]
Amith, V.K.M.; Ramakrishna, S.; Angad, G.; Venkatram, M.; Ananthapadmanabha, V.K. NarayanaRao, N.M.H.; Munishamaiah, K. Development of polyvinyl acetate thin films by electrospinning for sensor applications. Appl. Nanosci., 2017, 7, 355-363.
[http://dx.doi.org/10.1007/s13204-017-0576-9]
[37]
González-Henríquez, C.M.; Pizarro, G. del C.; Sarabia-Vallejos, M.A.; Terraza, C.A.A. Thin and ordered hydrogel films deposited through electrospinning technique; A simple and efficient support for organic bilayers. Biochim. Biophys. Acta BBA - Biomembr., 2015, 1848(10), 2126-2137.
[38]
Baji, A.; Agarwal, K.; Oopath, S.V. Emerging developments in the use of electrospun fibers and membranes for protective clothing applications. Polymers (Basel), 2020, 12(2)E492
[http://dx.doi.org/10.3390/polym12020492] [PMID: 32102318]
[39]
Ramesh, S. Sol-gel synthesis and characterization of nanoparticles. J. Nanosci., 2013, 2013929321
[http://dx.doi.org/10.1155/2013/929321]
[40]
Parashar, M.; Shukla, V.K.; Singh, R. Metal oxides nanoparticles via sol-gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron., 2020, 31(5), 3729-3749.
[http://dx.doi.org/10.1007/s10854-020-02994-8]
[41]
Piszczek, P.; Radtke, A. Silver nanoparticles fabricated using chemical vapor deposition and atomic layer deposition techniques: properties, applications and perspectives: review. Noble Precious Metals, 2018, 2018, 187-213.
[42]
Manawi, Y.M. Ihsanullah; Samara, A.; Al-Ansari, T.; Atieh, M.A. A review of carbon nanomaterials’ synthesis via the Chemical Vapor Deposition (CVD). Method. Mater. Basel Switz., 2018, 11(5), 822.
[43]
Kumar, M.; Ando, Y. Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol., 2010, 10(6), 3739-3758.
[http://dx.doi.org/10.1166/jnn.2010.2939] [PMID: 20355365]
[44]
Jung, M.; Yong Eun, K.; Lee, J-K.; Baik, Y-J.; Lee, K-R.; Wan Park, J. Growth of carbon nanotubes by chemical vapor deposition. 11th Eur. Conf. Diam. Diam.- Mater. Carbon Nanotub. Nitrides Silicon Carbide, 2001, p. 235-1240.
[http://dx.doi.org/10.1016/S0925-9635(00)00446-5]
[45]
Palgrave, R.G.; Parkin, I.P. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films. J. Am. Chem. Soc., 2006, 128(5), 1587-1597.
[http://dx.doi.org/10.1021/ja055563v] [PMID: 16448130]
[46]
Crick, C.R.; Bear, J.C.; Kafizas, A.; Parkin, I.P. Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition. Adv. Mater., 2012, 24(26), 3505-3508.
[http://dx.doi.org/10.1002/adma.201201239] [PMID: 22706974]
[47]
Alf, M.E.; Asatekin, A.; Barr, M.C.; Baxamusa, S.H.; Chelawat, H.; Ozaydin-Ince, G.; Petruczok, C.D.; Sreenivasan, R.; Tenhaeff, W.E.; Trujillo, N.J.; Vaddiraju, S.; Xu, J.; Gleason, K.K. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater., 2010, 22(18), 1993-2027.
[http://dx.doi.org/10.1002/adma.200902765] [PMID: 20544886]
[48]
Singaravelan, R.; Bangaru Sudarsan Alwar, S. Electrochemical Synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl. Nanosci., 2015, 5(8), 983-991.
[http://dx.doi.org/10.1007/s13204-014-0396-0]
[49]
Khaydarov, R.A.; Khaydarov, R.R.; Gapurova, O.; Estrin, Y.; Scheper, T. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res., 2009, 11(5), 1193-1200.
[http://dx.doi.org/10.1007/s11051-008-9513-x]
[50]
Roldán, M.V.; Pellegri, N.; de Sanctis, O. Electrochemical method for Ag-PEG nanoparticles synthesis. J. Nanoparticles, 2013, 2013524150
[http://dx.doi.org/10.1155/2013/524150]
[51]
Blandón, L.; Vázquez, M.V.; Benjumea, D.M.; Ciro, G. Electrochemical synthesis of silver nanoparticles and their potential use as antimicrobial agent: A case study on Escherichia coli. Port. Electrochem. Acta, 2012, 30, 135-144.
[http://dx.doi.org/10.4152/pea.201202135]
[52]
Odularu, A.T. Metal nanoparticles: Thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg. Chem. Appl., 2018, 20189354708
[http://dx.doi.org/10.1155/2018/9354708] [PMID: 29849542]
[53]
Salavati-Niasari, M.; Davar, F. Synthesis of Copper and Copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Mater. Lett., 2009, 63(3), 441-443.
[http://dx.doi.org/10.1016/j.matlet.2008.11.023]
[54]
Varanda, L.C.; Souza, C.G.S.; Moraes, D.A.; Neves, H.R.; Souza, J.B., Jr; Silva, M.F.; Bini, R.A.; Albers, R.F.; Silva, T.L.; Beck, W., Jr Size and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review. An. Acad. Bras. Ciãtextordfemeninencias, 2019, 91(4)
[http://dx.doi.org/10.1590/0001-3765201920181180]
[55]
Cotin, G.; Kiefer, C.; Perton, F.; Ihiawakrim, D.; Blanco-Andujar, C.; Moldovan, S.; Lefevre, C.; Ersen, O.; Pichon, B.; Mertz, D.; Bégin-Colin, S. Unravelling the thermal decomposition parameters for the synthesis of anisotropic iron oxide nanoparticles. Nanomaterials (Basel), 2018, 8(11), 881.
[http://dx.doi.org/10.3390/nano8110881] [PMID: 30380607]
[56]
Unni, M.; Uhl, A.M.; Savliwala, S.; Savitzky, B.H.; Dhavalikar, R.; Garraud, N.; Arnold, D.P.; Kourkoutis, L.F.; Andrew, J.S.; Rinaldi, C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano, 2017, 11(2), 2284-2303.
[http://dx.doi.org/10.1021/acsnano.7b00609] [PMID: 28178419]
[57]
Dixit, S.; Jeevanandam, P. Synthesis of iron oxide nanoparticles by thermal Decomposition approach. Adv. Mat. Res., 2009, 67, 221-226.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.67.221]
[58]
Li, X. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Photonic Nanostructure Mater. Process. Charact., 2012, 16(2), 71-81.
[http://dx.doi.org/10.1016/j.cossms.2011.11.002]
[59]
Shiao, M-H.; Lai, C-P.; Liao, B-H.; Lin, Y-S. Effect of photoillumination on gold-nanoparticle-assisted chemical etching of silicon. J. Nanomater., 2018, 20185479605
[http://dx.doi.org/10.1155/2018/5479605]
[60]
Ahmad, F.; Ashraf, N.; Ashraf, T.; Zhou, R-B.; Yin, D-C. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol., 2019, 103(7), 2913-2935.
[http://dx.doi.org/10.1007/s00253-019-09675-5] [PMID: 30778643]
[61]
Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett., 2021, 19, 355-374.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[62]
Li, X.; Xu, H.; Chen, Z-S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater., 2011, 2011270974
[http://dx.doi.org/10.1155/2011/270974]
[63]
Nikolaos, P.; Louise, E.H. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol., 2014, 5, 5.
[64]
Iravani, S. Bacteria in nanoparticle synthesis: Current status and future prospects. Int. Sch. Res. Not., 2014, 359316.
[65]
Reddy, A.S.; Chen, C.Y.; Chen, C.C.; Jean, J.S.; Chen, H.R.; Tseng, M.J.; Fan, C.W.; Wang, J.C. Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J. Nanosci. Nanotechnol., 2010, 10(10), 6567-6574.
[http://dx.doi.org/10.1166/jnn.2010.2519] [PMID: 21137763]
[66]
Pugazhenthiran, N.; Anandan, S.; Kathiravan, G.; Udaya Prakash, N.K.; Crawford, S.; Ashokkumar, M. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res., 2009, 11(7), 1811.
[http://dx.doi.org/10.1007/s11051-009-9621-2]
[67]
Nangia, Y.; Wangoo, N.; Goyal, N.; Shekhawat, G.; Suri, C.R. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb. Cell Fact., 2009, 8, 39.
[http://dx.doi.org/10.1186/1475-2859-8-39] [PMID: 19619318]
[68]
Das, S.K.; Marsili, E. A Green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Rev. Environ. Sci. Biotechnol., 2010, 9(3), 199-204.
[http://dx.doi.org/10.1007/s11157-010-9188-5]
[69]
Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant Actinomycete rhodococcus species. Nanotechnology, 2003, 14(7), 824-828.
[http://dx.doi.org/10.1088/0957-4484/14/7/323]
[70]
Mishra, A.; Seema, B.; Gaur, M.; Pasricha, R. Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM J. Miner. Met. Mater. Soc., 2010, 62, 45-48.
[http://dx.doi.org/10.1007/s11837-010-0168-6]
[71]
Wang, Y.; O’Connor, D.; Shen, Z.; Lo, I.M.C.; Tsang, D.C.W.; Pehkonen, S.; Pu, S.; Hou, D. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. J. Clean. Prod., 2019, 226, 540-549.
[http://dx.doi.org/10.1016/j.jclepro.2019.04.128]
[72]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[73]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[74]
Vijay Kumar, P.P.N.; Pammi, S.V.N.; Kollu, P.; Satyanarayana, K.V.V.; Shameem, U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[75]
Kumar Sur, U.; Ankamwar, B.; Karmakar, S.; Halder, A.; Das, P. Green synthesis of silver nanoparticles using the plant extract of Shikakai and Reetha. Second Int. Conf. Mater. Sci. ICMS2017 16– 18 Febr, 2018, p. 2321-2329.
[http://dx.doi.org/10.1016/j.matpr.2017.09.236]
[76]
Ahmed, S. Saifullah; Ahmad, M.; Swami, B. L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[77]
Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1461-1465.
[http://dx.doi.org/10.1016/j.saa.2011.05.001] [PMID: 21616704]
[78]
Mater, A. Lett; Bhau, B.; Ghosh, S.; Puri, S.; Borah, B.; Sarmah, D.; Khan, R. Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Adv. Mater. Lett., 2015, 6, 55-58.
[http://dx.doi.org/10.5185/amlett.2015.5609]
[79]
Hamelian, M.; Hemmati, S.; Varmira, K.; Veisi, H. Green synthesis, antibacterial, antioxidant and cytotoxic effect of gold nanoparticles using Pistacia atlantica extract. J. Taiwan Inst. Chem. Eng., 2018, 93, 21-30.
[http://dx.doi.org/10.1016/j.jtice.2018.07.018]
[80]
Sohn, J.S.; Kwon, Y.W.; Jin, J.I.; Jo, B.W. DNA-templated preparation of gold nanoparticles. Molecules, 2011, 16(10), 8143-8151.
[http://dx.doi.org/10.3390/molecules16108143] [PMID: 21952496]
[81]
Ding, B.; Deng, Z.; Yan, H.; Cabrini, S.; Zuckermann, R.N.; Bokor, J. Gold nanoparticle self-similar chain structure organized by DNA origami. J. Am. Chem. Soc., 2010, 132(10), 3248-3249.
[http://dx.doi.org/10.1021/ja9101198] [PMID: 20163139]
[82]
Bidault, S.; Abajo, F.J.; Polman, A. Plasmon-based nanolenses assembled on a well-defined DNA template. J. Am. Chem. Soc., 2008, 130(9), 2750-2751.
[http://dx.doi.org/10.1021/ja711074n] [PMID: 18266376]
[83]
Fischler, M.; Sologubenko, A.; Mayer, J.; Clever, G.; Burley, G.; Gierlich, J.; Carell, T.; Simon, U. Chain-like assembly of gold nanoparticles on artificial DNA templates via ‘Click Chemistry.’. Chem. Commun. Camb. Engl., 2008, 44, 169-171.
[http://dx.doi.org/10.1039/B715602B]
[84]
Aldaye, F.A.; Sleiman, H.F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed., 2006, 45(14), 2204-2209.
[http://dx.doi.org/10.1002/anie.200502481] [PMID: 16502437]
[85]
Nyamjav, D.; Ivanisevic, A. Templates for DNA-templated Fe3O4 nanoparticles. Biomaterials, 2005, 26(15), 2749-2757.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.025] [PMID: 15585279]
[86]
Wang, Y.; Cui, H.; Cao, Z.; Lau, C.; Lu, J. Additive and enhanced fluorescence effects of hairpin DNA template-based copper nanoparticles and their application for the detection of NAD+. Talanta, 2016, 154, 574-580.
[http://dx.doi.org/10.1016/j.talanta.2015.12.067] [PMID: 27154717]
[87]
Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Ed. Engl., 2010, 49(33), 5665-5667.
[http://dx.doi.org/10.1002/anie.200907256] [PMID: 20629055]
[88]
Liu, R.; Wang, C.; Hu, J.; Su, Y.; Lv, Y. DNA-Templated copper nanoparticles: versatile platform for label-free bioassays. trac. Trends Analyt. Chem., 2018, 105, 436-452.
[http://dx.doi.org/10.1016/j.trac.2018.06.003]
[89]
Nithyaja, B.; Hari, M.; Nampoori, V.P.N. Synthesis of silver nanoparticles in DNA template and its influence on nonlinear optical properties. Nanosci. Nanotechnol., 2012, 2, 99-103.
[http://dx.doi.org/10.5923/j.nn.20120204.02]
[90]
Jin, J.; Ouyang, X.; Li, J.; Jiang, J.; Wang, H.; Wang, Y.; Yang, R. DNA template-synthesized silver nanoparticles: A new platform for high-performance fluorescent biosensing of biothiols. Sci. China Chem., 2011, 54(8), 1266.
[http://dx.doi.org/10.1007/s11426-011-4320-0]
[91]
Molotsky, T.; Tamarin, T.; Moshe, A.B.; Markovich, G.; Kotlyar, A.B. Synthesis of chiral silver clusters on a dna template. J. Phys. Chem. C, 2010, 114(38), 15951-15954.
[http://dx.doi.org/10.1021/jp911968x]
[92]
Shemer, G.; Krichevski, O.; Markovich, G.; Molotsky, T.; Lubitz, I.; Kotlyar, A.B. Chirality of silver nanoparticles synthesized on DNA. J. Am. Chem. Soc., 2006, 128(34), 11006-11007.
[http://dx.doi.org/10.1021/ja063702i] [PMID: 16925401]
[93]
Kim, S.; Kim, J.H.; Kwon, W.Y.; Hwang, S.H.; Cha, B.S.; Kim, J.M.; Oh, S.S.; Park, K.S. Synthesis of DNA-templated copper nanoparticles with enhanced fluorescence stability for cellular imaging. Mikrochim. Acta, 2019, 186(7), 479.
[http://dx.doi.org/10.1007/s00604-019-3620-5] [PMID: 31250120]
[94]
Lengke, M.F.; Fleet, M.E.; Southam, G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 2007, 23(5), 2694-2699.
[http://dx.doi.org/10.1021/la0613124] [PMID: 17309217]
[95]
Sabri, M.A.; Umer, A.; Awan, G.H.; Hassan, M.F.; Hasnain, A. Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater. Nanotechnol., 2016, 6, 29.
[http://dx.doi.org/10.5772/62644]
[96]
Bhardwaj, B.; Singh, P.; Kumar, A.; Kumar, S.; Budhwar, V. Eco-friendly greener synthesis of nanoparticles. Adv. Pharm. Bull., 2020, 10(4), 566-576.
[http://dx.doi.org/10.34172/apb.2020.067] [PMID: 33072534]
[97]
Kwiecińska, B.; Pusz, S.; Valentine, B.J. Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. Int. J. Coal Geol., 2019, 211103203
[http://dx.doi.org/10.1016/j.coal.2019.05.010]
[98]
Inkson, B.J. 2 - Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In: Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Hübschen, G.; Altpeter, I.; Tschuncky, R.; Herrmann, H-G., Eds.; Woodhead Publishing, 2016; pp. 17-43.
[http://dx.doi.org/10.1016/B978-0-08-100040-3.00002-X]
[99]
Luo, Q. Electron microscopy and spectroscopy in the analysis of friction and wear mechanisms. Lubricants, 2018, 6, 58.
[http://dx.doi.org/10.3390/lubricants6030058]
[100]
Xu, R. Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology, 2008, 6(2), 112-115.
[http://dx.doi.org/10.1016/j.partic.2007.12.002]
[101]
Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of light scattering techniques to nanoparticle characterization and development. Front Chem., 2018, 6, 237.
[http://dx.doi.org/10.3389/fchem.2018.00237] [PMID: 29988578]
[102]
Yang, S-C.; Paik, S-Y-R.; Ryu, J.; Choi, K-O.; Kang, T.S.; Lee, J.K.; Song, C.W.; Ko, S. Dynamic light scattering-based method to determine primary particle size of iron oxide nanoparticles in simulated gastrointestinal fluid. Food Chem., 2014, 161, 185-191.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.022] [PMID: 24837939]
[103]
Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett., 2013, 8(1), 381.
[http://dx.doi.org/10.1186/1556-276X-8-381] [PMID: 24011350]
[104]
Lu, G.W.; Gao, P. Emulsions and microemulsions for topical and transdermal drug delivery. In: Handbook of Non-Invasive DrugDelivery Systems; , 2010; p. 59-94.
[http://dx.doi.org/10.1016/B978-0-8155-2025-2.10003-4]
[105]
Zhang, X-F.; Liu, Z-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[106]
Titus, D.; Samuel, J.J.; Roopan, S. Nanoparticle Characterization Techniques, 2019, pp. 303-319.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00012-5]
[107]
Mohammed, Y.F.; Salem, E.Z.; Shahin, I.M.; Abdo, H.M.; Emam, H.E.; Fawzy, M.; Abdel Salam, M.F. Applicability of Fourier transform infrared (FTIR) spectroscopy in rapid identification of some Candida and dermatophyte species infections in humans. Int. J. Dermatol., 2016, 55(10), 1164-1171.
[http://dx.doi.org/10.1111/ijd.4957] [PMID: 27337493]
[108]
Fanelli, S.; Zimmermann, A.; Totóli, E.G.; Salgado, H.R.N. FTIR Spectrophotometry as a green tool for quantitative analysis of drugs: Practical application to Amoxicillin. J. Chem., 2018, 20183920810
[http://dx.doi.org/10.1155/2018/3920810]
[109]
El Sayed, M.; Hassan, M.; Essa, S.; Tartor, Y. Use of Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy for rapid and accurate identification of yeasts isolated from human and animals. Int. J. Vet. Sci. Med., 2013, 1, 15-20.
[http://dx.doi.org/10.1016/j.ijvsm.2013.03.001]
[110]
Banerjee, K.; Rai, V.R. A Review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. Bionanoscience, 2018, 8(1), 17-31.
[http://dx.doi.org/10.1007/s12668-017-0437-8]
[111]
Warren, B.E. X-Ray Diffraction; Courier Corporation, 1990, p. 381.
[112]
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60(2), 309-319.
[http://dx.doi.org/10.1021/ja01269a023]
[113]
Brantley, S.L.; Mellott, N.P. Surface area and porosity of primary silicate minerals. Am. Mineral., 2000, 85(11-12), 1767-1783.
[http://dx.doi.org/10.2138/am-2000-11-1220]
[114]
Eichert, T.; Kurtz, A.; Steiner, U.; Goldbach, H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant., 2008, 134(1), 151-160.
[http://dx.doi.org/10.1111/j.1399-3054.2008.01135.x] [PMID: 18494856]
[115]
Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B.M.; Lu, J.; Wanzer, M.B.; Woloschak, G.E.; Smalle, J.A. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett., 2010, 10(7), 2296-2302.
[http://dx.doi.org/10.1021/nl903518f] [PMID: 20218662]
[116]
Avellan, A.; Schwab, F.; Masion, A.; Chaurand, P.; Borschneck, D.; Vidal, V.; Rose, J.; Santaella, C.; Levard, C. Nanoparticle uptake in plants: Gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ. Sci. Technol., 2017, 51(15), 8682-8691.
[http://dx.doi.org/10.1021/acs.est.7b01133] [PMID: 28686423]
[117]
Cifuentes, Z.; Custardoy, L.; de la Fuente, J.M.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; Pérez-de-Luque, A. Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J. Nanobiotechnology, 2010, 8(1), 26.
[http://dx.doi.org/10.1186/1477-3155-8-26] [PMID: 21059206]
[118]
Larue, C.; Veronesi, G.; Flank, A-M.; Surble, S.; Herlin-Boime, N.; Carrière, M. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J. Toxicol. Environ. Health A, 2012, 75(13-15), 722-734.
[http://dx.doi.org/10.1080/15287394.2012.689800] [PMID: 22788360]
[119]
Zhu, Z-J.; Wang, H.; Yan, B.; Zheng, H.; Jiang, Y.; Miranda, O.R.; Rotello, V.M.; Xing, B.; Vachet, R.W. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol., 2012, 46(22), 12391-12398.
[http://dx.doi.org/10.1021/es301977w] [PMID: 23102049]
[120]
Sattelmacher, B. The apoplast and its significance for plant mineral nutrition. New Phytol., 2001, 149(2), 167-192.
[http://dx.doi.org/10.1046/j.1469-8137.2001.00034.x] [PMID: 33874640]
[121]
González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.J.; Corredor, E.; Testillano, P.S.; Risueño, M.C.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; Pérez-de-Luque, A. Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot. (Lond.), 2008, 101(1), 187-195.
[http://dx.doi.org/10.1093/aob/mcm283] [PMID: 17998213]
[122]
Sun, D.; Hussain, H.I.; Yi, Z.; Siegele, R.; Cresswell, T.; Kong, L.; Cahill, D.M. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep., 2014, 33(8), 1389-1402.
[http://dx.doi.org/10.1007/s00299-014-1624-5] [PMID: 24820127]
[123]
Zhao, L.; Peralta-Videa, J.R.; Ren, M.; Varela-Ramirez, A.; Li, C.; Hernandez-Viezcas, J.A.; Aguilera, R.J.; Gardea-Torresdey, J.L. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem. Eng. J., 2012, 184, 1-8.
[http://dx.doi.org/10.1016/j.cej.2012.01.041]
[124]
Lv, J.; Zhang, S.; Luo, L.; Zhang, J.; Yang, K.; Christie, P. Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ. Sci. Nano, 2015, 2(1), 68-77.
[http://dx.doi.org/10.1039/C4EN00064A]
[125]
Lv, J.; Christie, P.; Zhang, S. Uptake, Translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci. Nano, 2019, 6(1), 41-59.
[http://dx.doi.org/10.1039/C8EN00645H]
[126]
Roberts, A. Plasmodesmata and the control of symplastic transport. Plant Cell Environ., 2003, 26, 103-124.
[http://dx.doi.org/10.1046/j.1365-3040.2003.00950.x]
[127]
Varna, M. Vivo Distribution of Inorganic Nanoparticles in Preclinical Models, 2012.
[128]
Schnoor, M.R. Barriers, pathways and processes for uptake, trans-location, and accumulation of nanomaterials in 2 plants- critical review 3. Nanotoxicology, 2015, 1, 76.
[129]
Zhai, G.; Walters, K.S.; Peate, D.W.; Alvarez, P.J.; Schnoor, J.L. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ. Sci. Technol. Lett., 2014, 1(2), 146-151.
[http://dx.doi.org/10.1021/ez400202b] [PMID: 25386566]
[130]
Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology, 2013, 7(3), 323-337.
[http://dx.doi.org/10.3109/17435390.2012.658094] [PMID: 22263604]
[131]
Etxeberria, E.; Gonzalez, P.; Baroja-Fernandez, E.; Romero, J.P. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: Evidence for the distribution of solutes to different intracellular compartments. Plant Signal. Behav., 2006, 1(4), 196-200.
[http://dx.doi.org/10.4161/psb.1.4.3142] [PMID: 19521485]
[132]
Serag, M.F.; Kaji, N.; Gaillard, C.; Okamoto, Y.; Terasaka, K.; Jabasini, M.; Tokeshi, M.; Mizukami, H.; Bianco, A.; Baba, Y. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano, 2011, 5(1), 493-499.
[http://dx.doi.org/10.1021/nn102344t] [PMID: 21141871]
[133]
Wong, M.H.; Misra, R.P.; Giraldo, J.P.; Kwak, S-Y.; Son, Y.; Landry, M.P.; Swan, J.W.; Blankschtein, D.; Strano, M.S. Lipid Exchange Envelope Penetration (LEEP) of nanoparticles for plant engineering: A universal localization mechanism. Nano Lett., 2016, 16(2), 1161-1172.
[http://dx.doi.org/10.1021/acs.nanolett.5b04467] [PMID: 26760228]
[134]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[135]
Wang, Z.; Xie, X.; Zhao, J.; Liu, X.; Feng, W.; White, J.C.; Xing, B. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol., 2012, 46(8), 4434-4441.
[http://dx.doi.org/10.1021/es204212z] [PMID: 22435775]
[136]
Zhang, P.; Ma, Y.; Zhang, Z.; He, X.; Zhang, J.; Guo, Z.; Tai, R.; Zhao, Y.; Chai, Z. Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 2012, 6(11), 9943-9950.
[http://dx.doi.org/10.1021/nn303543n] [PMID: 23098040]
[137]
Liu, H.; Ren, M.; Qu, J.; Feng, Y.; Song, X.; Zhang, Q.; Cong, Q.; Yuan, X. A cost-effective method for recycling carbon and metals in plants: Synthesizing nanomaterials. Environ. Sci. Nano, 2017, 4(2), 461-469.
[http://dx.doi.org/10.1039/C6EN00287K]
[138]
Kataria, S.; Jain, M.; Rastogi, A.; Živčák, M.; Brestic, M.; Liu, S.; Tripathi, D.K. Role of Nanoparticles on Photosynthesis: Avenues and Applications. In: Nanomaterials in Plants, Algae and Microorganisms; Tripathi, D.K.; Ahmad, P.; Sharma, S.; Chauhan, D.K.; Dubey, N.K., Eds.; Academic Press, 2019; pp. 103-127.
[http://dx.doi.org/10.1016/B978-0-12-811488-9.00006-8]
[139]
Dong, R.; Li, Y.; Li, W.; Zhang, H.; Liu, Y.; Ma, L.; Wang, X.; Lei, B. Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. J. Rare Earths, 2019, 37(9), 903-915.
[http://dx.doi.org/10.1016/j.jre.2019.04.001]
[140]
Falco, W.F.; Queiroz, A.M.; Fernandes, J.; Botero, E.R.; Falcão, E.A.; Guimarães, F.E.G.; M’Peko, J-C.; Oliveira, S.L.; Colbeck, I.; Caires, A.R.L. Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching. J. Photochem. Photobiol. Chem., 2015, 299, 203-209.
[http://dx.doi.org/10.1016/j.jphotochem.2014.12.001]
[141]
Falco, W.F.; Botero, E.R.; Falcão, E.A.; Santiago, E.F.; Bagnato, V.S.; Caires, A.R.L. In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles. J. Photochem. Photobiol. Chem., 2011, 225(1), 65-71.
[http://dx.doi.org/10.1016/j.jphotochem.2011.09.027]
[142]
Niemeyer, C.M.; Mirkin, C.A. Nanobiotechnology: Concepts, Applications and Perspectives; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/3527602453]
[143]
Chen, H.; Yada, R. Nanotechnologies in agriculture: New tools for sustainable development. Trends Food Sci. Technol., 2011, 22(11), 585-594.
[http://dx.doi.org/10.1016/j.tifs.2011.09.004]
[144]
Álvarez, S.P.; Tapia, M.A.M.; Vega, M.E.G.; Ardisana, E.F.H.; Medina, J.A.C.; Zamora, G.L.F.; Bustamante, D.V. Nanotechnology and plant tissue culture. In: Plant Nanobionics; Springer, 2019; pp. 333-370.
[http://dx.doi.org/10.1007/978-3-030-12496-0_12]
[145]
Patel, H.; Krishnamurthy, R. Elicitors in plant tissue culture. J. Pharmacogn. Phytochem., 2013, 2(2), 60-65.
[146]
Shibli, R.A.; Sharaf, S.A.; Kasrawi, M.A.; Al-Qudah, T.S. In vitro multiplication of the white wormwood, Artemisia herba-Alba asso. Jordan J. Biol. Sci., 2018, 11(3)
[147]
Evans, D.E.; Coleman, J.O.; Kearns, A. Plant Cell Culture; Garland Science, 2003.
[148]
Tolaymat, T.M.; El Badawy, A.M.; Genaidy, A.; Scheckel, K.G.; Luxton, T.P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ., 2010, 408(5), 999-1006.
[http://dx.doi.org/10.1016/j.scitotenv.2009.11.003] [PMID: 19945151]
[149]
Bhojwani, S.S.; Dantu, P.K. Plant Tissue Culture: An Introductory Text; Springer, 2013.
[http://dx.doi.org/10.1007/978-81-322-1026-9]
[150]
Narayanaswamy, S. Plant Cell and Tissue Culture; Tata McGraw-Hill Education, 1994.
[151]
Torres, K.C. Tissue Culture Techniques for Horticultural Crops; Springer Science & Business Media, 2012.
[152]
Abdi, G.; Salehi, H.; Khosh-Khui, M. Nano silver: A novel nanomaterial for removal of bacterial contaminants in Valerian (Valeriana officinalis L.) tissue culture. Acta Physiol. Plant., 2008, 30(5), 709-714.
[http://dx.doi.org/10.1007/s11738-008-0169-z]
[153]
Safavi, K. Evaluation of Using Nanomaterial in Tissue Culture Media and Biological Activity, 2012, pp. 5-8.
[154]
Omamor, I.; Asemota, A.; Eke, C.; Eziashi, E. Fungal contaminants of the oil palm tissue culture in Nigerian Institute for Oil Palm Research (NIFOR). Afr. J. Agric. Res., 2007, 2(10), 534-537.
[155]
Kim, D.H.; Gopal, J.; Sivanesan, I. Nanomaterials in plant tissue culture: The disclosed and undisclosed. RSC Adv, 2017, 7(58), 36492-36505.
[http://dx.doi.org/10.1039/C7RA07025J]
[156]
Prasad, G.; Mahato, T.; Singh, B.; Ganesan, K.; Srivastava, A.R.; Kaushik, M.; Vijayraghavan, R. Decontamination of sulfur mustard and sarin on titania nanotubes. AIChE J., 2008, 54(11), 2957-2963.
[http://dx.doi.org/10.1002/aic.11598]
[157]
Mahato, T.H.; Prasad, G.K.; Singh, B.; Srivastava, A.R.; Ganesan, K.; Acharya, J.; Vijayaraghavan, R. Reactions of sulphur mustard and sarin on V 1.02 O 2.98 nanotubes. J. Hazard. Mater., 2009, 166(2-3), 1545-1549.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.073] [PMID: 19135787]
[158]
Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol., 2011, 6(8), 933-940.
[http://dx.doi.org/10.2217/fmb.11.78] [PMID: 21861623]
[159]
Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine, 2012, 8(1), 37-45.
[http://dx.doi.org/10.1016/j.nano.2011.05.007] [PMID: 21703988]
[160]
Applerot, G.; Lellouche, J.; Perkas, N.; Nitzan, Y.; Gedanken, A.; Banin, E. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv, 2012, 2(6), 2314-2321.
[http://dx.doi.org/10.1039/c2ra00602b]
[161]
Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid. Based Complement. Alternat. Med., 2015, 2015246012
[162]
Spinoso-Castillo, J.; Chavez-Santoscoy, R.; Bogdanchikova, N.; Pérez-Sato, J.; Morales-Ramos, V.; Bello-Bello, J. Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (vanilla planifolia jacks. ex andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult. Plant Cell Tissue Organ Cult., 2017, 129(2), 195-207.
[http://dx.doi.org/10.1007/s11240-017-1169-8]
[163]
Tung, H.T.; Thuong, T.T.; Luan, V.Q.; Hien, V.T.; Hieu, T.; Nam, N.B.; Phuong, H.T.N.; Khai, H.D.; Nhut, D.T. Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria× Ananassa). Plant Cell Tissue Organ Cult. Plant Cell Tissue Organ Cult., 2021, 145(9), 1-11.
[164]
Gouran, A.; Jirani, M.; Mozafari, A.A.; Saba, M.K.; Ghaderi, N.; Zaheri, S. Effect of silver nanoparticles on grapevine leaf explants sterilization at in vitro conditions. National Conference of Nanotechnology from Theory Application, Esfehan, Iran2014, pp. 1-6.
[165]
Krupa-Małkiewicz, M.; Oszmiański, J.; Lachowicz, S.; Szczepanek, M.; Jaśkiewicz, B.; Pachnowska, K.; Ochmian, I. Effect of Nanosilver (NAg) on disinfection, growth, and chemical composition of young barley leaves under in vitro conditions. J. Integr. Agric., 2019, 18(8), 1871-1881.
[http://dx.doi.org/10.1016/S2095-3119(18)62146-X]
[166]
Rostami, A.; Shahsavar, A. Olive “Mission” Explants. Asian J. Plant Sci., 2009, 8(7), 505-509.
[http://dx.doi.org/10.3923/ajps.2009.505.509]
[167]
Helaly, M.N.; El-Metwally, M.A.; El-Hoseiny, H.; Omar, S.A.; El-Sheery, N.I. Effect of nanoparticles on biological contamination of ‘in vitro’cultures and organogenic regeneration of banana. Aust. J. Crop Sci., 2014, 8(4), 612-624.
[168]
Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci., 2014, 21(1), 13-17.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.005] [PMID: 24596495]
[169]
Lemraski, M.; Normohamadi, G.; Madani, H.; Abad, H.; Mobasser, H. Two Iranian rice cultivars’ response to nitrogen and nano-fertilizer. Open J. Ecol., 2017, 7(10), 591-603.
[http://dx.doi.org/10.4236/oje.2017.710040]
[170]
Murashige, T.; Skoog, F. A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 1962, 15(3), 473-497.
[http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x]
[171]
Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ., 2013, 461-462, 462-468.
[http://dx.doi.org/10.1016/j.scitotenv.2013.05.018] [PMID: 23747561]
[172]
Dehkourdi, E.H.; Mosavi, M. Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol. Trace Elem. Res., 2013, 155(2), 283-286.
[http://dx.doi.org/10.1007/s12011-013-9788-3] [PMID: 23975579]
[173]
Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vis., 2012, 2(1), 2.
[174]
Hussain, M. In vitro seed germination and biochemical profiling of artemisia absinthium exposed to various metallic nanoparticles. 3 Biotech, 2017, 7(2), 1-8.
[175]
Hussain, M.; Raja, N.I.; Iqbal, M.; Ejaz, M.; Yasmeen, F. In vitro germination and biochemical profiling of Citrus reticulata in response to green synthesised Zinc and Copper nanoparticles. IET Nanobiotechnol., 2017, 11(7), 790-796.
[http://dx.doi.org/10.1049/iet-nbt.2016.0256]
[176]
Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D.M.; Thorpe, T.A. Plant hormones and plant growth regulators in plant tissue culture. Vitro Cell. Dev. Biol. Plant., 1996, 32(4), 272-289.
[177]
Gaba, V.P. Plant growth regulators in plant tissue culture and development. In: Plant development and biotechnology; CRC Press Boca Raton: FL, 2005; pp. 87-99.
[178]
Dello Ioio, R.; Linhares, F.S.; Scacchi, E.; Casamitjana-Martinez, E.; Heidstra, R.; Costantino, P.; Sabatini, S. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol., 2007, 17(8), 678-682.
[http://dx.doi.org/10.1016/j.cub.2007.02.047] [PMID: 17363254]
[179]
Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv., 2011, 29(6), 792-803.
[http://dx.doi.org/10.1016/j.biotechadv.2011.06.007] [PMID: 21729746]
[180]
McLamore, E.S.; Diggs, A.; Calvo Marzal, P.; Shi, J.; Blakeslee, J.J.; Peer, W.A.; Murphy, A.S.; Porterfield, D.M. Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J., 2010, 63(6), 1004-1016.
[http://dx.doi.org/10.1111/j.1365-313X.2010.04300.x] [PMID: 20626658]
[181]
El-Araby, H.G.; El-Hefnawy, S.F.; Nassar, M.A.; Elsheery, N.I. Comparative studies between growth regulators and nanoparticles on growth and mitotic index of pea plants under salinity. Afr. J. Biotechnol., 2020, 19(8), 564-575.
[http://dx.doi.org/10.5897/AJB2020.17198]
[182]
Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small, 2013, 9(1), 115-123.
[http://dx.doi.org/10.1002/smll.201201225] [PMID: 23019062]
[183]
Syu, Y.Y.; Hung, J-H.; Chen, J-C.; Chuang, H.W. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem., 2014, 83, 57-64.
[http://dx.doi.org/10.1016/j.plaphy.2014.07.010] [PMID: 25090087]
[184]
Sarmast, M.; Niazi, A.; Salehi, H.; Abolimoghadam, A. Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tissue Organ Cult. Plant Cell Tissue Organ Cult., 2015, 121(1), 227-236.
[http://dx.doi.org/10.1007/s11240-014-0697-8]
[185]
Alenizi, A.; Shibli, R.A.; Tahtamouni, R.W.; Al-Qudah, T.S.; Abu-Iramaileh, B. In vitro propagation and enhancement of quercetins and isorhamnetin production in wild Paronychia argentea L. Jordan J. Pharm. Sci., 2020, 13(1), 2020-2065.
[186]
Al-Qudah, T.S.; Shibli, R.A.; Alali, F.Q. In vitro propagation and secondary metabolites production in wild germander (Teucrium polium L.). Vitro Cell. Dev. Biol. Plant., 2011, 47(4), 496-505.
[187]
Kozai, T.; Fujiwara, K.; Hayashi, M.; Aitken-Christie, J. The in vitro environment and its control in micropropagation. In: Transplant production systems; Springer, 1992; pp. 247-282.
[http://dx.doi.org/10.1007/978-94-011-2785-1_14]
[188]
Ma, C.; Chhikara, S.; Xing, B.; Musante, C.; White, J.C.; Dhankher, O.P. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain. Chem.& Eng., 2013, 1(7), 768-778.
[http://dx.doi.org/10.1021/sc400098h]
[189]
Zafar, H.; Ali, A.; Ali, J.S.; Haq, I.U.; Zia, M. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Front. Plant Sci., 2016, 7, 535.
[http://dx.doi.org/10.3389/fpls.2016.00535] [PMID: 27148347]
[190]
Genady, E.A.; Qaid, E.A.; Fahmy, A.H. Copper sulfate nanoparticales in vitro applications on Verbena bipinnatifida Nutt. Stimulating growth and total phenolic content increasments. Int. J. Pharm. Res. Allied Sci., 2016, 5, 196-202.
[191]
Talankova-Sereda, T.; Liapina, K.; Shkopinskij, E.; Ustinov, A.; Kovalyova, A.; Dulnev, P.; Kucenko, N. The Influence of Cu и Co nanoparticles on growth characteristics and biochemical structure of mentha longifolia in vitro. In: Nanophysics, Nanophotonics, Surface Studies, and Applications; Springer, 2016; pp. 427-436.
[http://dx.doi.org/10.1007/978-3-319-30737-4_36]
[192]
Javed, R.; Usman, M.; Yücesan, B.; Zia, M.; Gürel, E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem., 2017, 110, 94-99.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.032] [PMID: 27246994]
[193]
de Oliveira Timoteo, C.; Paiva, R.; dos Reis, M.V.; Claro, P.I.C.; da Silva, D.P.C.; Marconcini, J.M.; de Oliveira, J.E. Silver nanoparticles in the micropropagation of Campomanesia rufa (O. Berg) Nied. Plant Cell Tissue Organ Cult. Plant Cell Tissue Organ Cult., 2019, 137(2), 359-368.
[http://dx.doi.org/10.1007/s11240-019-01576-9]
[194]
Hill, G. Shoot formation in tissue cultures of Chrysanthemum ‘Bronze Pride.’. Physiol. Plant., 1968, 21(2), 386-389.
[http://dx.doi.org/10.1111/j.1399-3054.1968.tb07262.x]
[195]
AL-Ashoush. A.; Shibli, R.; Tahtamouni, R.; Al-Qudah, T.; Abu-Irarmaileh, B. Enhancement of pentacyclic triterpenoids (betulinic and oleanolic acids) production from callus cultures of Lantana camara L. Adv. Hortic. Sci., 2020, 34(3)
[196]
Kao, K.; Miller, R.; Gamborg, O.; Harvey, B. Variations in chromosome number and structure in plant cells grown in suspension cultures. Can. J. Genet. Cytol., 1970, 12(2), 297-301.
[http://dx.doi.org/10.1139/g70-044]
[197]
Aghdaei, M.; Sarmast, M.; Salehi, H. Effects of silver nanoparticles on tecomella undulata (Roxb.) seem. Micropropagation. In: Eff. Silver Nanoparticles Tecomella Undulata Roxb Seem Micropropag; , 2012; p. 21-24.
[198]
Ewais, E.A.; Desouky, S.A.; Elshazly, E.H. Evaluation of callus responses of Solanum nigrum l. exposed to biologically synthesized silver nanoparticles. Nanosci. Nanotechnol., 2015, 5(3), 45-56.
[199]
Kokina, I.; Gerbreders, V.; Sledevskis, E.; Bulanovs, A. Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J. Biotechnol., 2013, 165(2), 127-132.
[http://dx.doi.org/10.1016/j.jbiotec.2013.03.011] [PMID: 23545504]
[200]
Fazal, H.; Abbasi, B.H.; Ahmad, N.; Ali, M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl. Biochem. Biotechnol., 2016, 180(6), 1076-1092.
[http://dx.doi.org/10.1007/s12010-016-2153-1] [PMID: 27287999]
[201]
Ghorbanpour, M.; Hadian, J. Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal Plant Satureja Khuzestanica grown in vitro. Carbon, 2015, 94, 749-759.
[http://dx.doi.org/10.1016/j.carbon.2015.07.056]
[202]
Giorgetti, L.; Castiglione, M.R.; Bernabini, M.; Geri, C. Nanoparticles effects on growth and differentiation in cell culture of carrot (Daucus carota L.). Agrochimica, 2011, 55(1), 45-53.
[203]
Alharby, H.F.; Metwali, E.M.; Fuller, M.P.; Aldhebiani, A.Y. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch. Biol. Sci., 2016, 68(4), 723-735.
[http://dx.doi.org/10.2298/ABS151105017A]
[204]
Mousavi Kouhi, S.; Lahouti, M. Application of ZnO nanoparticles for inducing callus in tissue culture of rapeseed. Int. J. Nanosci. Nanotechnol., 2018, 14(2), 133-141.
[205]
Coleman, J.; Evans, D.; Kearns, A. Plant Cell Culture; Taylor & Francis, 2020.
[206]
Pasqua, G.; Avato, P.; Monacelli, B.; Santamaria, A.R.; Argentieri, M.P. Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum Cv. Topas. Plant Sci., 2003, 165(5), 977-982.
[http://dx.doi.org/10.1016/S0168-9452(03)00275-9]
[207]
Fazal, H.; Abbasi, B.H.; Ahmad, N.; Ali, M.; Shujait Ali, S.; Khan, A.; Wei, D-Q. Sustainable production of biomass and industrially important secondary metabolites in cell cultures of selfheal (Prunella vulgaris L.) elicited by silver and gold nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2553-2561.
[http://dx.doi.org/10.1080/21691401.2019.1625913] [PMID: 31213081]
[208]
Samadi, S.; Saharkhiz, M.J.; Azizi, M.; Samiei, L.; Ghorbanpour, M. Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis celak in vitro. Chemosphere, 2020, 249126069
[http://dx.doi.org/10.1016/j.chemosphere.2020.126069] [PMID: 32058138]
[209]
Siddiqui, M.H.; Al-Whaibi, M.H.; Firoz, M.; Al-Khaishany, M.Y. Role of nanoparticles in plants. Nanotechnol. Plant Sci., 2015, 19-35.
[210]
Raei, M.; Angaji, S.A.; Omidi, M.; Khodayari, M. Effect of abiotic elicitors on tissue culture of aloe vera. Int. J. Biosci., 2014, 5(1), 74-81.
[http://dx.doi.org/10.12692/ijb/5.1.74-81]
[211]
Poborilova, Z.; Opatrilova, R.; Babula, P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot., 2013, 91, 1-11.
[http://dx.doi.org/10.1016/j.envexpbot.2013.03.002]
[212]
Lin, C.; Fugetsu, B.; Su, Y.; Watari, F. Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. J. Hazard. Mater., 2009, 170(2-3), 578-583.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.025] [PMID: 19505757]
[213]
Shibli, R.A.; Duwayri, M.A.; Sawwan, J.S.; Shatnawi, M.A.; Al-Qudah, T.S. Regeneration via somatic embryogenesis of the endangered wild arum (Arum palaestinum). Vitro Cell. Dev. Biol. Plant., 2012, 48(3), 335-340.
[214]
Merkle, S.; Parrott, W.; Flinn, B. Morphogenic Aspects of Somatic Embryogenesis. In: In vitro embryogenesis in plants; Springer, 1995; pp. 155-203.
[http://dx.doi.org/10.1007/978-94-011-0485-2_5]
[215]
Mahendran, D.; Kishor, P.K.; Geetha, N.; Venkatachalam, P. Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L. J. Appl. Phycol., 2018, 30(2), 1425-1436.
[http://dx.doi.org/10.1007/s10811-017-1293-1]
[216]
Ibrahim, A.S.; Fahmy, A.H.; Ahmed, S.S. Copper nanoparticles elevate regeneration capacity of (Ocimum basilicum L.) plant via somatic embryogenesis. Plant Cell Tissue Organ Cult. Plant Cell Tissue Organ Cult., 2019, 136(1), 41-50.
[http://dx.doi.org/10.1007/s11240-018-1489-3]
[217]
Voytas, D.F.; Gao, C. Precision genome engineering and agriculture: Opportunities and regulatory challenges. PLoS Biol., 2014, 12(6)e1001877
[http://dx.doi.org/10.1371/journal.pbio.1001877] [PMID: 24915127]
[218]
Arcioni, S.; Pezzotti, M.; Damiani, F. In vitro selection of alfalfa plants resistant to Fusarium oxysporum f. sp. medicaginis. Theor. Appl. Genet., 1987, 74(6), 700-705.
[http://dx.doi.org/10.1007/BF00247544] [PMID: 24240327]
[219]
Chawla, H.; Wenzel, G. In vitro selection for fusaric acid resistant barley plants. Plant Breed., 1987, 99(2), 159-163.
[http://dx.doi.org/10.1111/j.1439-0523.1987.tb01166.x]
[220]
Allard, R.W. The Wilhelmine E. Key 1987 invitational lecture. Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J. Hered., 1988, 79(4), 225-238.
[http://dx.doi.org/10.1093/oxfordjournals.jhered.a110503] [PMID: 3166481]
[221]
Young, A.; Boyle, T.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol., 1996, 11(10), 413-418.
[http://dx.doi.org/10.1016/0169-5347(96)10045-8] [PMID: 21237900]
[222]
Thakur, M.; Sharma, D.; Sharma, S. In vitro selection and regeneration of carnation (Dianthus Caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f. Sp. Dianthi. Plant Cell Rep., 2002, 20(9), 825-828.
[http://dx.doi.org/10.1007/s00299-001-0412-1]
[223]
James, C. Brief 42 Global status of commercialized biotech/GM crops: 2010. ISAAA Brief, No. 42; ISAAA: Ithaca, NY, 2011.
[224]
Namuddu, A.; Kiggundu, A.; Mukasa, S.; Kurnet, K.; Karamura, E.; Tushemereirwe, W. Agrobacterium mediated transformation of banana (Musa Sp.) Cv. Sukali Ndiizi (ABB) with a modified Carica Papaya Cystatin (CpCYS) gene. Afr. J. Biotechnol., 2013, 12(15), 1811-1819.
[http://dx.doi.org/10.5897/AJB12.2478]
[225]
Cheng, M.; Fry, J.E.; Pang, S.; Zhou, H.; Hironaka, C.M.; Duncan, D.R.; Conner, T.W.; Wan, Y. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 1997, 115(3), 971-980.
[http://dx.doi.org/10.1104/pp.115.3.971] [PMID: 12223854]
[226]
Enriquez-Obregon, G.A.; Vazquez-Padron, R.I.; Prieto-Samsonov, D.L.; Perez, M.; Selman-Housein, G. Genetic Transformation of sugarcane by Agrobacterium tumefaciens using antioxidant compounds. Biotecnol. Apl., 1997, 14(3), 169-174.
[227]
Jat, S.K.; Bhattacharya, J.; Sharma, M.K. Nanomaterial based gene delivery: a promising method for plant genome engineering. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(19), 4165-4175.
[http://dx.doi.org/10.1039/D0TB00217H] [PMID: 32285905]
[228]
Institute for Nanotechnology (European Commission). Nanotechnology in Agriculture and Food: A Nanoforum Report; Nanoforum.org, 2006.
[229]
Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci., 2010, 179(3), 154-163.
[http://dx.doi.org/10.1016/j.plantsci.2010.04.012]
[230]
Liu, J.; Liu, X-M.; Xiao, S-Y.; Tong, C-Y.; Tang, D-Y.; Zhao, L-J. Bioconjugated nanoparticle for DNA protection from ultrasound damage. Anal. Sci., 2005, 21(3), 193-195.
[http://dx.doi.org/10.2116/analsci.21.193] [PMID: 15790096]
[231]
Liu, J.; Wang, F.; Wang, L.; Xiao, S.; Tong, C.; Tang, D.; Liu, X. Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J. Cent. South Univ. Technol., 2008, 15(6), 768-773.
[http://dx.doi.org/10.1007/s11771-008-0142-4]
[232]
Torney, F.; Trewyn, B.G.; Lin, V.S-Y.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2007, 2(5), 295-300.
[http://dx.doi.org/10.1038/nnano.2007.108] [PMID: 18654287]
[233]
Rad, F.; Mohsenifar, A.; Tabatabaei, M.; Safarnejad, M.; Shahryari, F.; Safarpour, H.; Foroutan, A.; Mardi, M.; Davoudi, D.; Fotokian, M. Detection of Candidatus phytoplasma aurantifolia with a quantum dots fret-based biosensor. J. Plant Pathol., 2012, 94(3), 525-534.
[234]
Vijayakumar, P.S.; Abhilash, O.U.; Khan, B.M.; Prasad, B.L. Nanogold‐loaded sharp‐edged carbon bullets as plant‐gene carriers. Adv. Funct. Mater., 2010, 20(15), 2416-2423.
[http://dx.doi.org/10.1002/adfm.200901883]
[235]
Men, S.; Ming, X.; Liu, R.; Wei, C.; Li, Y. Agrobacterium-mediated genetic transformation of a dendrobium orchid. Plant Cell Tissue Organ Cult., 2003, 75(1), 63-71.
[http://dx.doi.org/10.1023/A:1024627917470]
[236]
Tahtamouni, R.W.; Shibli, R.A.; Al-Abdallat, A.M.; Al-Qudah, T.S.; Younis, L.; Al-Baba, H.; Al-Ruwaiei, H. Cryopreservation of Thymbra spicata l. Var. Spicata and genetic stability assessment of the cryopreserved shoot tips after conservation. Jordan J. Biol. Sci., 2017, 10(1), 19-28.
[237]
Reed, B.M.; Gupta, S.; Uchendu, E.E. In vitro genebanks for preserving tropical biodiversity. In: Conservation of tropical plant species; Springer, 2013; pp. 77-106.
[http://dx.doi.org/10.1007/978-1-4614-3776-5_5]
[238]
Shibli, R.A.; Hawmdeh, F.A.; Duwayri, M.; Hadidi, N.; Al-Qudah, T.S.; Tahtamouni, R.W.; Younes, L.S.; Zateemeh, A. Experimenting two cryopreservation techniques (vitrification and encapsulation-dehydration) as approaches for long-term conservation of in vitro grown shoot tips of wild fennel. Jordan J. Biol. Sci., 2016, 9(3)
[239]
Engelmann, F. Plant cryopreservation: progress and prospects. Vitro Cell. Dev. Biol. Plant., 2004, 40(5), 427-433.
[240]
Kaczmarczyk, A.; Funnekotter, B.; Menon, A.; Phang, P.Y.; Al-Hanbali, A.; Bunn, E.; Mancera, R. Current issues in plant cryopreservation. In: Current frontiers in cryobiology; InTech, 2012; pp. 417-438.
[http://dx.doi.org/10.5772/32860]
[241]
Chen, G.Q.; Ren, L.; Zhang, J.; Reed, B.M.; Zhang, D.; Shen, X.H. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Cryobiology, 2015, 70(1), 38-47.
[http://dx.doi.org/10.1016/j.cryobiol.2014.11.004] [PMID: 25489814]
[242]
Cruz-Cruz, C.A.; González-Arnao, M.T.; Engelmann, F. Biotechnology and conservation of plant biodiversity. Resources, 2013, 2(2), 73-95.
[http://dx.doi.org/10.3390/resources2020073]
[243]
Ruwaiei, H.M.A.; Shibli, R.; Khateeb, W.; Tahtamouni, R.W.; Al-Qudah, T.S.; Baba, H.A. The slow growth conservation of Moringa peregrina (Forssk.) Fiori microshsoots and its effect on total phenolic compounds. Jordan J. Agric. Sci., 2018.
[244]
Negash, A.; Krens, F.; Schaart, J.; Visser, B. In Vitro conservation of enset under slow-growth conditions. Plant Cell Tissue Organ Cult., 2001, 66(2), 107-111.
[http://dx.doi.org/10.1023/A:1010647905508]
[245]
Tahtamouni, R.; Shibli, R.; Al-Abdallat, A.; Al-Qudah, T. Analysis of growth, oil yield, and carvacrol in Thymbra spicata L. after slow-growth conservation. Turk. J. Agric. For., 2016, 40(2), 213-221.
[http://dx.doi.org/10.3906/tar-1404-54]
[246]
Chauhan, R.; Singh, V.; Quraishi, A. In vitro conservation through slow-growth storage. In: Synthetic seeds; Springer, 2019; pp. 397-416.
[http://dx.doi.org/10.1007/978-3-030-24631-0_19]
[247]
Zhang, M.; Zhao, G.; Gu, N. Applying nanotechnology to cryopreservation studies: Status and future. Chin. Sci. Bull., 2019, 64(21), 2180-2190.
[http://dx.doi.org/10.1360/N972019-00343]
[248]
Xu, F.; Inci, F.; Mullick, O.; Gurkan, U.A.; Sung, Y.; Kavaz, D.; Li, B.; Denkbas, E.B.; Demirci, U. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials. ACS Nano, 2012, 6(8), 6640-6649.
[http://dx.doi.org/10.1021/nn300902w] [PMID: 22680777]
[249]
Moon, S.; Kim, Y-G.; Dong, L.; Lombardi, M.; Haeggstrom, E.; Jensen, R.V.; Hsiao, L-L.; Demirci, U. Drop-on-demand single cell isolation and total RNA analysis. PLoS One, 2011, 6(3)e17455
[http://dx.doi.org/10.1371/journal.pone.0017455] [PMID: 21412416]
[250]
Xu, F.; Wu, C.A.; Rengarajan, V.; Finley, T.D.; Keles, H.O.; Sung, Y.; Li, B.; Gurkan, U.A.; Demirci, U. Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater., 2011, 23(37), 4254-4260.
[http://dx.doi.org/10.1002/adma.201101962] [PMID: 21830240]
[251]
Makkar, H.P.; Siddhuraju, P.; Becker, K. Plant Secondary Metabolites; Springer, 2007.
[http://dx.doi.org/10.1007/978-1-59745-425-4]
[252]
Theis, N.; Lerdau, M. The evolution of function in plant secondary metabolites. Int. J. Plant Sci., 2003, 164(S3), S93-S102.
[http://dx.doi.org/10.1086/374190]
[253]
Verpoorte, R.; Contin, A.; Memelink, J. Biotechnology for the production of plant secondary metabolites. Phytochem. Rev., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1023/A:1015871916833]
[254]
DiCosmo, F.; Misawa, M. Plant cell and tissue culture: Alternatives for metabolite production. Biotechnol. Adv., 1995, 13(3), 425-453.
[http://dx.doi.org/10.1016/0734-9750(95)02005-N] [PMID: 14536096]
[255]
Amer, A. Biotechnology Approaches for in vitro production of flavonoids. J. Microbiol. Biotechnol. Food Sci., 2019, 2019, 457-468.
[256]
Sharma, H.; Vashistha, B. Plant tissue culture: a biological tool for solving the problem of propagation of medicinally important woody plants-a review. Int. J. Adv. Res. (Indore), 2015, 3(2), 402-411.
[257]
Yildirim, A.B.; Turker, A.U. Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem Mass spectrometry (LC–ESI-MS/MS). Sci. Hortic. (Amsterdam), 2014, 169, 169-178.
[http://dx.doi.org/10.1016/j.scienta.2014.01.038]
[258]
Szopa, A.; Ekiert, H. In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine)-a potential biotechnological rich source of therapeutically important phenolic acids. Appl. Biochem. Biotechnol., 2012, 166(8), 1941-1948.
[http://dx.doi.org/10.1007/s12010-012-9622-y] [PMID: 22399445]
[259]
Thiem, B.; Kikowska, M.; Krawczyk, A.; Więckowska, B.; Sliwinska, E. Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue Organ Cult. Plant Cell Tissue Organ Cult., 2013, 114(2), 197-206.
[http://dx.doi.org/10.1007/s11240-013-0315-1]
[260]
Dong, J.; Wan, G.; Liang, Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol., 2010, 148(2-3), 99-104.
[http://dx.doi.org/10.1016/j.jbiotec.2010.05.009] [PMID: 20576504]
[261]
Chamani, E.; Karimi Ghalehtaki, S.; Mohebodini, M.; Ghanbari, A. The effect of zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii bioss. Iran. J. Genet. Plant Breed., 2015, 4(2), 11-19.
[262]
Bhat, P.; Bhat, A. Silver nanoparticles for enhancement of accumulation of capsaicin in suspension culture of capsicum sp. J. Exp. Sci., 2016, 7, 1-6.
[263]
Jan, S.; Shinwari, Z.; Malik, M.; Ilyas, M. Antioxidant and anticancer activities of Brassica rapa: A Review. MOJ Biol Med., 2018, 3(4), 175-178.
[264]
Vahdati, K.; Leslie, C. Abiotic Stress: Plant Responses and Applications in Agriculture; BoD-Books on Demand, 2013.
[http://dx.doi.org/10.5772/45842]
[265]
Hirt, H. Plant Stress Biology; Wiley Online Library, 2010.
[266]
Meena, R.S.; Meena, V.S.; Meena, S.K.; Verma, J.P. Towards the plant stress mitigate the agricultural productivity: A book review. 2015.
[http://dx.doi.org/10.1016/j.jclepro.2015.04.047]
[267]
Hatami, M.; Kariman, K.; Ghorbanpour, M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci. Total Environ., 2016, 571, 275-291.
[http://dx.doi.org/10.1016/j.scitotenv.2016.07.184] [PMID: 27485129]
[268]
Hojjat, S.S.; Ganjali, A. The effect of silver nanoparticle on lentil seed germination under drought stress. Int. J. Farm Allied Sci., 2016, 5(3), 208-212.
[269]
Zaimenko, N.V.; Didyk, N.P.; Dzyuba, O.I.; Zakrasov, O.V.; Rositska, N.V.; Viter, A.V. Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite. Ecol. Balk., 2014, 6(1), 1-10.
[270]
Shabala, S. Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol., 2011, 190(2), 289-298.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03575.x] [PMID: 21563365]
[271]
Setter, T.; Waters, I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 2003, 253(1), 1-34.
[http://dx.doi.org/10.1023/A:1024573305997]
[272]
Mustafa, G.; Sakata, K.; Hossain, Z.; Komatsu, S. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J. Proteomics, 2015, 122, 100-118.
[http://dx.doi.org/10.1016/j.jprot.2015.03.030] [PMID: 25857275]
[273]
Mukhopadhyay, S.S.; Kaur, N. Nanotechnology in Soil-Plant System. In: Plant Nanotechnology; Springer, 2016; pp. 329-348.
[http://dx.doi.org/10.1007/978-3-319-42154-4_13]
[274]
Patra, A.; Adhikari, T.; Bhardwaj, A. Enhancing crop productivity in salt-affected environments by stimulating soil biological processes and remediation using nanotechnology. In: Innovative Saline Agriculture; Springer, 2016; pp. 83-103.
[http://dx.doi.org/10.1007/978-81-322-2770-0_4]
[275]
Monica, R.C.; Cremonini, R. Nanoparticles and higher plants. Caryologia, 2009, 62(2), 161-165.
[http://dx.doi.org/10.1080/00087114.2004.10589681]
[276]
Abdel Latef, A.A.H.; Srivastava, A.K.; El‐sadek, M.S.A.; Kordrostami, M.; Tran, L.P. Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev., 2018, 29(4), 1065-1073.
[http://dx.doi.org/10.1002/ldr.2780]
[277]
Kai, H.; Iba, K. Temperature Stress in Plants. eLS, 2014.
[http://dx.doi.org/10.1002/9780470015902.a0001320.pub2]
[278]
Iqbal, M.; Raja, N.I.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on growth of wheat under heat stress. Iran. J. Sci. Technol. Trans. Sci., 2019, 43(2), 387-395.
[http://dx.doi.org/10.1007/s40995-017-0417-4]
[279]
Djanaguiraman, M.; Belliraj, N.; Bossmann, S.H.; Prasad, P.V.V. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega, 2018, 3(3), 2479-2491.
[http://dx.doi.org/10.1021/acsomega.7b01934] [PMID: 31458542]
[280]
Yaqoob, S.; Ullah, F.; Mehmood, S.; Mahmood, T.; Ullah, M.; Khattak, A.; Zeb, M.A. Effect of waste water treated with TiO2 nanoparticles on early seedling growth of zea mays L. J. Water Reuse Desalin., 2018, 8(3), 424-431.
[http://dx.doi.org/10.2166/wrd.2017.163]
[281]
Konate, A.; He, X.; Zhang, Z.; Ma, Y.; Zhang, P.; Alugongo, G.M.; Rui, Y. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability, 2017, 9(5), 790.
[http://dx.doi.org/10.3390/su9050790]
[282]
Hussain, A.; Ali, S.; Rizwan, M.; Zia Ur Rehman, M.; Javed, M.R.; Imran, M.; Chatha, S.A.S.; Nazir, R. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ. Pollut., 2018, 242(Pt B), 1518-1526.
[http://dx.doi.org/10.1016/j.envpol.2018.08.036] [PMID: 30144725]
[283]
Shah, M.; Ahmad, T. Principles of Nanoscience and Nanotechnology; Alpha Sci. Int, 2010, p. 220.
[284]
Pérez-de-Luque, A.; Rubiales, D. Nanotechnology for parasitic plant control. Pest Manag. Sci. Former. Pestic. Sci., 2009, 65(5), 540-545.
[http://dx.doi.org/10.1002/ps.1732] [PMID: 19255973]
[285]
Park, H-J.; Kim, S-H.; Kim, H-J.; Choi, S-H. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J., 2006, 22(3), 295-302.
[http://dx.doi.org/10.5423/PPJ.2006.22.3.295]
[286]
Kumar, V.; Yadav, S.K. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol., 2009, 84(2), 151-157.
[http://dx.doi.org/10.1002/jctb.2023]
[287]
Prasad, R.; Swamy, V.S. Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J. Nanoparticles, 2013, 2013431218
[http://dx.doi.org/10.1155/2013/431218]
[288]
Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials (Basel), 2020, 10(9), 1654.
[http://dx.doi.org/10.3390/nano10091654] [PMID: 32842495]
[289]
Yan, A.; Chen, Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci., 2019, 20(5), 1003.
[http://dx.doi.org/10.3390/ijms20051003] [PMID: 30813508]
[290]
Kranjc, E.; Drobne, D. Nanomaterials in Plants: A review of hazard and applications in the agri-food sector. Nanomaterials (Basel), 2019, 9(8), 1094.
[http://dx.doi.org/10.3390/nano9081094] [PMID: 31366106]
[291]
Priester, J.H.; Ge, Y.; Mielke, R.E.; Horst, A.M.; Moritz, S.C.; Espinosa, K.; Gelb, J.; Walker, S.L.; Nisbet, R.M.; An, Y-J.; Schimel, J.P.; Palmer, R.G.; Hernandez-Viezcas, J.A.; Zhao, L.; Gardea-Torresdey, J.L.; Holden, P.A. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. USA, 2012, 109(37), E2451-E2456.
[http://dx.doi.org/10.1073/pnas.1205431109] [PMID: 22908279]
[292]
Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3(10), 3221-3227.
[http://dx.doi.org/10.1021/nn900887m] [PMID: 19772305]
[293]
Shen, C.X.; Zhang, Q.F.; Li, J.; Bi, F.C.; Yao, N. Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am. J. Bot., 2010, 97(10), 1602-1609.
[http://dx.doi.org/10.3732/ajb.1000073] [PMID: 21616795]
[294]
Liu, Q.; Zhao, Y.; Wan, Y.; Zheng, J.; Zhang, X.; Wang, C.; Fang, X.; Lin, J. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano, 2010, 4(10), 5743-5748.
[http://dx.doi.org/10.1021/nn101430g] [PMID: 20925388]
[295]
Atha, D.H.; Wang, H.; Petersen, E.J.; Cleveland, D.; Holbrook, R.D.; Jaruga, P.; Dizdaroglu, M.; Xing, B.; Nelson, B.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol., 2012, 46(3), 1819-1827.
[http://dx.doi.org/10.1021/es202660k] [PMID: 22201446]
[296]
Landa, P.; Vankova, R.; Andrlova, J.; Hodek, J.; Marsik, P.; Storchova, H.; White, J.C.; Vanek, T. Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J. Hazard. Mater., 2012, 241-242, 55-62.
[http://dx.doi.org/10.1016/j.jhazmat.2012.08.059] [PMID: 23036700]
[297]
Koelmel, J.; Leland, T.; Wang, H.; Amarasiriwardena, D.; Xing, B. Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ. Pollut., 2013, 174, 222-228.
[http://dx.doi.org/10.1016/j.envpol.2012.11.026] [PMID: 23277326]
[298]
Al-Huqail, A.A.; Hatata, M.M.; Al-Huqail, A.A.; Ibrahim, M.M. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J. Biol. Sci., 2018, 25(2), 313-319.
[http://dx.doi.org/10.1016/j.sjbs.2017.08.013] [PMID: 29472784]
[299]
Sun, J.; Wang, L.; Li, S.; Yin, L.; Huang, J.; Chen, C. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway. Environ. Toxicol. Chem., 2017, 36(10), 2773-2780.
[http://dx.doi.org/10.1002/etc.3833] [PMID: 28440569]
[300]
de la Rosa, G.; López-Moreno, M.L.; de Haro, D.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl. Chem., 2013, 85(12)
[http://dx.doi.org/10.1351/pac-con-12-09-05]
[301]
Kim, S.; Lee, S.; Lee, I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut., 2012, 223(5), 2799-2806.
[http://dx.doi.org/10.1007/s11270-011-1067-3]
[302]
Tripathi, S.; Sonkar, S.K.; Sarkar, S. Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale, 2011, 3(3), 1176-1181.
[http://dx.doi.org/10.1039/c0nr00722f] [PMID: 21253651]
[303]
Oberdörster, G.; Oberdörster, E.; Oberdörster, J. An emerging discipline evolving from studies of ultrafine particles supplemental web sections. Environ. Health Perspect., 2005, 113(7), 823-839.
[http://dx.doi.org/10.1289/ehp.7339] [PMID: 16002369]
[304]
López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem., 2010, 58(6), 3689-3693.
[http://dx.doi.org/10.1021/jf904472e] [PMID: 20187606]
[305]
Lee, W-M.; Kim, S.W.; Kwak, J.I.; Nam, S-H.; Shin, Y-J.; An, Y-J. Research trends of ecotoxicity of nanoparticles in soil environment. Toxicol. Res., 2010, 26(4), 253-259.
[http://dx.doi.org/10.5487/TR.2010.26.4.253] [PMID: 24278532]
[306]
Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health-a review. Biol. Trace Elem. Res., 2020, 193(1), 118-129.
[http://dx.doi.org/10.1007/s12011-019-01706-6] [PMID: 30982201]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy