Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Increased Expression of Recombinant Chitosanase by Co-expression of Hac1p in the Yeast Pichia pastoris

Author(s): Minghai Han*, Weixian Wang, Xun Gong, Jianli Zhou, Cunbin Xu and Yinfeng Li

Volume 28, Issue 12, 2021

Published on: 05 November, 2021

Page: [1434 - 1441] Pages: 8

DOI: 10.2174/0929866528666211105111155

Price: $65

conference banner
Abstract

Background: Pichia pastoris is one of the most popular eukaryotic hosts for producing heterologous proteins, while increasing the secretion of target proteins is still a top priority for their application in industrial fields. Recently, the research effort to enhance protein production has focused on up-regulating the unfolded protein response (UPR).

Objective: We evaluated the effects of activated UPR via Hac1p co-expression with the promoter AOX1 (PAOX1) or GAP (PGAP) on the expression of recombinant chitosanase (rCBS) in P. pastoris.

Method: The DNA sequence encoding the chitosanase was chemically synthesized and cloned into pPICZαA, and the resulting pPICZαA/rCBS was transformed into P. pastoris for expressing rCBS. The P. pastorisHAC1i cDNA was chemically synthesized and cloned into pPIC3.5K to give pPIC3.5K/Hac1p. The HAC1i cDNA was cloned into PGAPZB and then inserted with the HIS4 gene from pAO815 to construct the vector PGAPZB/Hac1p/HIS4. For co-expression of Hac1p, the two plasmids pPIC3.5K/Hac1p and PGAPZB/Hac1p/HIS4 were transformed into P. pastoris harboring the CBS gene. The rCBS was assessed based on chitosanase activity and analyzed by SDSPAGE. The enhanced Kar2p was detected with western blotting to evaluate UPR.

Results: Hac1p co-expression with PAOX1 enhanced rCBS secretion by 41% at 28°C. Although the level of UPR resulting from Hac1p co-expression with PAOX1 was equivalent to that with PGAP in terms of the quantity of Kar2p (a hallmark of the UPR), substitution of PGAP for PAOX1 further increased rCBS production by 21%. The methanol-utilizing phenotype of P. pastoris did not affect rCBS secretion with or without co-expression of Hac1p. Finally, Hac1p co-expression withPAOX1 or PGAP promoted rCBS secretion from 22 to 30°C and raised the optimum induction temperature.

Conclusion: The study indicated that Hac1p co-expression with PAOX1 or PGAP is an effective strategy to trigger UPR of P. pastoris and a feasible means for improving the production of rCBS therein.

Keywords: Unfolded protein response, Hac1p, Pichia pastoris, chitosanase, secretory expression, co-expression.

Graphical Abstract

[1]
Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol., 2014, 98(12), 5301-5317.
[http://dx.doi.org/10.1007/s00253-014-5732-5] [PMID: 24743983]
[2]
Daly, R.; Hearn, M.T. Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineering and production. J. Mol. Recognit., 2005, 18(2), 119-138.
[http://dx.doi.org/10.1002/jmr.687] [PMID: 15565717]
[3]
Macauley-Patrick, S.; Fazenda, M.L.; McNeil, B.; Harvey, L.M. Heterologous protein production using the Pichia pastoris expression system. Yeast, 2005, 22(4), 249-270.
[http://dx.doi.org/10.1002/yea.1208] [PMID: 15704221]
[4]
Idiris, A.; Tohda, H.; Kumagai, H.; Takegawa, K. Engineering of protein secretion in yeast: Strategies and impact on protein production. Appl. Microbiol. Biotechnol., 2010, 86(2), 403-417.
[http://dx.doi.org/10.1007/s00253-010-2447-0] [PMID: 20140428]
[5]
Khan, S.U.; Schröder, M. Engineering of chaperone systems and of the unfolded protein response. Cytotechnology, 2008, 57(3), 207-231.
[http://dx.doi.org/10.1007/s10616-008-9157-9] [PMID: 19003179]
[6]
Zhou, Y.; Raju, R.; Alves, C.; Gilbert, A. Debottlenecking protein secretion and reducing protein aggregation in the cellular host. Curr. Opin. Biotechnol., 2018, 53, 151-157.
[http://dx.doi.org/10.1016/j.copbio.2018.01.007] [PMID: 29414073]
[7]
Araki, K.; Nagata, K. Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol., 2011, 3(11), a007526.
[http://dx.doi.org/10.1101/cshperspect.a007526] [PMID: 21875985]
[8]
Braakman, I.; Hebert, D.N. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 2013, 5(5), a013201.
[http://dx.doi.org/10.1101/cshperspect.a013201] [PMID: 23637286]
[9]
Puxbaum, V.; Mattanovich, D.; Gasser, B. Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl. Microbiol. Biotechnol., 2015, 99(7), 2925-2938.
[http://dx.doi.org/10.1007/s00253-015-6470-z] [PMID: 25722021]
[10]
Takayanagi, S.; Fukuda, R.; Takeuchi, Y.; Tsukada, S.; Yoshida, K. Gene regulatory network of unfolded protein response genes in endoplasmic reticulum stress. Cell Stress Chaperones, 2013, 18(1), 11-23.
[http://dx.doi.org/10.1007/s12192-012-0351-5] [PMID: 22802018]
[11]
Kimata, Y.; Ishiwata-Kimata, Y.; Ito, T.; Hirata, A.; Suzuki, T.; Oikawa, D.; Takeuchi, M.; Kohno, K. Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J. Cell Biol., 2007, 179(1), 75-86.
[http://dx.doi.org/10.1083/jcb.200704166] [PMID: 17923530]
[12]
Pincus, D.; Chevalier, M.W.; Aragón, T.; van Anken, E.; Vidal, S.E.; El-Samad, H.; Walter, P. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol., 2010, 8(7), e1000415.
[http://dx.doi.org/10.1371/journal.pbio.1000415] [PMID: 20625545]
[13]
Ron, D.; Hubbard, S.R. How IRE1 reacts to ER stress. Cell, 2008, 132(1), 24-26.
[http://dx.doi.org/10.1016/j.cell.2007.12.017] [PMID: 18191217]
[14]
Rüegsegger, U.; Leber, J.H.; Walter, P. Block of HAC1 mRNA translation by long-range base pairing is released by cytoplasmic splicing upon induction of the unfolded protein response. Cell, 2001, 107(1), 103-114.
[http://dx.doi.org/10.1016/S0092-8674(01)00505-0] [PMID: 11595189]
[15]
Guerfal, M.; Ryckaert, S.; Jacobs, P.P.; Ameloot, P.; Van Craenenbroeck, K.; Derycke, R.; Callewaert, N. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins. Microb. Cell Fact., 2010, 9, 49-51.
[http://dx.doi.org/10.1186/1475-2859-9-49] [PMID: 20591165]
[16]
Okamura, K.; Kimata, Y.; Higashio, H.; Tsuru, A.; Kohno, K. Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast. Biochem. Biophys. Res. Commun., 2000, 279(2), 445-450.
[http://dx.doi.org/10.1006/bbrc.2000.3987] [PMID: 11118306]
[17]
Whyteside, G.; Nor, R.M.; Alcocer, M.J.C.; Archer, D.B. Activation of the unfolded protein response in Pichia pastoris requires splicing of a HAC1 mRNA intron and retention of the C-terminal tail of Hac1p. FEBS Lett., 2011, 585(7), 1037-1041.
[http://dx.doi.org/10.1016/j.febslet.2011.02.036] [PMID: 21376719]
[18]
Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Nguyen, A.D.; Wang, S.L. Production of a thermostable chitosanase from shrimp heads via Paenibacillus mucilaginosus TKU032 conversion and its application in the preparation of bioactive chitosan Oligosaccharides. Mar. Drugs, 2019, 17(4), 217.
[http://dx.doi.org/10.3390/md17040217] [PMID: 30974812]
[19]
Lodhi, G.; Kim, Y.S.; Hwang, J.W.; Kim, S.K.; Jeon, Y.J.; Je, J.Y.; Ahn, C.B.; Moon, S.H.; Jeon, B.T.; Park, P.J. Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Res. Int., 2014, 2014, 654913.
[http://dx.doi.org/10.1155/2014/654913] [PMID: 24724091]
[20]
Liang, S.; Sun, Y.; Dai, X. A review of the preparation, analysis and biological functions of chitooligosaccharide. Int. J. Mol. Sci., 2018, 19(8), 2197.
[http://dx.doi.org/10.3390/ijms19082197] [PMID: 30060500]
[21]
Liaqat, F.; Eltem, R. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr. Polym., 2018, 184, 243-259.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.067] [PMID: 29352917]
[22]
Lin, X.Q.; Liang, S.L.; Han, S.Y.; Zheng, S.P.; Ye, Y.R.; Lin, Y. Quantitative iTRAQ LC-MS/MS proteomics reveals the cellular response to heterologous protein overexpression and the regulation of HAC1 in Pichia pastoris. J. Proteomics, 2013, 91, 58-72.
[http://dx.doi.org/10.1016/j.jprot.2013.06.031] [PMID: 23851310]
[23]
Han, M.; Wang, X.; Ding, H.; Jin, M.; Yu, L.; Wang, J.; Yu, X. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb. Technol., 2014, 54, 32-37.
[http://dx.doi.org/10.1016/j.enzmictec.2013.09.014] [PMID: 24267565]
[24]
von der Haar, T. Optimized protein extraction for quantitative proteomics of yeasts. PLoS One, 2007, 2(10), e1078.
[http://dx.doi.org/10.1371/journal.pone.0001078] [PMID: 17957260]
[25]
Han, M.; Wang, W.; Zhou, J.; Gong, X.; Xu, C.; Li, Y.; Li, Q. Activation of the unfolded protein response via co-expression of the HAC1i gene enhances expression of recombinant elastase in Pichia pastoris. Biotechnol. Bioproc. E, 2020, 25, 302-307.
[http://dx.doi.org/10.1007/s12257-019-0381-2]
[26]
Halperin, L.; Jung, J.; Michalak, M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life, 2014, 66(5), 318-326.
[http://dx.doi.org/10.1002/iub.1272] [PMID: 24839203]
[27]
Kleizen, B.; Braakman, I. Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol., 2004, 16(4), 343-349.
[http://dx.doi.org/10.1016/j.ceb.2004.06.012] [PMID: 15261665]
[28]
Wang, Q.H.; Liang, L.; Liu, W.C.; Gong, T.; Chen, J.J.; Hou, Q.; Yang, J.L.; Zhu, P. Enhancement of recombinant BmK AngM1 production in Pichia pastoris by regulating gene dosage, co-expressing with chaperones and fermenting in fed-batch mode. J. Asian Nat. Prod. Res., 2017, 19(6), 581-594.
[http://dx.doi.org/10.1080/10286020.2017.1311872] [PMID: 28376654]
[29]
Xu, P.; Raden, D.; Doyle, F.J., III; Robinson, A.S. Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding. Metab. Eng., 2005, 7(4), 269-279.
[http://dx.doi.org/10.1016/j.ymben.2005.04.002] [PMID: 15990348]
[30]
Zirpel, B.; Degenhardt, F.; Zammarelli, C.; Wibberg, D.; Kalinowski, J.; Stehle, F.; Kayser, O. Optimization of Δ9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J. Biotechnol., 2018, 272-273, 40-47.
[http://dx.doi.org/10.1016/j.jbiotec.2018.03.008] [PMID: 29549004]
[31]
Zhang, W.; Zhao, H.L.; Xue, C.; Xiong, X.H.; Yao, X.Q.; Li, X.Y.; Chen, H.P.; Liu, Z.M. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol. Prog., 2006, 22(4), 1090-1095.
[http://dx.doi.org/10.1021/bp060019r] [PMID: 16889384]
[32]
Yang, J.; Lu, Z.; Chen, J.; Chu, P.; Cheng, Q.; Liu, J.; Ming, F.; Huang, C.; Xiao, A.; Cai, H.; Zhang, L. Effect of cooperation of chaperones and gene dosage on the expression of porcine PGLYRP-1 in Pichia pastoris. Appl. Microbiol. Biotechnol., 2016, 100(12), 5453-5465.
[http://dx.doi.org/10.1007/s00253-016-7372-4] [PMID: 26883349]
[33]
Helian, Y.; Gai, Y.; Fang, H.; Sun, Y.; Zhang, D. A multistrategy approach for improving the expression of E. coli phytase in Pichia pastoris. J. Ind. Microbiol. Biotechnol., 2020, 47(12), 1161-1172.
[http://dx.doi.org/10.1007/s10295-020-02311-6] [PMID: 32935229]
[34]
Samuel, P.; Prasanna Vadhana, A.K.; Kamatchi, R.; Antony, A.; Meenakshisundaram, S. Effect of molecular chaperones on the expression of Candida antarctica lipase B in Pichia pastoris. Microbiol. Res., 2013, 168(10), 615-620.
[http://dx.doi.org/10.1016/j.micres.2013.06.007] [PMID: 23871144]
[35]
Bankefa, O.E.; Wang, M.; Zhu, T.; Li, Y. Hac1p homologues from higher eukaryotes can improve the secretion of heterologous proteins in the yeast Pichia pastoris. Biotechnol. Lett., 2018, 40(7), 1149-1156.
[http://dx.doi.org/10.1007/s10529-018-2571-y] [PMID: 29785668]
[36]
Kimata, Y.; Kimata, Y.I.; Shimizu, Y.; Abe, H.; Farcasanu, I.C.; Takeuchi, M.; Rose, M.D.; Kohno, K. Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Mol. Biol. Cell, 2003, 14(6), 2559-2569.
[http://dx.doi.org/10.1091/mbc.e02-11-0708] [PMID: 12808051]
[37]
Urano, F.; Bertolotti, A.; Ron, D. IRE1 and efferent signaling from the endoplasmic reticulum. J. Cell Sci., 2000, 113(Pt 21), 3697-3702.
[http://dx.doi.org/10.1242/jcs.113.21.3697] [PMID: 11034898]
[38]
Yu, P.; Zhu, Q.; Chen, K.; Lv, X. Improving the secretory production of the heterologous protein in Pichia pastoris by focusing on protein folding. Appl. Biochem. Biotechnol., 2015, 175(1), 535-548.
[http://dx.doi.org/10.1007/s12010-014-1292-5] [PMID: 25326186]
[39]
Gasser, B.; Maurer, M.; Rautio, J.; Sauer, M.; Bhattacharyya, A.; Saloheimo, M.; Penttilä, M.; Mattanovich, D. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics, 2007, 8, 179.
[http://dx.doi.org/10.1186/1471-2164-8-179] [PMID: 17578563]
[40]
Damasceno, L.M.; Huang, C.J.; Batt, C.A. Protein secretion in Pichia pastoris and advances in protein production. Appl. Microbiol. Biotechnol., 2012, 93(1), 31-39.
[http://dx.doi.org/10.1007/s00253-011-3654-z] [PMID: 22057543]
[41]
Raschmanová, H.; Weninger, A.; Knejzlík, Z.; Melzoch, K.; Kovar, K. Engineering of the unfolded protein response pathway in Pichia pastoris: Enhancing production of secreted recombinant proteins. Appl. Microbiol. Biotechnol., 2021, 105(11), 4397-4414.
[http://dx.doi.org/10.1007/s00253-021-11336-5] [PMID: 34037840]
[42]
Huang, M.; Gao, Y.; Zhou, X.; Zhang, Y.; Cai, M. Regulating unfolded protein response activator Hac1p for production of thermostable raw-starch hydrolyzing α-amylase in Pichia pastoris. Bioprocess Biosyst. Eng., 2017, 40(3), 341-350.
[http://dx.doi.org/10.1007/s00449-016-1701-y] [PMID: 27796570]
[43]
Lan, D.; Qu, M.; Yang, B.; Wang, Y. Enhancing production of lipase MAS1 from marine Streptomyces sp. in Pichia pastoris by chaperones co-expression. Electron. J. Biotechnol., 2016, 22(C), 62-67.
[http://dx.doi.org/10.1016/j.ejbt.2016.06.003]
[44]
Resina, D.; Maurer, M.; Cos, O.; Arnau, C.; Carnicer, M.; Marx, H.; Gasser, B.; Valero, F.; Mattanovich, D.; Ferrer, P. Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. N. Biotechnol., 2009, 25(6), 396-403.
[http://dx.doi.org/10.1016/j.nbt.2009.01.008] [PMID: 19552885]
[45]
Sun, J.; Jiang, J.; Zhai, X.; Zhu, S.; Qu, Z.; Yuan, W.; Wang, Z.; Wei, C. Coexpression of Kex2 endoproteinase and HAC1 transcription factor to improve the secretory expression of bovine lactoferrin in Pichia pastoris. Biotechnol. Bioproc. E, 2019, 24, 934-941.
[http://dx.doi.org/10.1007/s12257-019-0176-5]
[46]
De Waele, S.; Vandenberghe, I.; Laukens, B.; Planckaert, S.; Verweire, S.; Van Bogaert, I.N.A.; Soetaert, W.; Devreese, B.; Ciesielska, K. Optimized expression of the Starmerella bombicola lactone esterase in Pichia pastoris through temperature adaptation, codon-optimization and co-expression with HAC1. Protein Expr. Purif., 2018, 143, 62-70.
[http://dx.doi.org/10.1016/j.pep.2017.10.016] [PMID: 29108944]
[47]
Valkonen, M.; Penttilä, M.; Saloheimo, M. Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol., 2003, 69(4), 2065-2072.
[http://dx.doi.org/10.1128/AEM.69.4.2065-2072.2003] [PMID: 12676684]
[48]
Lee, T.H.; Bae, Y.H.; Kim, M.D.; Seo, J.H. Overexpression of HAC1 gene increased levels of both intracellular and secreted human kringle fragment in Saccharomyces cerevisiae. Process Biochem., 2012, 47(12), 2300-2305.
[http://dx.doi.org/10.1016/j.procbio.2012.09.006]
[49]
Elena, C.; Ravasi, P.; Cerminati, S.; Peiru, S.; Castelli, M.E.; Menzella, H.G. Pichia pastoris engineering for the production of a modified phospholipase C. Process Biochem., 2016, 51(12), 1935-1944.
[http://dx.doi.org/10.1016/j.procbio.2016.08.022]
[50]
Cámara, E.; Landes, N.; Albiol, J.; Gasser, B.; Mattanovich, D.; Ferrer, P. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci. Rep., 2017, 7, 44302.
[http://dx.doi.org/10.1038/srep44302] [PMID: 28295011]
[51]
Garrigós-Martínez, J.; Nieto-Taype, M.A.; Gasset-Franch, A.; Montesinos-Seguí, J.L.; Garcia-Ortega, X.; Valero, F. Specific growth rate governs AOX1 gene expression, affecting the production kinetics of Pichia pastoris (Komagataella phaffii) PAOX1-driven recombinant producer strains with different target gene dosage. Microb. Cell Fact., 2019, 18(1), 187.
[http://dx.doi.org/10.1186/s12934-019-1240-8] [PMID: 31675969]
[52]
Liu, Y.; Pan, J.; Wei, P.; Zhu, J.; Huang, L.; Cai, J.; Xu, Z. Efficient expression and purification of recombinant alcohol oxidase in Pichia pastoris. Biotechnol. Bioproc. E, 2014, 17, 693-702.
[http://dx.doi.org/10.1007/s12257-011-0660-z]
[53]
Ozimek, P.; Veenhuis, M.; van der Klei, I.J. Alcohol oxidase: A complex peroxisomal, oligomeric flavoprotein. FEMS Yeast Res., 2005, 5(11), 975-983.
[http://dx.doi.org/10.1016/j.femsyr.2005.06.005] [PMID: 16169288]
[54]
Cereghino, J.L.; Cregg, J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev., 2000, 24(1), 45-66.
[http://dx.doi.org/10.1111/j.1574-6976.2000.tb00532.x] [PMID: 10640598]
[55]
Tannous, A.; Pisoni, G.B.; Hebert, D.N.; Molinari, M. N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol., 2015, 41, 79-89.
[http://dx.doi.org/10.1016/j.semcdb.2014.12.001] [PMID: 25534658]
[56]
Bosques, C.J.; Tschampel, S.M.; Woods, R.J.; Imperiali, B. Effects of glycosylation on peptide conformation: A synergistic experimental and computational study. J. Am. Chem. Soc., 2004, 126(27), 8421-8425.
[http://dx.doi.org/10.1021/ja0496266] [PMID: 15237998]
[57]
Seitz, O. Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. ChemBioChem, 2000, 1(4), 214-246.
[http://dx.doi.org/10.1002/1439-7633(20001117)1:4<214::AID-CBIC214>3.0.CO;2-B] [PMID: 11828414]
[58]
Imperiali, B.; O’Connor, S.E. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr. Opin. Chem. Biol., 1999, 3(6), 643-649.
[http://dx.doi.org/10.1016/S1367-5931(99)00021-6] [PMID: 10600722]
[59]
Türkanoğlu Özçelik, A.; Yılmaz, S.; Inan, M. Pichia pastoris Promoters. Methods Mol. Biol., 2019, 1923, 97-112.
[http://dx.doi.org/10.1007/978-1-4939-9024-5_3] [PMID: 30737736]
[60]
Vogl, T.; Glieder, A. Regulation of Pichia pastoris promoters and its consequences for protein production. N. Biotechnol., 2013, 30(4), 385-404.
[http://dx.doi.org/10.1016/j.nbt.2012.11.010] [PMID: 23165100]
[61]
Krainer, F.W.; Gerstmann, M.A.; Darnhofer, B.; Birner-Gruenberger, R.; Glieder, A. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris. J. Biotechnol., 2016, 233, 181-189.
[http://dx.doi.org/10.1016/j.jbiotec.2016.07.012] [PMID: 27432633]
[62]
Li, Y.; Liang, Z.; Ding, Z.; Shi, G. Constitutive expression of a novel isoamylase from Bacillus lentus in Pichia pastoris for starch processing. Process Biochem., 2013, 48(9), 1303-1310.
[http://dx.doi.org/10.1016/j.procbio.2013.07.001]
[63]
Zhu, T.; Sun, H.; Li, P.; Xue, Y.; Ma, Y. Constitutive expression of alkaline β-mannanase in recombinant Pichia pastoris. Process Biochem., 2014, 49(12), 2025-2029.
[http://dx.doi.org/10.1016/j.procbio.2014.08.014]
[64]
Wang, J.; Zhang, T.; Li, Y.; Li, L.; Wang, Y.; Yang, B.; Wang, Y. High-level expression of Thermomyces dupontii thermo-alkaline lipase in Pichia pastoris under the control of different promoters. 3 Biotech., 2019, 9(1), 33.
[http://dx.doi.org/10.1007/s13205-018-1531-5]
[65]
Karaoglan, M.; Karaoglan, F.E.; Inan, M. Comparison of ADH3 promoter with commonly used promoters for recombinant protein production in Pichia pastoris. Protein Expr. Purif., 2016, 121, 112-117.
[http://dx.doi.org/10.1016/j.pep.2016.01.017] [PMID: 26835836]
[66]
Vanz, A.L.; Nimtz, M.; Rinas, U. Decrease of UPR- and ERAD-related proteins in Pichia pastoris during methanol-induced secretory insulin precursor production in controlled fed-batch cultures. Microb. Cell Fact., 2014, 13(1), 23.
[http://dx.doi.org/10.1186/1475-2859-13-23] [PMID: 24521445]
[67]
Zhong, Y.; Yang, L.; Guo, Y.; Fang, F.; Wang, D.; Li, R.; Jiang, M.; Kang, W.; Ma, J.; Sun, J.; Xiao, W. High-temperature cultivation of recombinant Pichia pastoris increases endoplasmic reticulum stress and decreases production of human interleukin-10. Microb. Cell Fact., 2014, 13, 163.
[http://dx.doi.org/10.1186/s12934-014-0163-7] [PMID: 25425395]
[68]
Roth, G.; Vanz, A.L.; Lünsdorf, H.; Nimtz, M.; Rinas, U. Fate of the UPR marker protein Kar2/Bip and autophagic processes in fed-batch cultures of secretory insulin precursor producing Pichia pastoris. Microb. Cell Fact., 2018, 17(1), 123.
[http://dx.doi.org/10.1186/s12934-018-0970-3] [PMID: 30092809]
[69]
Gardner, B.M.; Pincus, D.; Gotthardt, K.; Gallagher, C.M.; Walter, P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a013169.
[http://dx.doi.org/10.1101/cshperspect.a013169] [PMID: 23388626]
[70]
Zhan, C.; Yang, Y.; Zhang, Z.; Li, X.; Liu, X.; Bai, Z. Transcription factor Mxr1 promotes the expression of Aox1 by repressing glycerol transporter 1 in Pichia pastoris. FEMS Yeast Res., 2017, 17(4)
[http://dx.doi.org/10.1093/femsyr/fox015] [PMID: 28334164]
[71]
Chang, C.H.; Hsiung, H.A.; Hong, K.L.; Huang, C.T. Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnol., 2018, 18(1), 81.
[http://dx.doi.org/10.1186/s12896-018-0492-4] [PMID: 30587177]
[72]
Yang, H.; Zhai, C.; Yu, X.; Li, Z.; Tang, W.; Liu, Y.; Ma, X.; Zhong, X.; Li, G.; Wu, D.; Ma, L. High-level expression of Proteinase K from Tritirachium album Limber in Pichia pastoris using multi-copy expression strains. Protein Expr. Purif., 2016, 122, 38-44.
[http://dx.doi.org/10.1016/j.pep.2016.02.006] [PMID: 26892536]
[73]
Yang, Z.; Zhang, Z. Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol. Adv., 2018, 36(1), 182-195.
[http://dx.doi.org/10.1016/j.biotechadv.2017.11.002] [PMID: 29129652]
[74]
Schröder, M. Engineering eukaryotic protein factories. Biotechnol. Lett., 2008, 30(2), 187-196.
[http://dx.doi.org/10.1007/s10529-007-9524-1] [PMID: 17885737]
[75]
Schröder, M. The unfolded protein response. Mol. Biotechnol., 2006, 34(2), 279-290.
[http://dx.doi.org/10.1385/MB:34:2:279] [PMID: 17172673]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy