Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Application of Silver Nanoparticles as a New Alternative Antiviral Agent for SARS-CoV-2: A Review

Author(s): Reena Jamunkar, Kamlesh Shrivas*, Deepak Sinha*, Sanyukta Patel, Monisha, Alka Patle, Antresh Kumar and Subhash Banerjee*

Volume 18, Issue 4, 2022

Published on: 01 April, 2022

Page: [465 - 477] Pages: 13

DOI: 10.2174/1573413717666211118105415

Price: $65

conference banner
Abstract

Background: Today, SARS-CoV-2 (COVID-19), a viral disease caused by the novel coronavirus (a tiny crowned virus), has become one of the threats for human beings all over the world and caused the death of millions of people worldwide. Many vaccines have been developed and administered to people in several countries; however, due to their propensity to create new strains, it appears that curing all corona strains will be challenging. So, it is necessary to identify the structure of the virus, mechanism of action, and its antiviral activities against drugs and other functional materials.

Methods: AgNPs have unique physicochemical and antimicrobial properties. This review describes the structure and nature of the virus and the mechanism of action of an antiviral drug such as silver nanoparticles (AgNPs) with the virus. In addition, different methods for synthesis of AgNPs, application of AgNPs as an antiviral agent against influenza virus, human immuno deficiency virus (HIV), herpes simplex virus type 1 (HSV-1), hepatitis B virus (HBV), polio virus, respiratory syncytial virus (RSV), are discussed. Also, the most probable applications and properties of AgNPs that can help prepare it as an antiviral agent are discussed.

Results: The use of AgNPs against various viruses, including the coronavirus family, is found to be effective; therefore, it can be considered for the development of antiviral agents, disinfectants, antiviral coated mask, and their therapeutic use against the treatment of novel coronavirus with minimum side effect and great efficiency.

Conclusion: AgNPs were successfully used for the treatment of various viral diseases of the coronavirus family such as H1N1, H3N2, influenza, even for SARS and MERS coronaviruses. AgNPs coated masks, disinfectants, fabrics, wipes, and inhalation systems are effective for the inhibition of SARS-CoV-2 infection. Since sanitizers have a temporary effect, the development of some other potential alternatives having low toxicity, ease of use, long lasting efficiency, health cautiousness, minimum side effect, sustainable fabrics is required.

Keywords: AgNPs, antiviral agent, SARS-CoV-2, green synthesis, H1N1, H3N2.

Graphical Abstract

[1]
Lara, H.H.; Garza-Treviño, E.N.; Ixtepan-Turrent, L.; Singh, D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology, 2011, 9, 30.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[2]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[3]
Salata, O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology, 2004, 2(1), 3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[4]
Kondow, T.; Mafuné, F. Structures and dynamics of molecules on liquid beam surfaces. Annu. Rev. Phys. Chem., 2000, 51, 731-761.
[http://dx.doi.org/10.1146/annurev.physchem.51.1.731] [PMID: 11031298]
[5]
Santamarina, M.G.; Boisier, D.; Contreras, R.; Baque, M.; Volpacchio, M.; Beddings, I. COVID-19: A hypothesis regarding the ventilation-perfusion mismatch. Crit. Care, 2020, 24(1), 395.
[http://dx.doi.org/10.1186/s13054-020-03125-9] [PMID: 32631389]
[6]
Erkoc, P.; Karnak, F.U. Nanotechnology-based antimicrobial and antiviral surface coating strategies. Prosthesis, 2021, 3, 25-52.
[http://dx.doi.org/10.3390/prosthesis3010005]
[7]
Rutala, W.A.; Weber, D.J. Guideline for disinfection and sterilization in healthcare facilities. 2008. Available from: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/
[8]
Behbudi, G. Effect of silver nanoparticles disinfectant on covid-19. J. Adv. Appl. Nano. Bio. Tech., 2021, 2, 63-67.
[9]
Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules, 2011, 16(10), 8894-8918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[10]
Mallakpour, S.; Azadia, E.; Hussain, C.M. The latest strategies in the fight against the COVID-19 pandemic: The role of metal and metal oxide nanoparticles. New J. Chem., 2021, 45, 6167-6179.
[http://dx.doi.org/10.1039/D1NJ00047K]
[11]
Pantic, I. Application of silver nanoparticles in experimental physiology and clinical medicine: current status and future prospects. Rev. Adv. Mater. Sci., 2014, 37, 15-19.
[12]
Park, S.; Park, H.H.; Kim, S.Y.; Kim, S.J.; Woo, K.; Ko, G. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol., 2014, 80(8), 2343-2350.
[http://dx.doi.org/10.1128/AEM.03427-13] [PMID: 24487537]
[13]
Henderson, D.A. Principles and lessons from the smallpox eradication programme. Bull. World Health Organ., 1987, 65(4), 535-546.
[PMID: 3319270]
[14]
Hull, H.F.; Ward, N.A.; Hull, B.P.; Milstien, J.B.; de Quadros, C. Paralytic poliomyelitis: Seasoned strategies, disappearing disease. Lancet, 1994, 343(8909), 1331-1337.
[http://dx.doi.org/10.1016/S0140-6736(94)92472-4] [PMID: 7910329]
[15]
Siadati, S.A. afzali, M.; Sayadi, M. Could silver nano-particles control the 2019-nCoV virus? An urgent glance to the past. Chem. Rev. Lett., 2020, 3, 9-11.
[16]
Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.S.; Chen, G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today, 2015, 20(5), 595-601.
[http://dx.doi.org/10.1016/j.drudis.2014.11.014] [PMID: 25543008]
[17]
Liau, S.Y.; Read, D.C.; Pugh, W.J.; Furr, J.R.; Russell, A.D. Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol., 1997, 25(4), 279-283.
[http://dx.doi.org/10.1046/j.1472-765X.1997.00219.x] [PMID: 9351278]
[18]
Mehrbod, P.; Motamed, N.; Tabatabaian, M.; Soleimani, E.R.; Amini, E.; Shahidi, M.; Kheiri, M.T. In vitro antiviral effect of “nanosilver” on influenza virus. Daru, 2009, 17, 88-93.
[19]
Xiang, D.X.; Chen, Q.; Pang, L.; Zheng, C.L. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J. Virol. Methods, 2011, 178(1-2), 137-142.
[http://dx.doi.org/10.1016/j.jviromet.2011.09.003] [PMID: 21945220]
[20]
Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett., 2008, 3, 129-133.
[http://dx.doi.org/10.1007/s11671-008-9128-2]
[21]
Lu, L.; Sun, R.W.; Chen, R.; Hui, C.K.; Ho, C.M.; Luk, J.M.; Lau, G.K.; Che, C.M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther., 2008, 13(2), 253-262.
[PMID: 18505176]
[22]
Trefry, J.C.; Wooley, D.P. Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. J. Virol. Methods, 2012, 183(1), 19-24.
[http://dx.doi.org/10.1016/j.jviromet.2012.03.014] [PMID: 22465243]
[23]
Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 2005, 3, 6.
[http://dx.doi.org/10.1186/1477-3155-3-6] [PMID: 15987516]
[24]
Wise, J.P.S., Sr; Goodale, B.C.; Wise, S.S.; Craig, G.A.; Pongan, A.F.; Walter, R.B.; Thompson, W.D.; Ng, A.K.; Aboueissa, A.M.; Mitani, H.; Spalding, M.J.; Mason, M.D. Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat. Toxicol., 2010, 97(1), 34-41.
[http://dx.doi.org/10.1016/j.aquatox.2009.11.016] [PMID: 20060603]
[25]
Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol., 2008, 42(23), 8959-8964.
[http://dx.doi.org/10.1021/es801785m] [PMID: 19192825]
[26]
Braydich-Stolle, L.K.; Lucas, B.; Schrand, A.; Murdock, R.C.; Lee, T.; Schlager, J.J.; Hussain, S.M.; Hofmann, M.C. Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells. Toxicol. Sci., 2010, 116(2), 577-589.
[http://dx.doi.org/10.1093/toxsci/kfq148] [PMID: 20488942]
[27]
Filipowska, B.; Rybicki, E.; Walawska, A. Matyjas, Zgondek E. New method for the antibacterial and antifungal modification of silver finished textiles. Fibres Text. East. Eur., 2011, 19, 124-128.
[28]
Damm, C.; Münstedt, H. Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Appl. Phys., A Mater. Sci. Process., 2008, 91, 479-486.
[http://dx.doi.org/10.1007/s00339-008-4434-1]
[29]
Mohammed Fayaz, A.; Ao, Z.; Girilal, M.; Chen, L.; Xiao, X.; Kalaichelvan, P.; Yao, X. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection. Int. J. Nanomedicine, 2012, 7, 5007-5018.
[PMID: 23049252]
[30]
Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza a virus. Nanoscale Res. Lett., 2013, 8(1), 93.
[http://dx.doi.org/10.1186/1556-276X-8-93] [PMID: 23421446]
[31]
Huy, T.Q.; Hien Thanh, N.T.; Thuy, N.T.; Chung, P.V.; Hung, P.N.; Le, A.T.; Hong Hanh, N.T. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus. J. Virol. Methods, 2017, 241, 52-57.
[http://dx.doi.org/10.1016/j.jviromet.2016.12.015] [PMID: 28040515]
[32]
Lara, H.H.; Ixtepan-Turrent, L.; Garza-Treviño, E.N.; Rodriguez-Padilla, C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J. Nanobiotechnology, 2010, 8, 15.
[http://dx.doi.org/10.1186/1477-3155-8-15] [PMID: 20626911]
[33]
Chen, Y.N.; Hsueh, Y.H.; Hsieh, C.T.; Tzou, D.Y.; Chang, P.L. Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int. J. Environ. Res. Public Health, 2016, 13(4), 430.
[http://dx.doi.org/10.3390/ijerph13040430] [PMID: 27104546]
[34]
Jeremiah, S.S.; Miyakawa, K.; Morita, T.; Yamaoka, Y.; Ryo, A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun., 2020, 533(1), 195-200.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.018] [PMID: 32958250]
[35]
Chang, S.Y.; Huang, K.Y.; Chao, T.L.; Kao, H.C.; Pang, Y.H.; Lu, L.; Chiu, C.L.; Huang, H.C.; Cheng, T.R.; Fang, J.M.; Yang, P.C. Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Sci. Rep., 2021, 11(1), 8692.
[http://dx.doi.org/10.1038/s41598-021-87254-3] [PMID: 33888738]
[36]
Almeida, J.D. Morphology: Virus structure. Immunology, 1984, 52, 780.
[37]
Khandelwal, N.; Kaur, G.; Kumar, N.; Tiwari, A. Application of Silver nanoparticles in viral inhibition: A new hope for antivirals. Dig. J. Nanomater. Biostruct., 2014, 9, 175-186.
[38]
Domingo, E. Mechanisms of viral emergence. Vet. Res., 2010, 41(6), 38.
[http://dx.doi.org/10.1051/vetres/2010010] [PMID: 20167200]
[39]
Sun, R.W.; Chen, R.; Chung, N.P.; Ho, C.M.; Lin, C.L.; Che, C.M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. (Camb.), 2005, 40(40), 5059-5061.
[http://dx.doi.org/10.1039/b510984a] [PMID: 16220170]
[40]
Papp, I.; Sieben, C.; Ludwig, K.; Roskamp, M.; Böttcher, C.; Schlecht, S.; Herrmann, A.; Haag, R. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small, 2010, 6(24), 2900-2906.
[http://dx.doi.org/10.1002/smll.201001349] [PMID: 21104827]
[41]
Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Hua, L.; Wang, H.; Xia, H.; Zhu, B. Silver nanoparticle based codelivery of Oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl. Mater. Interfaces, 2016, 8(37), 24385-24393.
[http://dx.doi.org/10.1021/acsami.6b06613] [PMID: 27588566]
[42]
Dung, T.T.N.; Nama, V.N.; Nhana, T.T.; Ngocb, T.T.B.; Minhc, L.Q.; Ngab, B.T.T.; Leb, V.P.; Quangd, D.V. Silver nanoparticles as potential antiviral agents against African swine fever virus. Mater. Res. Express, 2020, 2020, 6.
[43]
Xiang, D.; Zheng, Y.; Duan, W.; Li, X.; Yin, J.; Shigdar, S.; O’Connor, M.L.; Marappan, M.; Zhao, X.; Miao, Y.; Xiang, B.; Zheng, C. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomedicine, 2013, 8, 4103-4113.
[http://dx.doi.org/10.2147/IJN.S53622] [PMID: 24204140]
[44]
Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, S.; Galdiero, M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine, 2013, 8, 4303-4314.
[PMID: 24235828]
[45]
Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Baska, P.; Nowakowska, J.; Sokolowska, J.; Nowak, Z.; Donten, M.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus Type 2 infection. PLoS One, 2014, 9(8), e104113.
[46]
Bryaskova, R.; Pencheva, D.; Nikolov, S.; Kantardjiev, T. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). J. Chem. Biol., 2011, 4(4), 185-191.
[http://dx.doi.org/10.1007/s12154-011-0063-9] [PMID: 22837793]
[47]
Habiba, K.; Makarov, V.I.; Weiner, B.R.; Morell, G. Fabrication of nanomaterials by pulsed laser synthesis, Manufacturing Nanostructures. In: One Central Press: Cheshire; , 2014; pp. 263-291.
[48]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[49]
Thuc, D.T.; Huy, T.Q.; Hoang, L.H.; Tien, B.C.; Chung, P.V.; Thuy, N.T.; Le, A.T. Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity. Mater. Lett., 2016, 181, 173-177.
[http://dx.doi.org/10.1016/j.matlet.2016.06.008]
[50]
Mofrad, R.T.; Hadi, R.; Tahmasebi, B.; Farhoudian, S.; Mehravar, M.; Nasiri, R. Green synthesis of gold nanoparticles using plant extract: mini-review. Nanochem. Res., 2017, 2, 8-19.
[51]
Akbarzadeh, A.; Kafshdooz, L.; Razban, Z.; Dastranj Tbrizi, A.; Rasoulpour, S.; Khalilov, R.; Kavetskyy, T.; Saghfi, S.; Nasibova, A.N.; Kaamyabi, S.; Kafshdooz, T. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 263-267.
[http://dx.doi.org/10.1080/21691401.2017.1307208] [PMID: 28403676]
[52]
Orłowski, P.; Kowalczyk, A.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Węgrzyn, A.; Grzesiak, J.; Celichowski, G.; Grobelny, J.; Eriksson, K.; Krzyzowska, M. Antiviral activity of Tannic acid modified silver nanoparticles: Potential to activate immune response in herpes Genitalis. Viruses, 2018, 10(10), 524.
[http://dx.doi.org/10.3390/v10100524] [PMID: 30261662]
[53]
Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; Chen, L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2019, 14, 1469-1487.
[http://dx.doi.org/10.2147/IJN.S191340] [PMID: 30880959]
[54]
Dhuper, S.; Panda, D.; Nayak, P.L. Green synthesis and characterization of zero valent iron nano-particles from the leaf extract of Mangifera indica. Nano. Trends J Nanotechnol. Appl., 2012, 13, 16-22.
[55]
Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M. BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces, 2010, 77(2), 257-262.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.007] [PMID: 20197229]
[56]
Sahayaraj, K.; Rajesh, S. Bionanoparticles: Synthesis and antimicrobial applications. In: FORMATEX; , 2011; p. 228-244.
[57]
Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog., 2006, 22(2), 577-583.
[http://dx.doi.org/10.1021/bp0501423] [PMID: 16599579]
[58]
Ahamed, M.; Khan, M.; Siddiqui, M.; AlSalhi, M.S.; Alrokayan, S.A. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Physica E, 2011, 43, 1266-1271.
[http://dx.doi.org/10.1016/j.physe.2011.02.014]
[59]
Nakkala, J.R.; Mata, R.; Gupta, A.K.; Sadras, S.R. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem., 2014, 85, 784-794.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.024] [PMID: 25147142]
[60]
Kumarasamyraja, D. jeganathan, N. S. Green synthesis of silver nanoparticles using aqueous extract of Acalypha indica and its antimicrobial activity. Int. J. Pharma Bio Sci., 2013, 4, 469-476.
[61]
Ashok, K.S.; Ravi, S.; Kathiravan, V.; Velmurugan, S. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 134, 34-39.
[http://dx.doi.org/10.1016/j.saa.2014.05.076]
[62]
Nakkala, J.R.; Mata, R.; Gupta, A.K.; Sadras, S.R. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[63]
Narayanan, K.B.; Park, H.H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassicarapa L.) against wood rotting pathogens. Eur. J. Plant Pathol., 2014, 140, 185-192.
[http://dx.doi.org/10.1007/s10658-014-0399-4]
[64]
Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(3), 594-598.
[http://dx.doi.org/10.1016/j.saa.2011.03.040] [PMID: 21536485]
[65]
Jain, D.; Daima, H.K.; Kachhwaha, S.; Kothari, S. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig. J. Nanomat. Bios., 2009, 4, 557-563.
[66]
Mariselvam, R.; Ranjitsingh, A.J.A.; Usha Raja Nanthini, A.; Kalirajan, K.; Padmalatha, C.; Mosae Selvakumar, P. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129, 537-541.
[http://dx.doi.org/10.1016/j.saa.2014.03.066] [PMID: 24762541]
[67]
Gondwal, M.; Pant, G.J.N. Biological evaluation and green synthesis of silver nanoparticles using aqueous extract of Calotropis procera. Int. J. Pharma Bio Sci., 2013, 4, 635-643.
[68]
Kesharwani, J.; Yoon, K.Y.; Hwang, J.; Rai, M. Phytofabrication of silver nanoparticles by leaf extract of Datura metel: Hypothetical mechanism involved in synthesis. J. Bionanosci., 2009, 3, 39-44.
[http://dx.doi.org/10.1166/jbns.2009.1008]
[69]
Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeya, N.K. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2010, 15, 113-120.
[http://dx.doi.org/10.1016/j.jscs.2010.06.004]
[70]
Prasad, T.N.V.K.V.; Elumalai, E.K. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed., 2011, 1(6), 439-442.
[http://dx.doi.org/10.1016/S2221-1691(11)60096-8] [PMID: 23569809]
[71]
Kathiravan, V.; Ravi, S.; Ashokkumar, S. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 130, 116-121.
[http://dx.doi.org/10.1016/j.saa.2014.03.107] [PMID: 24769382]
[72]
Santhoshkumar, T.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Bagavan, A.; Jayaseelan, C.; Zahir, A.A.; Elango, G.; Kamaraj, C. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res., 2011, 108(3), 693-702.
[http://dx.doi.org/10.1007/s00436-010-2115-4] [PMID: 20978795]
[73]
Firdhouse, M.J.; Lalitha, P. Green synthesis of silver nanoparticles using the aqueous extract of Portulaca oleracea(L). Asian J. Pharm. Clin. Res., 2012, 6, 92-94.
[74]
Sadeghi, B.; Rostami, A.; Momeni, S.S. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 326-332.
[http://dx.doi.org/10.1016/j.saa.2014.05.078] [PMID: 25022505]
[75]
Suna, Q.; Cai, X.; Li, J.; Zheng, M.; Chenb, Z.; Yu, C.P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloid Surf. A Physicochem. Eng. Asp., 2014, 444, 226-231.
[http://dx.doi.org/10.1016/j.colsurfa.2013.12.065]
[76]
Rupiasih, N.N.; Aher, A.; Gosavi, S.; Vidyasagar, P.B. Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: A novel approach towards poisonous plant utilization. J. Phys. Conf. Ser., 2013, 423, 1-8.
[http://dx.doi.org/10.1088/1742-6596/423/1/012032]
[77]
Gopinath, V. MubarakAli, D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces, 2012, 96, 69-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.023] [PMID: 22521683]
[78]
Gnanajobitha, G.; Paulkumar, K.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C. AnnaduraiG andKannanC, Fruit-mediatedsynthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostructure Chem., 2013, 3, 1-6.
[http://dx.doi.org/10.1186/2193-8865-3-67]
[79]
Sadeghi, B.; Gholamhoseinpoor, F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 310-315.
[http://dx.doi.org/10.1016/j.saa.2014.06.046] [PMID: 25022503]
[80]
Haggag, E.G.; Elshamy, A.M.; Rabeh, M.A.; Gabr, N.M.; Salem, M.; Youssif, K.A.; Samir, A.; Bin Muhsinah, A.; Alsayari, A.; Abdelmohsen, U.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomedicine, 2019, 14, 6217-6229.
[http://dx.doi.org/10.2147/IJN.S214171] [PMID: 31496682]
[81]
Loo, Y.Y. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. microbial., 2018, 9, 1555.
[82]
Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Hua, L.; Wang, H.; Xia, H.; Zhu, B. Silver nanoparticles based co-delivery of Oseltamivir to inhibit the activity of H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl. Mater. Interfaces, 2016, 8(37), 24385-24393.
[http://dx.doi.org/10.1021/acsami.6b06613] [PMID: 27588566]
[83]
Wilson, I.A.; Skehel, J.J.; Wiley, D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature, 1981, 289(5796), 366-373.
[http://dx.doi.org/10.1038/289366a0] [PMID: 7464906]
[84]
Liu, Y.; Zhang, L.; Wei, W.; Zhao, H.; Zhou, Z.; Zhang, Y.; Liu, S. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst (Lond.), 2015, 140(12), 3989-3995.
[http://dx.doi.org/10.1039/C5AN00407A] [PMID: 25899840]
[85]
Choi, J.; Martin, S.J.H.; Tripp, R.A.; Tompkins, S.M.; Dluhy, R.A. Detection of neuraminidase stalk motifs associated with enhanced N1 subtype influenza A virulence via Raman spectroscopy. Analyst (Lond.), 2015, 140(22), 7748-7760.
[http://dx.doi.org/10.1039/C5AN00977D] [PMID: 26460183]
[86]
Londrigan, S.L.; Short, K.R.; Ma, J.; Gillespie, L.; Rockman, S.P.; Brooks, A.G.; Reading, P.C. Infection of mouse macrophages by seasonal influenza viruses can be restricted at the level of virus entry and at a late stage in the virus life cycle. J. Virol., 2015, 89(24), 12319-12329.
[http://dx.doi.org/10.1128/JVI.01455-15] [PMID: 26423941]
[87]
Lin, Z.; Li, Y.; Guo, M.; Xu, T.; Wang, C.; Zhao, M.; Wang, H.; Chen, T.; Zhu, B. Inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Advances, 2017, 7, 742-750.
[http://dx.doi.org/10.1039/C6RA25010F]
[88]
Cronin, J.; Zhang, X.Y.; Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther., 2005, 5(4), 387-398.
[http://dx.doi.org/10.2174/1566523054546224] [PMID: 16101513]
[89]
Lara, H.H.; Ayala-Nuñez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnology, 2010, 8, 1.
[http://dx.doi.org/10.1186/1477-3155-8-1] [PMID: 20145735]
[90]
Peters, T.J. All About Albumin: Biochemistry, Genetics and Medical Applications; Academic Press: San Diego, 1996, pp. 9-75.
[91]
Sweeney, R.Y.; Mao, C.; Gao, X.; Burt, J.L.; Belcher, A.M.; Georgiou, G.; Iverson, B.L. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol., 2004, 11(11), 1553-1559.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.022] [PMID: 15556006]
[92]
Whitley, R.J.; Kimberlin, D.W.; Roizman, B.; Roizman, B. Herpes simplex viruses. Clin. Infect. Dis., 1998, 26(3), 541-553.
[http://dx.doi.org/10.1086/514600] [PMID: 9524821]
[93]
Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem., 2009, 20(8), 1497-1502.
[http://dx.doi.org/10.1021/bc900215b] [PMID: 21141805]
[94]
Will, H.; Reiser, W.; Weimer, T.; Pfaff, E.; Büscher, M.; Sprengel, R.; Cattaneo, R.; Schaller, H. Replication strategy of human hepatitis B virus. J. Virol., 1987, 61(3), 904-911.
[http://dx.doi.org/10.1128/jvi.61.3.904-911.1987] [PMID: 3806799]
[95]
Lau, G.K.K. Does treatment with interferon-based therapy improve the natural history of chronic hepatitis B infection? J. Hepatol., 2007, 46(1), 6-8.
[http://dx.doi.org/10.1016/j.jhep.2006.10.008] [PMID: 17112628]
[96]
Morris, D.; Ansar, M.; Speshock, J.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R. Antiviral and immunomodulatory activity of silver nanoparticles in experimental rsv infection. Viruses, 2019, 11(8), 732.
[http://dx.doi.org/10.3390/v11080732] [PMID: 31398832]
[97]
Lova, S.; Singh, A.; Vig, K.; Pillai, S.R. Silver nanoparticles inhibit replication of Respiratory Synctial Virus. J. Biomed. Nanotechnol., 2008, 4, 1-10.
[98]
Yang, X.X.; Li, C.M.; Huang, C.Z. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 2016, 8(5), 3040-3048.
[http://dx.doi.org/10.1039/C5NR07918G] [PMID: 26781043]
[99]
Zhang, C.; Zheng, W.; Huang, X.; Bell, E.W.; Zhou, X.; Zhang, Y. protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J. Proteome Res., 2020, 19(4), 1351-1360.
[http://dx.doi.org/10.1021/acs.jproteome.0c00129] [PMID: 32200634]
[100]
Huang, H.; Fan, C.; Li, M.; Nie, H.L.; Wang, F.B.; Wang, H.; Wang, R.; Xia, J.; Zheng, X.; Zuo, X.; Huang, J. COVID-19: A call for physical scientists and engineers. ACS Nano, 2020, 14(4), 3747-3754.
[http://dx.doi.org/10.1021/acsnano.0c02618] [PMID: 32267678]
[101]
Shirvanimoghaddam, K.; Akbari, M.K.; Yadav, R.; Al-Tamimi, A.K.; Naebe, M.; Naebe, M. Fight against COVID-19: The case of antiviral surfaces. APL Mater., 2021, 9(3), 031112.
[http://dx.doi.org/10.1063/5.0043009] [PMID: 33842101]
[102]
Cao, L.; Lu, J. Atomic-scale engineering of metal–oxide interfaces for advanced catalysis using atomic layer deposition. Catal. Sci. Technol., 2020, 10, 2695-2710.
[http://dx.doi.org/10.1039/D0CY00304B]
[103]
Teirumnieks, E.; Balchev, I.; Ghalot, R.S.; Lazov, L. Antibacterial and anti-viral effects of silver nanoparticles in medicine against COVID-19: A review; Laser Phy, 2021, p. 31.
[104]
Hamouda, T.; Ibrahim, H.M.; Kafafy, H.H.; Mashaly, H.M.; Mohamed, N.H.; Aly, N.M. Preparation of cellulose-based wipes treated with antimicrobial and antiviral silver nanoparticles as novel effective high-performance coronavirus fighter. Int. J. Biol. Macromol., 2021, 181, 990-1002.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.071] [PMID: 33864870]
[105]
Sarkar, S. Silver nanoparticles with Bronchodilators through Nebulisation to treat Covid 19 patients. J. Curr. Med. Res. Opin., 2020, 3, 449-450.
[106]
Lv, X.; Wang, P.; Bai, R.; Cong, Y.; Suo, S.; Ren, X.; Chen, C. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials, 2014, 35(13), 4195-4203.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.054] [PMID: 24524838]
[107]
Balagna, C.; Perero, S.; Percivalle, E.; Nepita, E.V.; Ferraris, M. Virucidal effect against Corona virus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics, 2020, 1, 100006.
[http://dx.doi.org/10.1016/j.oceram.2020.100006]
[108]
Vazquez, M.R.; Ribot, J.L.L. Nanotechnology as an alternative to reduce the spread of COVID-19. Challenges, 2020, 11, 15.
[http://dx.doi.org/10.3390/challe11020015]
[109]
Hasan, S. A review on nanoparticles: Their synthesis and types. Res. J. Recent Sci., 2014, 4, 1-3.
[110]
Ran, J.; He, M.; Li, W.; Cheng, D.; Wang, X. Growing ZnO nanoparticles on polydopamine -templated cotton fabrics for durable antimicrobial activity and UV protection. Polymers (Basel), 2018, 10(5), 495.
[http://dx.doi.org/10.3390/polym10050495] [PMID: 30966529]
[111]
Han, J.; Chen, L.; Duan, S.M.; Yang, Q.X.; Yang, M.; Gao, C.; Zhang, B.Y.; He, H.; Dong, X.P. Efficient and quick inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts. Biomed. Environ. Sci., 2005, 18(3), 176-180.
[PMID: 16131020]
[112]
Bright, K.R.; Sicairos, R.E.E.; Gundy, P.M.; Gerba, C.P. Assessment of the antiviral properties of zeolites containing metal ions. Food Environ. Virol., 2009, 1, 37.
[http://dx.doi.org/10.1007/s12560-008-9006-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy