Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Oral Treatment with Angiotensin-(1-7) Attenuates the Kidney Injury Induced by Gentamicin in Wistar Rats

Author(s): Lílian Fernanda Pacheco*, Carlos Henrique de Castro, João Batista Rodrigues Dutra, Ruy de Souza Lino Junior, Patrícia Maria Ferreira, Robson Augusto Souza dos Santos and Cirano José Ulhoa

Volume 28, Issue 12, 2021

Published on: 06 December, 2021

Page: [1425 - 1433] Pages: 9

DOI: 10.2174/0929866528666211118091810

Price: $65

conference banner
Abstract

Background: Acute Kidney Injury (AKI), a common disease of the urinary system, can be induced by high doses of gentamicin (GM). The renin-angiotensin system exerts a key role in the progression of the AKI since elevated intrarenal levels of Ang II, and ACE activity is found in this condition. However, it is unknown whether oral administration of angiotensin (Ang)-(1-7), a heptapeptide that evokes opposite effects of Ang II, may attenuate the renal injuries induced by gentamicin.

Objectives: To evaluate the effects of Ang-(1-7) on GM-induced renal dysfunction in rats.

Methods: AKI was induced by subcutaneous administration of GM (80 mg/Kg) for 5 days. Simultaneously, Ang-(1-7) included in hydroxypropyl β-cyclodextrin (HPβCD) was administered by gavage [46 μg/kg HPβCD + 30 μg/kg Ang-(1-7)]. At the end of the treatment period (sixth day), the rats were housed in metabolic cages for renal function evaluation. Thereafter, blood and kidney samples were collected.

Results: Ang-(1-7) attenuated the increase of the plasmatic creatinine and proteinuria caused by GM but did not change the glomerular filtration rate nor tubular necrosis. Ang-(1-7) attenuated the increased urinary flow and the fractional excretion of H2O and potassium observed in GM rats but intensified the elevated excretion of sodium in these animals. Morphological analysis showed that Ang-(1-7) also reduced the tubular vacuolization in kidneys from GM rats.

Conclusion: Ang-(1-7) promotes selective beneficial effects in renal injuries induced by GM.

Keywords: Hidroxipropil-Beta-cyclodextrin, HPβCD, kidney function, nephrotoxicity, renin-angiotensin system, renoprotective effect.

Graphical Abstract

[1]
Hilton, R. Defining acute renal failure. CMAJ, 2011, 183(10), 1167-1169.
[http://dx.doi.org/10.1503/cmaj.081170] [PMID: 21624906]
[2]
Hanif, M.O.; Bali, A.; Ramphul, K. Acute renal tubular necrosis. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[3]
Basile, D.P.; Anderson, M.D.; Sutton, T.A. Pathophysiology of acute kidney injury. In: Comprehensive Physiology; American Cancer Society: Georgia, USA, 2012; pp. 1303-1353.
[http://dx.doi.org/10.1002/cphy.c110041]
[4]
Bakhriansyah, M.; Souverein, P.C.; van den Hoogen, M.W.F.; de Boer, A.; Klungel, O.H. Risk of nephrotic syndrome for non-steroidal anti-inflammatory drug users. Clin. J. Am. Soc. Nephrol., 2019, 14(9), 1355-1362.
[http://dx.doi.org/10.2215/CJN.14331218] [PMID: 31416888]
[5]
Gupta, A.; Puri, V.; Sharma, R.; Puri, S. Folic acid induces acute renal failure (ARF) by enhancing renal prooxidant state. Exp. Toxicol. Pathol., 2012, 64(3), 225-232.
[http://dx.doi.org/10.1016/j.etp.2010.08.010] [PMID: 20833517]
[6]
Ali, B.H.; Al-Salam, S.; Al-Husseini, I.; Nemmar, A. Comparative protective effect of N-acetyl cysteine and tetramethylpyrazine in rats with gentamicin nephrotoxicity. J. Appl. Toxicol., 2009, 29(4), 302-307.
[http://dx.doi.org/10.1002/jat.1409] [PMID: 19117019]
[7]
Mansfield, K.E.; Nitsch, D.; Smeeth, L.; Bhaskaran, K.; Tomlinson, L.A. Prescription of renin-angiotensin system blockers and risk of acute kidney injury: A population-based cohort study. BMJ Open, 2016, 6(12), e012690.
[http://dx.doi.org/10.1136/bmjopen-2016-012690] [PMID: 28003286]
[8]
Yang, X.H.; Wang, Y.H.; Wang, J.J.; Liu, Y.C.; Deng, W.; Qin, C.; Gao, J.L.; Zhang, L.Y. Role of angiotensin-converting enzyme (ACE and ACE2) imbalance on tourniquet-induced remote kidney injury in a mouse hindlimb ischemia-reperfusion model. Peptides, 2012, 36(1), 60-70.
[http://dx.doi.org/10.1016/j.peptides.2012.04.024] [PMID: 22580272]
[9]
Kontogiannis, J.; Burns, K.D. Role of AT1 angiotensin II receptors in renal ischemic injury. Am. J. Physiol., 1998, 274(1), F79-F90.
[http://dx.doi.org/10.1152/ajprenal.1998.274.1.F79] [PMID: 9458826]
[10]
Santos, R.A.; Brosnihan, K.B.; Chappell, M.C.; Pesquero, J.; Chernicky, C.L.; Greene, L.J.; Ferrario, C.M. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension, 1988, 11(2 Pt 2), I153-I157.
[http://dx.doi.org/10.1161/01.HYP.11.2_Pt_2.I153] [PMID: 2831145]
[11]
Santos, R.A.S.; Simoes e Silva, A.C.; Maric, C.; Silva, D.M.R.; Machado, R.P.; de Buhr, I.; Heringer-Walther, S.; Pinheiro, S.V.B.; Lopes, M.T.; Bader, M.; Mendes, E.P.; Lemos, V.S.; Campagnole-Santos, M.J.; Schultheiss, H.P.; Speth, R.; Walther, T. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8258-8263.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[12]
da Silveira, K.D.; Pompermayer Bosco, K.S.; Diniz, L.R.L.; Carmona, A.K.; Cassali, G.D.; Bruna-Romero, O.; de Sousa, L.P.; Teixeira, M.M.; Santos, R.A.S.; Simões e Silva, A.C.; Ribeiro Vieira, M.A. ACE2-angiotensin-(1-7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin. Sci. (Lond.), 2010, 119(9), 385-394.
[http://dx.doi.org/10.1042/CS20090554] [PMID: 20528771]
[13]
Vallon, V.; Heyne, N.; Richter, K.; Khosla, M.C.; Fechter, K. [7-D-ALA]-angiotensin 1-7 blocks renal actions of angiotensin 1-7 in the anesthetized rat. J. Cardiovasc. Pharmacol., 1998, 32(1), 164-167.
[http://dx.doi.org/10.1097/00005344-199807000-00025] [PMID: 9676737]
[14]
Shenoy, V.; Ferreira, A.J.; Qi, Y.; Fraga-Silva, R.A.; Díez-Freire, C.; Dooies, A.; Jun, J.Y.; Sriramula, S.; Mariappan, N.; Pourang, D.; Venugopal, C.S.; Francis, J.; Reudelhuber, T.; Santos, R.A.; Patel, J.M.; Raizada, M.K.; Katovich, M.J. The angiotensin-converting enzyme 2/angiogenesis-(1-7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. Am. J. Respir. Crit. Care Med., 2010, 182(8), 1065-1072.
[http://dx.doi.org/10.1164/rccm.200912-1840OC] [PMID: 20581171]
[15]
Marques, F.D.; Melo, M.B.; Souza, L.E.; Irigoyen, M.C.C.; Sinisterra, R.D.; de Sousa, F.B.; Savergnini, S.Q.; Braga, V.B.A.; Ferreira, A.J.; Santos, R.A.S. Beneficial effects of long-term administration of an oral formulation of Angiotensin-(1-7) in infarcted rats. Int. J. Hypertens., 2012, 2012, 795452.
[http://dx.doi.org/10.1155/2012/795452] [PMID: 22482038]
[16]
Zheng, Y.; Tang, L.; Huang, W.; Yan, R.; Ren, F.; Luo, L.; Zhang, L. Anti-inflammatory effects of Ang-(1-7) in ameliorating HFD-induced renal injury through LDLr-SREBP2-SCAP pathway. PLoS One, 2015, 10(8), e0136187.
[http://dx.doi.org/10.1371/journal.pone.0136187] [PMID: 26291618]
[17]
Zhang, F.; Ren, J.; Chan, K.; Chen, H. Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells. Biochem. Biophys. Res. Commun., 2013, 430(2), 642-646.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.098] [PMID: 23219836]
[18]
Giani, J.F.; Muñoz, M.C.; Pons, R.A.; Cao, G.; Toblli, J.E.; Turyn, D.; Dominici, F.P. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am. J. Physiol. Renal Physiol., 2011, 300(1), F272-F282.
[http://dx.doi.org/10.1152/ajprenal.00278.2010] [PMID: 20962118]
[19]
Singh, T.; Singh, K.; Sharma, P.L. Ameliorative potential of angiotensin1-7/Mas receptor axis in streptozotocin-induced diabetic nephropathy in rats. Methods Find. Exp. Clin. Pharmacol., 2010, 32(1), 19-25.
[http://dx.doi.org/10.1358/mf.2010.32.1.1434160] [PMID: 20383342]
[20]
Papinska, A.M.; Mordwinkin, N.M.; Meeks, C.J.; Jadhav, S.S.; Rodgers, K.E. Angiotensin-(1-7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br. J. Pharmacol., 2015, 172(18), 4443-4453.
[http://dx.doi.org/10.1111/bph.13225] [PMID: 26075703]
[21]
Kim, C.S.; Kim, I.J.; Bae, E.H.; Ma, S.K.; Lee, J.; Kim, S.W. Angiotensin-(1-7) attenuates kidney injury due to obstructive nephropathy in rats. PLoS One, 2015, 10(11), e0142664.
[http://dx.doi.org/10.1371/journal.pone.0142664] [PMID: 26556707]
[22]
Xu, C.; Ding, W.; Zhang, M.; Gu, Y. Protective effects of angiotensin-(1-7) administrated with an angiotensin-receptor blocker in a rat model of chronic kidney disease. Nephrology (Carlton), 2013, 18(12), 761-769.
[http://dx.doi.org/10.1111/nep.12146] [PMID: 23901805]
[23]
Lula, I.; Denadai, Â.L.; Resende, J.M.; de Sousa, F.B.; de Lima, G.F.; Pilo-Veloso, D.; Heine, T.; Duarte, H.A.; Santos, R.A.S.; Sinisterra, R.D. Study of angiotensin-(1-7) vasoactive peptide and its β-cyclodextrin inclusion complexes: Complete sequence-specific NMR assignments and structural studies. Peptides, 2007, 28(11), 2199-2210.
[http://dx.doi.org/10.1016/j.peptides.2007.08.011] [PMID: 17904691]
[24]
De Sousa, F.B.; Denadai, Â.M.L.; Lula, I.S.; Nascimento, C.S., Jr; Fernandes Neto, N.S.; Lima, A.C.; De Almeida, W.B.; Sinisterra, R.D. Supramolecular self-assembly of cyclodextrin and higher water soluble guest: thermodynamics and topological studies. J. Am. Chem. Soc., 2008, 130(26), 8426-8436.
[http://dx.doi.org/10.1021/ja801080v] [PMID: 18529008]
[25]
Marques, F.D.; Ferreira, A.J.; Sinisterra, R.D.M.; Jacoby, B.A.; Sousa, F.B.; Caliari, M.V.; Silva, G.A.B.; Melo, M.B.; Nadu, A.P.; Souza, L.E. An oral formulation of Angiotensin-(1-7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertens, 2011, 57(3), 477-483.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.167346]
[26]
Gómez-Mendoza, D.P.; Marques, F.D.; Melo-Braga, M.N.; Sprenger, R.R.; Sinisterra, R.D.; Kjeldsen, F.; Santos, R.A.; Verano-Braga, T. Angiotensin-(1-7) oral treatment after experimental myocardial infarction leads to downregulation of CXCR4. J. Proteomics, 2019, 208, 103486.
[http://dx.doi.org/10.1016/j.jprot.2019.103486] [PMID: 31437601]
[27]
Bertagnolli, M.; Casali, K.R.; De Sousa, F.B.; Rigatto, K.; Becker, L.; Santos, S.H.S.; Dias, L.D.; Pinto, G.; Dartora, D.R.; Schaan, B.D.; Milan, R.D.; Irigoyen, M.C.; Santos, R.A. An orally active angiotensin-(1-7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides, 2014, 51, 65-73.
[http://dx.doi.org/10.1016/j.peptides.2013.11.006] [PMID: 24262271]
[28]
Santos, S.H.S.; Giani, J.F.; Burghi, V.; Miquet, J.G.; Qadri, F.; Braga, J.F.; Todiras, M.; Kotnik, K.; Alenina, N.; Dominici, F.P.; Santos, R.A.; Bader, M. Oral administration of angiotensin-(1-7) ameliorates type 2 diabetes in rats. J. Mol. Med. (Berl.), 2014, 92(3), 255-265.
[http://dx.doi.org/10.1007/s00109-013-1087-0] [PMID: 24162089]
[29]
Figueiredo, V.P.; Barbosa, M.A.; de Castro, U.G.M.; Zacarias, A.C.; Bezerra, F.S.; de Sá, R.G.; de Lima, W.G.; Dos Santos, R.A.S.; Alzamora, A.C. Antioxidant effects of oral Ang-(1-7) restore insulin pathway and RAS components ameliorating cardiometabolic disturbances in rats. Oxid. Med. Cell. Longev., 2019, 2019, 5868935.
[http://dx.doi.org/10.1155/2019/5868935] [PMID: 31396301]
[30]
Feltenberger, J.D.; Andrade, J.M.O.; Paraíso, A.; Barros, L.O.; Filho, A.B.M.; Sinisterra, R.D.M.; Sousa, F.B.; Guimarães, A.L.S.; de Paula, A.M.B.; Campagnole-Santos, M.J. Oral formulation of Angiotensin-(1-7) improves lipid metabolism and prevents high-fat diet-induced hepatic steatosis and inflammation in mice. Hypertens, 2013, 62(2), 324-330.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00919]
[31]
Bennion, D.M.; Jones, C.H.; Donnangelo, L.L.; Graham, J.T.; Isenberg, J.D.; Dang, A.N.; Rodriguez, V.; Sinisterra, R.D.M.; Sousa, F.B.; Santos, R.A.S.; Sumners, C. Neuroprotection by post-stroke administration of an oral formulation of angiotensin-(1-7) in ischaemic stroke. Exp. Physiol., 2018, 103(6), 916-923.
[http://dx.doi.org/10.1113/EP086957] [PMID: 29663576]
[32]
Moreira Galdino, P.; Nunes Alexandre, L.; Fernanda Pacheco, L.; de Souza Lino Junior, R.; de Paula, J.R.; Rodrigues Pedrino, G.; Henrique Xavier, C.; Maria Ferreira, P. Nephroprotective effect of Rudgea viburnoides (Cham.) Benth leaves on gentamicin-induced nephrotoxicity in rats. J. Ethnopharmacol., 2017, 201, 100-107.
[http://dx.doi.org/10.1016/j.jep.2017.02.035] [PMID: 28242383]
[33]
Kirsztajn, G.M. Avaliação do ritmo de filtração glomerular. J. Bras. Patol. Med. Lab., 2007, 43(4), 257-264.
[http://dx.doi.org/10.1590/S1676-24442007000400007]
[34]
Banday, A.A.; Farooq, N.; Priyamvada, S.; Yusufi, A.N.K.; Khan, F. Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues. Life Sci., 2008, 82(9-10), 450-459.
[http://dx.doi.org/10.1016/j.lfs.2007.11.014] [PMID: 18201728]
[35]
Hishida, A.; Nakajima, T.; Yamada, M.; Kato, A.; Honda, N. Roles of hemodynamic and tubular factors in gentamicin-mediated nephropathy. Ren. Fail., 1994, 16(1), 109-116.
[http://dx.doi.org/10.3109/08860229409044852] [PMID: 8184137]
[36]
Heeba, G.H.; Angiotensin, I.I. Angiotensin II receptor blocker, losartan, ameliorates gentamicin-induced oxidative stress and nephrotoxicity in rats. Pharmacology, 2011, 87(3-4), 232-240.
[http://dx.doi.org/10.1159/000325457] [PMID: 21474976]
[37]
Ren, Y.; Garvin, J.L.; Carretero, O.A. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertens, 2002, 39(3), 799-802.
[http://dx.doi.org/10.1161/hy0302.104673]
[38]
DelliPizzi, A.M.; Hilchey, S.D.; Bell-Quilley, C.P. Natriuretic action of angiotensin(1-7). Br. J. Pharmacol., 1994, 111(1), 1-3.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14014.x] [PMID: 8012686]
[39]
Santos, R.A.; Simões e Silva, A.C.; Magaldi, A.J.; Khosla, M.C.; Cesar, K.R.; Passaglio, K.T.; Baracho, N.C. Evidence for a physiological role of angiotensin-(1-7) in the control of hydroelectrolyte balance. Hypertension, 1996, 27(4), 875-884.
[http://dx.doi.org/10.1161/01.HYP.27.4.875] [PMID: 8613263]
[40]
Bürgelová, M.; Kramer, H.J.; Teplan, V.; Velicková, G.; Vítko, S.; Heller, J.; Malý, J.; Červenka, L. Intrarenal infusion of angiotensin-(1-7) modulates renal functional responses to exogenous angiotensin II in the rat. Kidney Blood Press. Res., 2002, 25(4), 202-210.
[http://dx.doi.org/10.1159/000066340] [PMID: 12424421]
[41]
Palmer, B.F. Proteinuria as a therapeutic target in patients with chronic kidney disease. Am. J. Nephrol., 2007, 27(3), 287-293.
[http://dx.doi.org/10.1159/000101958] [PMID: 17457028]
[42]
Ahmadvand, H.; Nouryazdan, N.; Nasri, M.; Adibhesami, G.; Babaeenezhad, E. Renoprotective effects of gallic acid against gentamicin nephrotoxicity through amelioration of oxidative stress in rats. Braz. Arch. Biol. Technol., 2020, 63, e20200131.
[http://dx.doi.org/10.1590/1678-4324-2020200131]
[43]
de-Barros-e-Silva, M.L.; Varanda, W.A.; Lachat, J.J.; Alves-da-Silva, C.G.; Coimbra, T.M. Glomerular permeability to macromolecules in gentamicin-treated rats. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol., 1992, 25(4), 409-417.
[44]
Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int., 2011, 79(1), 33-45.
[http://dx.doi.org/10.1038/ki.2010.337] [PMID: 20861826]
[45]
Benter, I.F.; Yousif, M.H.M.; Anim, J.T.; Cojocel, C.; Diz, D.I. Angiotensin-(1-7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(2), H684-H691.
[http://dx.doi.org/10.1152/ajpheart.00632.2005] [PMID: 16403946]
[46]
Ali, B.H.; Al-Qarawi, A.A.; Haroun, E.M.; Mousa, H.M. The effect of treatment with gum Arabic on gentamicin nephrotoxicity in rats: A preliminary study. Ren. Fail., 2003, 25(1), 15-20.
[http://dx.doi.org/10.1081/JDI-120017439] [PMID: 12617329]
[47]
Saleem, M.; Javed, F.; Asif, M.; Baig, M.K.; Arif, M. HPLC analysis and in vivo renoprotective evaluation of hydroalcoholic extract of cucumis melo seeds in gentamicin-induced renal damage. Medicina (Kaunas), 2019, 55(4), E107.
[http://dx.doi.org/10.3390/medicina55040107] [PMID: 30991760]
[48]
Sohn, E-J.; Kang, D-G.; Lee, H-S. Protective effects of glycyrrhizin on gentamicin-induced acute renal failure in rats. Pharmacol. Toxicol., 2003, 93(3), 116-122.
[http://dx.doi.org/10.1034/j.1600-0773.2003.930302.x] [PMID: 12969435]
[49]
Lee, J.; Yoo, K.S.; Kang, D.G.; Kim, S.W.; Choi, K.C. Gentamicin decreases the abundance of aquaporin water channels in rat kidney. Jpn. J. Pharmacol., 2001, 85(4), 391-398.
[http://dx.doi.org/10.1254/jjp.85.391] [PMID: 11388643]
[50]
Sassen, M.C.; Kim, S.W.; Kwon, T-H.; Knepper, M.A.; Miller, R.T.; Frøkiaer, J.; Nielsen, S. Dysregulation of renal sodium transporters in gentamicin-treated rats. Kidney Int., 2006, 70(6), 1026-1037.
[http://dx.doi.org/10.1038/sj.ki.5001654] [PMID: 16850027]
[51]
Cantero-Navarro, E.; Fernández-Fernández, B.; Ramos, A.M.; Rayego-Mateos, S.; Rodrigues-Diez, R.R.; Sánchez-Niño, M.D.; Sanz, A.B.; Ruiz-Ortega, M.; Ortiz, A. Renin-angiotensin system and inflammation update. Mol. Cell. Endocrinol., 2021, 529, 111254.
[http://dx.doi.org/10.1016/j.mce.2021.111254] [PMID: 33798633]
[52]
Schiavone, M.T.; Santos, R.A.; Brosnihan, K.B.; Khosla, M.C.; Ferrario, C.M. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc. Natl. Acad. Sci. USA, 1988, 85(11), 4095-4098.
[http://dx.doi.org/10.1073/pnas.85.11.4095] [PMID: 3375255]
[53]
Handa, R.K.; Ferrario, C.M.; Strandhoy, J.W. Renal actions of angiotensin-(1-7): In vivo and in vitro studies. Am. J. Physiol., 1996, 270(1 Pt 2), F141-F147.
[http://dx.doi.org/10.1152/ajprenal.1996.270.1.F141] [PMID: 8769832]
[54]
Hilchey, S.D.; Bell-Quilley, C.P. Association between the natriuretic action of angiotensin-(1-7) and selective stimulation of renal prostaglandin I2 release. Hypertension, 1995, 25(6), 1238-1244.
[http://dx.doi.org/10.1161/01.HYP.25.6.1238] [PMID: 7768568]
[55]
da Silva, J.C.; Seguro, A.C. Efeito da hipomagnesemia e da suplementacao de magnesio sobre a insuficiencia renal aguda pos-isquemica. Rev. Med. (São Paulo), 2002, 1-7.
[http://dx.doi.org/10.11606/issn.1679-9836.v81i1-4p1-7]
[56]
Almeida, D.; Colombini, A.; Machado, M. Creatine supplementation improves performance, but is it safe? Double-blind placebo-controlled study. J. Sports Med. Phys. Fitness, 2020, 60(7), 1034-1039.
[http://dx.doi.org/10.23736/S0022-4707.20.10437-7] [PMID: 32597619]
[57]
Changizi-Ashtiyani, S.; Seddigh, A.; Najafi, H.; Hossaini, N.; Avan, A.; Akbary, A.; Manian, M.; Nedaeinia, R. Pimpinella anisum L. ethanolic extract ameliorates the gentamicin- induced nephrotoxicity in rats. Nephrology (Carlton), 2017, 22(2), 133-138.
[http://dx.doi.org/10.1111/nep.12953] [PMID: 27860049]
[58]
Khanna, P.; Ong, C.; Bay, B.H.; Baeg, G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel), 2015, 5(3), 1163-1180.
[http://dx.doi.org/10.3390/nano5031163] [PMID: 28347058]
[59]
Parlakpinar, H.; Tasdemir, S.; Polat, A.; Bay-Karabulut, A.; Vardi, N.; Ucar, M.; Acet, A. Protective role of caffeic acid phenethyl ester (cape) on gentamicin-induced acute renal toxicity in rats. Toxicology, 2005, 207(2), 169-177.
[http://dx.doi.org/10.1016/j.tox.2004.08.024] [PMID: 15596248]
[60]
Cassis, P.; Locatelli, M.; Corna, D.; Villa, S.; Rottoli, D.; Cerullo, D.; Abbate, M.; Remuzzi, G.; Benigni, A.; Zoja, C. Addition of cyclic angiotensin-(1-7) to angiotensin-converting enzyme inhibitor therapy has a positive add-on effect in experimental diabetic nephropathy. Kidney Int., 2019, 96(4), 906-917.
[http://dx.doi.org/10.1016/j.kint.2019.04.024] [PMID: 31307778]
[61]
Randjelovic, P.; Veljkovic, S.; Stojiljkovic, N.; Sokolovic, D.; Ilic, I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI J., 2017, 16, 388-399.
[http://dx.doi.org/10.17179/excli2017-165] [PMID: 28507482]
[62]
Shi, Y.; Lo, C-S.; Padda, R.; Abdo, S.; Chenier, I.; Filep, J.G.; Ingelfinger, J.R.; Zhang, S-L.; Chan, J.S.D. Angiotensin-(1-7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin. Sci. (Lond.), 2015, 128(10), 649-663.
[http://dx.doi.org/10.1042/CS20140329] [PMID: 25495544]
[63]
Silveira, K.D.; Coelho, F.M.; Vieira, A.T.; Barroso, L.C.; Queiroz-Junior, C.M.; Costa, V.V.; Sousa, L.F.C.; Oliveira, M.L.; Bader, M.; Silva, T.A.; Santos, R.A.; Silva, A.C.; Teixeira, M.M. Mechanisms of the anti-inflammatory actions of the angiotensin type 1 receptor antagonist losartan in experimental models of arthritis. Peptides, 2013, 46, 53-63.
[http://dx.doi.org/10.1016/j.peptides.2013.05.012] [PMID: 23727291]
[64]
Lu, W.; Kang, J.; Hu, K.; Tang, S.; Zhou, X.; Yu, S.; Xu, L. Angiotensin-(1-7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis. Braz. J. Med. Biol. Res., 2017, 50(1), e5594.
[http://dx.doi.org/10.1590/1414-431x20165594] [PMID: 28076452]
[65]
Magalhaes, G.S.; Barroso, L.C.; Reis, A.C.; Rodrigues-Machado, M.G.; Gregório, J.F.; Motta-Santos, D.; Oliveira, A.C.; Perez, D.A.; Barcelos, L.S.; Teixeira, M.M.; Santos, R.A.S.; Pinho, V.; Campagnole-Santos, M.J. Angiotensin-(1-7) promotes resolution of eosinophilic inflammation in an experimental model of asthma. Front. Immunol., 2018, 9, 58.
[http://dx.doi.org/10.3389/fimmu.2018.00058] [PMID: 29434591]
[66]
Passaglia, P.; de Lima Faim, F.; Batalhão, M.E.; Stabile, A.M.; Bendhack, L.M.; Antunes-Rodrigues, J.; Lacchini, R.; Capellari Carnio, E. Central administration of Angiotensin-(1-7) improves vasopressin impairment and hypotensive response in experimental endotoxemia. Cells, 2021, 10(1), 105.
[http://dx.doi.org/10.3390/cells10010105] [PMID: 33430014]
[67]
Mori, J.; Patel, V.B.; Ramprasath, T.; Alrob, O.A.; DesAulniers, J.; Scholey, J.W.; Lopaschuk, G.D.; Oudit, G.Y. Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inflammation, and lipotoxicity. Am. J. Physiol. Renal Physiol., 2014, 306(8), F812-F821.
[http://dx.doi.org/10.1152/ajprenal.00655.2013] [PMID: 24553436]
[68]
Abdel-Fattah, M.M.; Elgendy, A.N.A.M.; Mohamed, W.R. Xanthenone, ACE2 activator, counteracted gentamicin-induced nephrotoxicity in rats: Impact on oxidative stress and ACE2/Ang-(1-7) signaling. Life Sci., 2021, 275, 119387.
[http://dx.doi.org/10.1016/j.lfs.2021.119387] [PMID: 33774027]
[69]
Passaglia, P.; de Lima Faim, F.; Batalhão, M.E.; Bendhack, L.M.; Antunes-Rodrigues, J.; Ulloa, L.; Kanashiro, A.; Carnio, E.C. Central angiotensin-(1-7) attenuates systemic inflammation via activation of sympathetic signaling in endotoxemic rats. Brain Behav. Immun., 2020, 88, 606-618.
[http://dx.doi.org/10.1016/j.bbi.2020.04.059] [PMID: 32335195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy