Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Hydroxycinnamic Acids and Their Related Synthetic Analogs: An Update of Pharmacological Activities

Author(s): Ayyoub Selka, Fanta J. Ndongou Moutombi, Jacques Jean-François and Mohamed Touaibia*

Volume 22, Issue 11, 2022

Published on: 14 January, 2022

Page: [1516 - 1544] Pages: 29

DOI: 10.2174/1389557521666211116122615

Price: $65

Abstract

The hydroxycinnamic acid scaffold is extremely versatile with various biological activities. This review will highlight the progress of the biological activities of hydroxycinnamic acids and their related synthetic analogs, including recently reported anti-cancer, anti-inflammatory, and antioxidant activities.

Keywords: Hydroxycinnamic acids, caffeic acid phenethyl ester (CAPE), anti-cancer, anti-inflammatory, antioxidant, pharmacological activities.

Graphical Abstract

[1]
Huang, W-Y.; Cai, Y-Z.; Zhang, Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer pre-vention. Nutr. Cancer, 2010, 62(1), 1-20.
[http://dx.doi.org/10.1080/01635580903191585] [PMID: 20043255]
[2]
Kumar, N.; Gupta, S.; Chand Yadav, T.; Pruthi, V.; Kumar Varadwaj, P.; Goel, N. Extrapolation of phenolic compounds as multi-target agents against cancer and inflammation. J. Biomol. Struct. Dyn., 2019, 37(9), 2355-2369.
[http://dx.doi.org/10.1080/07391102.2018.1481457] [PMID: 30047324]
[3]
Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: metabolites versus parent compounds: A review. Food Chem., 2015, 173, 501-513.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.057] [PMID: 25466052]
[4]
Boz, H. p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol., 2015, 50, 2323-2328.
[http://dx.doi.org/10.1111/ijfs.12898]
[5]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[6]
Sytar, O.; Hemmerich, I.; Zivcak, M.; Rauh, C.; Brestic, M. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J. Biol. Sci., 2018, 25(4), 631-641.
[http://dx.doi.org/10.1016/j.sjbs.2016.01.036] [PMID: 29740227]
[7]
Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav., 2010, 5(4), 359-368.
[http://dx.doi.org/10.4161/psb.5.4.10871] [PMID: 20400851]
[8]
Prorok, T.; Jana, M.; Patel, D.; Pahan, K. Cinnamic acid protects the nigrostriatum in a mouse model of Parkinsons disease via pero-xisome proliferator-activated receptor α. Neurochem. Res., 2019, 44(4), 751-762.
[http://dx.doi.org/10.1007/s11064-018-02705-0] [PMID: 30612307]
[9]
Gruenwald, J.; Freder, J.; Armbruester, N. Cinnamon and health. Crit. Rev. Food Sci. Nutr., 2010, 50(9), 822-834.
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
[10]
Rao, P.V.; Gan, S.H. Cinnamon: A multifaceted medicinal plant. Evid. Based Complement. Alternat. Med., 2014, 2014, 642942.
[http://dx.doi.org/10.1155/2014/642942] [PMID: 24817901]
[11]
Niero, E.L.O.; Machado-Santelli, G.M. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. J. Exp. Clin. Cancer Res., 2013, 32, 31.
[http://dx.doi.org/10.1186/1756-9966-32-31] [PMID: 23701745]
[12]
Qi, G.; Chen, J.; Shi, C.; Wang, Y.; Mi, S.; Shao, W.; Yu, X.; Ma, Y.; Ling, J.; Huang, J. Cinnamic acid (CINN) induces apoptosis and proliferation in human nasopharyngeal carcinoma cells. Cell. Physiol. Biochem., 2016, 40(3-4), 589-596.
[http://dx.doi.org/10.1159/000452572] [PMID: 27889776]
[13]
Zhang, J.; Xiao, A.; Wang, T.; Liang, X.; Gao, J.; Li, P.; Shi, T. Effect and mechanism of action of cinnamic acid on the proliferation and apoptosis of leukaemia cells. Biomed. Res., 2014, 25(3), 42185059.
[14]
Hafizur, R.M.; Hameed, A.; Shukrana, M.; Raza, S.A.; Chishti, S.; Kabir, N.; Siddiqui, R.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine, 2015, 22(2), 297-300.
[http://dx.doi.org/10.1016/j.phymed.2015.01.003] [PMID: 25765836]
[15]
Rajkumari, J.; Borkotoky, S.; Murali, A.; Suchiang, K.; Mohanty, S.K.; Busi, S. Cinnamic acid attenuates quorum sensing associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1. Biotechnol. Lett., 2018, 40(7), 1087-1100.
[http://dx.doi.org/10.1007/s10529-018-2557-9] [PMID: 29680931]
[16]
Figueroa-Espinoza, M-C.; Villeneuve, P. Phenolic acids enzymatic lipophilization. J. Agric. Food Chem., 2005, 53(8), 2779-2787.
[http://dx.doi.org/10.1021/jf0484273] [PMID: 15826020]
[17]
Srivastava, V.; Darokar, M.P.; Fatima, A.; Kumar, J.K.; Chowdhury, C.; Saxena, H.O.; Dwivedi, G.R.; Shrivastava, K.; Gupta, V.; Chat-topadhyay, S.K.; Luqman, S.; Gupta, M.M.; Negi, A.S.; Khanuja, S.P. Synthesis of diverse analogues of Oenostacin and their antibacte-rial activities. Bioorg. Med. Chem., 2007, 15(1), 518-525.
[http://dx.doi.org/10.1016/j.bmc.2006.09.034] [PMID: 17035037]
[18]
Siquet, C.; Paiva-Martins, F.; Lima, J.L.F.C.; Reis, S.; Borges, F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids--a structure-activity relationship study. Free Radic. Res., 2006, 40(4), 433-442.
[http://dx.doi.org/10.1080/10715760500540442] [PMID: 16517509]
[19]
Kuo, P-C.; Damu, A.G.; Cherng, C.Y.; Jeng, J.F.; Teng, C-M.; Lee, E.J.; Wu, T-S. Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents. Arch. Pharm. Res., 2005, 28(5), 518-528.
[http://dx.doi.org/10.1007/BF02977752] [PMID: 15974436]
[20]
Zabad, O.M.; Samra, Y.A.; Eissa, L.A. P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci., 2019, 238, 116965.
[http://dx.doi.org/10.1016/j.lfs.2019.116965] [PMID: 31629762]
[21]
Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activi-ties. J. Sci. Food Agric., 2016, 96(9), 2952-2962.
[http://dx.doi.org/10.1002/jsfa.7578] [PMID: 26692250]
[22]
Guven, M.; Aras, A.B.; Akman, T.; Sen, H.M.; Ozkan, A.; Salis, O.; Sehitoglu, I.; Kalkan, Y.; Silan, C.; Deniz, M.; Cosar, M. Neuropro-tective effect of p-coumaric acid in rat model of embolic cerebral ischemia. Iran. J. Basic Med. Sci., 2015, 18(4), 356-363.
[PMID: 26019798]
[23]
Mehta, S.L.; Kumari, S.; Mendelev, N.; Li, P.A. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci., 2012, 13, 79.
[http://dx.doi.org/10.1186/1471-2202-13-79] [PMID: 22776356]
[24]
Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in dia-betic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother., 2016, 84, 230-236.
[http://dx.doi.org/10.1016/j.biopha.2016.09.039] [PMID: 27662473]
[25]
Sakamula, R.; Thong-Asa, W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis., 2018, 33(3), 765-773.
[http://dx.doi.org/10.1007/s11011-018-0185-7] [PMID: 29344828]
[26]
Sharma, S.H.; Rajamanickam, V.; Nagarajan, S. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact., 2018, 291, 16-28.
[http://dx.doi.org/10.1016/j.cbi.2018.06.001] [PMID: 29879413]
[27]
Janicke, B.; Hegardt, C.; Krogh, M.; Önning, G.; Åkesson, B.; Cirenajwis, H.M.; Oredsson, S.M. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer, 2011, 63(4), 611-622.
[http://dx.doi.org/10.1080/01635581.2011.538486] [PMID: 21500097]
[28]
Kheiry, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V. p-Coumaric acid attenuates lipopolysaccharide-induced lung inflammation in rats by scavenging ROS production: an in vivo and in vitro study. Inflammation, 2019, 42(6), 1939-1950.
[http://dx.doi.org/10.1007/s10753-019-01054-6] [PMID: 31267276]
[29]
Ekinci Akdemir, F.N.; Albayrak, M.; Çalik, M.; Bayir, Y. Gülçinİ, The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines, 2017, 5(2), 18.
[http://dx.doi.org/10.3390/biomedicines5020018] [PMID: 28536361]
[30]
Vauzour, D.; Corona, G.; Spencer, J.P.E. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine in-duced neurotoxicity. Arch. Biochem. Biophys., 2010, 501(1), 106-111.
[http://dx.doi.org/10.1016/j.abb.2010.03.016] [PMID: 20361927]
[31]
Scognamiglio, M.; Esposito, A.; DAbrosca, B.; Pacifico, S.; Fiumano, V.; Tsafantakis, N.; Monaco, P.; Fiorentino, A. Isolation, distri-bution and allelopathic effect of caffeic acid derivatives from Bellis perennis L. Biochem. Syst. Ecol., 2012, 43, 108-113.
[http://dx.doi.org/10.1016/j.bse.2012.02.025]
[32]
Marmet, C.; Actis-Goretta, L.; Renouf, M.; Giuffrida, F. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee. J. Pharm. Biomed. Anal., 2014, 88, 617-625.
[http://dx.doi.org/10.1016/j.jpba.2013.10.009] [PMID: 24216280]
[33]
Magnani, C.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic acid: A review of its potential use in medications and cosmetics. Anal. Methods, 2014, 6, 3203-3210.
[http://dx.doi.org/10.1039/C3AY41807C]
[34]
Wang, Y.; Wang, Y.; Li, J.; Hua, L.; Han, B.; Zhang, Y.; Yang, X.; Zeng, Z.; Bai, H.; Yin, H.; Lou, J. Effects of caffeic acid on learning deficits in a model of Alzheimers disease. Int. J. Mol. Med., 2016, 38(3), 869-875.
[http://dx.doi.org/10.3892/ijmm.2016.2683] [PMID: 27430591]
[35]
Verma, R.P.; Hansch, C. An Approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem, 2004, 5(9), 1188-1195.
[http://dx.doi.org/10.1002/cbic.200400094] [PMID: 15368569]
[36]
Olthof, M.R.; Hollman, P.C.H.; Katan, M.B. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr., 2001, 131(1), 66-71.
[http://dx.doi.org/10.1093/jn/131.1.66] [PMID: 11208940]
[37]
Damasceno, S.S.; Dantas, B.B.; Ribeiro-Filho, J.; Antônio, M.; Araújo, D.; Galberto, M.; da Costa, J.; Galberto, M.; da Costa, J. Chemical properties of caffeic and ferulic acids in biological system: implications in cancer therapy. A review. Curr. Pharm. Des., 2017, 23(20), 3015-3023.
[http://dx.doi.org/10.2174/1381612822666161208145508] [PMID: 27928956]
[38]
Nardini, M.; DAquino, M.; Tomassi, G.; Gentili, V.; Di Felice, M.; Scaccini, C. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radic. Biol. Med., 1995, 19(5), 541-552.
[http://dx.doi.org/10.1016/0891-5849(95)00052-Y] [PMID: 8529913]
[39]
Gülçin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 2006, 217(2-3), 213-220.
[http://dx.doi.org/10.1016/j.tox.2005.09.011] [PMID: 16243424]
[40]
Jung, U.J.; Lee, M-K.; Park, Y.B.; Jeon, S-M.; Choi, M-S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther., 2006, 318(2), 476-483.
[http://dx.doi.org/10.1124/jpet.106.105163] [PMID: 16644902]
[41]
Arivarasu, N.A.; Priyamvada, S.; Mahmood, R. Oral administration of caffeic acid ameliorates the effect of cisplatin on brush border membrane enzymes and antioxidant system in rat intestine. Exp. Toxicol. Pathol., 2013, 65(1-2), 21-25.
[http://dx.doi.org/10.1016/j.etp.2011.05.004] [PMID: 21640567]
[42]
Maurya, D.K.; Devasagayam, T.P.A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol., 2010, 48(12), 3369-3373.
[http://dx.doi.org/10.1016/j.fct.2010.09.006] [PMID: 20837085]
[43]
Tyszka-Czochara, M.; Bukowska-Strakova, K.; Majka, M. Metformin and caffeic acid regulate metabolic reprogramming in human cervical carcinoma SiHa/HTB-35 cells and augment anticancer activity of Cisplatin via cell cycle regulation. Food Chem. Toxicol.,2017, 106(Pt A), 260-272.
[http://dx.doi.org/10.1016/j.fct.2017.05.065] [PMID: 28576465]
[44]
Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathoge-nic bacteria. Microb. Drug Resist., 2013, 19(4), 256-265.
[http://dx.doi.org/10.1089/mdr.2012.0244] [PMID: 23480526]
[45]
Ibitoye, O.B.; Ajiboye, T.O. Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter bau-mannii. Microb. Pathog., 2019, 126, 393-398.
[http://dx.doi.org/10.1016/j.micpath.2018.11.033] [PMID: 30476577]
[46]
Zhang, Y.J.; Huang, X.; Wang, Y.; Xie, Y.; Qiu, X.J.; Ren, P.; Gao, L.C.; Zhou, H.H.; Zhang, H.Y.; Qiao, M.Q. Ferulic acid-induced anti-depression and prokinetics similar to Chaihu-Shugan-San via polypharmacology. Brain Res. Bull., 2011, 86(3-4), 222-228.
[http://dx.doi.org/10.1016/j.brainresbull.2011.07.002] [PMID: 21791239]
[47]
Lenzi, J.; Rodrigues, A.F. Rós, Ade.S.; de Castro, A.B.; de Lima, D.D.; Magro, D.D.; Zeni, A.L. Ferulic acid chronic treatment exerts antidepressant-like effect: Role of antioxidant defense system. Metab. Brain Dis., 2015, 30(6), 1453-1463.
[http://dx.doi.org/10.1007/s11011-015-9725-6] [PMID: 26340979]
[48]
Liu, Y-M.; Shen, J-D.; Xu, L-P.; Li, H-B.; Li, Y-C.; Yi, L-T. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpre-dictable mild stress. Int. Immunopharmacol., 2017, 45, 128-134.
[http://dx.doi.org/10.1016/j.intimp.2017.02.007] [PMID: 28213267]
[49]
Lin, C-M.; Chiu, J-H.; Wu, I.H.; Wang, B-W.; Pan, C-M.; Chen, Y-H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 α. J. Nutr. Biochem., 2010, 21(7), 627-633.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.001] [PMID: 19443196]
[50]
Lampiasi, N.; Montana, G. An in vitro inflammation model to study the Nrf2 and NF-κB crosstalk in presence of ferulic acid as modula-tor. Immunobiology, 2018, 223(4-5), 349-355.
[http://dx.doi.org/10.1016/j.imbio.2017.10.046] [PMID: 29096944]
[51]
Liu, I-M.; Chen, W-C.; Cheng, J-T. Mediation of β-endorphin by isoferulic acid to lower plasma glucose in streptozotocin-induced dia-betic rats. J. Pharmacol. Exp. Ther., 2003, 307(3), 1196-1204.
[http://dx.doi.org/10.1124/jpet.103.053900] [PMID: 12975496]
[52]
Guo, X.; Chen, X.; Cheng, W.; Yang, K.; Ma, Y.; Bi, K. RP-LC Determination and pharmacokinetic study of ferulic acid and isoferulic acid in rat plasma after taking traditional Chinese medicinal-preparation: Guanxinning lyophilizer. Chromatographia, 2008, 67, 1007-1011.
[http://dx.doi.org/10.1365/s10337-008-0614-6]
[53]
Wang, X.; Li, X.; Chen, D. Evaluation of antioxidant activity of isoferulic acid in vitro. Nat. Prod. Commun., 2011, 6(9), 1285-1288.
[http://dx.doi.org/10.1177/1934578X1100600919] [PMID: 21941899]
[54]
Meeprom, A.; Sompong, W.; Suantawee, T.; Thilavech, T.; Chan, C.B.; Adisakwattana, S. Isoferulic acid prevents methylglyoxal-induced protein glycation and DNA damage by free radical scavenging activity. BMC Complement. Altern. Med., 2015, 15, 346.
[http://dx.doi.org/10.1186/s12906-015-0874-2] [PMID: 26438049]
[55]
Arfin, S.; Siddiqui, G.A.; Naeem, A.; Moin, S. Inhibition of advanced glycation end products by isoferulic acid and its free radical scavenging capacity: An in vitro and molecular docking study. Int. J. Biol. Macromol., 2018, 118(Pt B), 1479-1487.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.182] [PMID: 29969636]
[56]
Nićiforović N.; Polak, T.; Makuc, D.; Poklar Ulrih, N.; Abramović H. A kinetic approach in the evaluation of radical-scavenging effi-ciency of sinapic acid and its derivatives. Molecules, 2017, 22(3), 375.
[http://dx.doi.org/10.3390/molecules22030375] [PMID: 28264523]
[57]
Hameed, H.; Aydin, S. Başaran, N. Sinapic acid: Is it safe for humans? FABAD J. Pharm. Sci., 2016, 41, 39.
[58]
Chen, C. Sinapic acid and its derivatives as medicine in oxidative stress-induced diseases and aging. Oxid. Med. Cell. Longev., 2016, 2016, 3571614.
[http://dx.doi.org/10.1155/2016/3571614] [PMID: 27069529]
[59]
Hudson, E.A.; Dinh, P.A.; Kokubun, T.; Simmonds, M.S.J.; Gescher, A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol. Biomarkers Prev., 2000, 9(11), 1163-1170.
[PMID: 11097223]
[60]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[61]
Shin, D-S.; Kim, K.W.; Chung, H.Y.; Yoon, S.; Moon, J-O. Effect of sinapic acid against dimethylnitrosamine-induced hepatic fibrosis in rats. Arch. Pharm. Res., 2013, 36(5), 608-618.
[http://dx.doi.org/10.1007/s12272-013-0033-6] [PMID: 23435910]
[62]
Pari, L.; Mohamed Jalaludeen, A. Protective role of sinapic acid against arsenic: Induced toxicity in rats. Chem. Biol. Interact., 2011, 194(1), 40-47.
[http://dx.doi.org/10.1016/j.cbi.2011.08.004] [PMID: 21864513]
[63]
Cherng, Y-G.; Tsai, C-C.; Chung, H-H.; Lai, Y-W.; Kuo, S-C.; Cheng, J-T. Antihyperglycemic action of sinapic acid in diabetic rats. J. Agric. Food Chem., 2013, 61(49), 12053-12059.
[http://dx.doi.org/10.1021/jf403092b] [PMID: 24261449]
[64]
Watabe, M.; Hishikawa, K.; Takayanagi, A.; Shimizu, N.; Nakaki, T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. J. Biol. Chem., 2004, 279(7), 6017-6026.
[http://dx.doi.org/10.1074/jbc.M306040200] [PMID: 14625298]
[65]
Xiang, D.; Wang, D.; He, Y.; Xie, J.; Zhong, Z.; Li, Z.; Xie, J. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the β-catenin/T-cell factor signaling. Anticancer Drugs, 2006, 17(7), 753-762.
[http://dx.doi.org/10.1097/01.cad.0000224441.01082.bb] [PMID: 16926625]
[66]
McEleny, K.; Coffey, R.; Morrissey, C.; Fitzpatrick, J.M.; Watson, R.W.G. Caffeic acid phenethyl ester-induced PC-3 cell apoptosis is caspase-dependent and mediated through the loss of inhibitors of apoptosis proteins. BJU Int., 2004, 94(3), 402-406.
[http://dx.doi.org/10.1111/j.1464-410X.2004.04936.x] [PMID: 15291876]
[67]
Cavaliere, V.; Papademetrio, D.L.; Lombardo, T.; Costantino, S.N.; Blanco, G.A.; Álvarez, E.M.C. Caffeic acid phenylethyl ester and MG132, two novel nonconventional chemotherapeutic agents, induce apoptosis of human leukemic cells by disrupting mitochondrial function. Target. Oncol., 2014, 9(1), 25-42.
[http://dx.doi.org/10.1007/s11523-013-0256-y] [PMID: 23430344]
[68]
Torki, S.; Soltani, A.; Shirzad, H.; Esmaeil, N.; Ghatrehsamani, M. Synergistic antitumor effect of NVP-BEZ235 and CAPE on MDA-MB-231 breast cancer cells. Biomed. Pharmacother., 2017, 92, 39-45.
[http://dx.doi.org/10.1016/j.biopha.2017.05.051] [PMID: 28528184]
[69]
Guo, D.; Dou, D.; Ge, L.; Huang, Z.; Wang, L.; Gu, N. A caffeic acid mediated facile synthesis of silver nanoparticles with powerful anti-cancer activity. Coll. Surf. B Biointerfaces, 2015, 134, 229-234.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.070] [PMID: 26208293]
[70]
Ferreira, R.S.; Dos Santos, N.A.G.; Martins, N.M.; Fernandes, L.S.; Dos Santos, A.C. Caffeic Acid Phenethyl Ester (CAPE) protects PC12 cells from cisplatin-induced neurotoxicity by activating the NGF-signaling pathway. Neurotox. Res., 2018, 34(1), 32-46.
[http://dx.doi.org/10.1007/s12640-017-9849-z] [PMID: 29260495]
[71]
Gupta, V.K.; Fakhri, A.; Agarwal, S.; Ahmadi, E.; Nejad, P.A. Synthesis and characterization of MnO2/NiO nanocomposites for photoca-talysis of tetracycline antibiotic and modification with guanidine for carriers of Caffeic acid phenethyl ester-an anticancer drug. J. Photochem. Photobiol. B, 2017, 174, 235-242.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.006] [PMID: 28802174]
[72]
Shvarzbeyn, J.; Huleihel, M. Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFκB activation by HTLV-1 Tax. Antiviral Res., 2011, 90(3), 108-115.
[http://dx.doi.org/10.1016/j.antiviral.2011.03.177] [PMID: 21439329]
[73]
Wu, J.; Horton, L.; Bosland, M.; Karkoszka, J.; Frenkel, K. Caffeic Acid Phenethyl Ester (CAPE) as a preventive agent in preclinical model of breast cancer. Cancer Res., 2007, 67, 4202-4202.
[74]
Wu, J.; Bukkapatnam, U.; Eckard, J.; Frenkel, K. Caffeic acid phenethyl ester (CAPE, a product of propolis) as an inhibitor of human breast cancer growth in a pre-clinical study and its effects on factors involved in cell cycle, angiogenesis, and drug resistance. Cancer Res., 2008, 68, 5710.
[75]
Wu, J.; Omene, C.; Smith, J.; Frenkel, K. Inhibition of breast cancer stem cells (CSC) self-renewal and growth by CAPE, a product of propolis. Cancer Res., 2010, 70, 3555.
[76]
Wu, J.; Omene, C.; Karkoszka, J.; Bosland, M.; Eckard, J.; Klein, C.B.; Frenkel, K. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett., 2011, 308(1), 43-53.
[http://dx.doi.org/10.1016/j.canlet.2011.04.012] [PMID: 21570765]
[77]
Omene, C.O.; Wu, J.; Frenkel, K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest. New Drugs, 2012, 30(4), 1279-1288.
[http://dx.doi.org/10.1007/s10637-011-9667-8] [PMID: 21537887]
[78]
Omene, C.; Kalac, M.; Wu, J.; Marchi, E.; Frenkel, K.; OConnor, O.A. Propolis and its active component, Caffeic Acid Phenethyl Ester (CAPE), modulate breast cancer therapeutic targets via an epigenetically mediated mechanism of action. J. Cancer Sci. Ther., 2013, 5(10), 334-342.
[PMID: 24466386]
[79]
Burris, H.A., III Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother. Pharmacol., 2013, 71(4), 829-842.
[http://dx.doi.org/10.1007/s00280-012-2043-3] [PMID: 23377372]
[80]
Soltani, A.; Torki, S.; Ghahfarokhi, M.S.; Jami, M.S.; Ghatrehsamani, M. Targeting the phosphoinositide 3-kinase/AKT pathways by small molecules and natural compounds as a therapeutic approach for breast cancer cells. Mol. Biol. Rep., 2019, 46(5), 4809-4816.
[http://dx.doi.org/10.1007/s11033-019-04929-x] [PMID: 31313132]
[81]
Bonuccelli, G.; De Francesco, E.M.; de Boer, R.; Tanowitz, H.B.; Lisanti, M.P. NADH autofluorescence, a new metabolic biomarker for cancer stem cells: Identification of Vitamin C and CAPE as natural products targeting “stemness”. Oncotarget, 2017, 8(13), 20667-20678.
[http://dx.doi.org/10.18632/oncotarget.15400] [PMID: 28223550]
[82]
Kudugunti, S.K.; Vad, N.M.; Ekogbo, E.; Moridani, M.Y. Efficacy of caffeic acid phenethyl ester (CAPE) in skin B16-F0 melanoma tumor bearing C57BL/6 mice. Invest. New Drugs, 2011, 29(1), 52-62.
[http://dx.doi.org/10.1007/s10637-009-9334-5] [PMID: 19844662]
[83]
Kudugunti, S.K.; Vad, N.M.; Whiteside, A.J.; Naik, B.U.; Yusuf, M.A.; Srivenugopal, K.S.; Moridani, M.Y. Biochemical mechanism of caffeic acid phenylethyl ester (CAPE) selective toxicity towards melanoma cell lines. Chem. Biol. Interact., 2010, 188(1), 1-14.
[http://dx.doi.org/10.1016/j.cbi.2010.05.018] [PMID: 20685355]
[84]
Kudugunti, S.K.; Thorsheim, H.; Yousef, M.S.; Guan, L.; Moridani, M.Y. The metabolic bioactivation of caffeic acid phenethyl ester (CAPE) mediated by tyrosinase selectively inhibits glutathione S-transferase. Chem. Biol. Interact., 2011, 192(3), 243-256.
[http://dx.doi.org/10.1016/j.cbi.2011.03.015] [PMID: 21458432]
[85]
Lin, H-P.; Jiang, S.S.; Chuu, C-P. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PLoS One, 2012, 7(2), e31286-e31286.
[http://dx.doi.org/10.1371/journal.pone.0031286] [PMID: 22347457]
[86]
Park, M.H.; Kang, D.W.; Jung, Y.; Choi, K-Y.; Min, S. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation. Biochem. Biophys. Res. Commun., 2013, 442(1-2), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2013.09.105] [PMID: 24103753]
[87]
Park, M.H.; Ahn, B-H.; Hong, Y-K.; Min, S. Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis, 2009, 30(2), 356-365.
[http://dx.doi.org/10.1093/carcin/bgn287] [PMID: 19126647]
[88]
Tseng, J-C.; Lin, C-Y.; Su, L-C.; Fu, H-H.; Yang, S-D.; Chuu, C-P. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Oncotarget, 2016, 7(25), 38010-38024.
[http://dx.doi.org/10.18632/oncotarget.9380] [PMID: 27191743]
[89]
Yu, H-J.; Shin, J-A.; Yang, I-H.; Won, D-H.; Ahn, C.H.; Kwon, H-J.; Lee, J-S.; Cho, N-P.; Kim, E-C.; Yoon, H-J.; Lee, J.I.; Hong, S.D.; Cho, S.D. Apoptosis induced by caffeic acid phenethyl ester in human oral cancer cell lines: Involvement of Puma and Bax activation. Arch. Oral Biol., 2017, 84, 94-99.
[http://dx.doi.org/10.1016/j.archoralbio.2017.09.024] [PMID: 28965045]
[90]
Liu, G-L.; Han, N-Z.; Liu, S-S. Caffeic acid phenethyl ester inhibits the progression of ovarian cancer by regulating NF- κB signaling. Biomed. Pharmacother., 2018, 99, 825-831.
[http://dx.doi.org/10.1016/j.biopha.2018.01.129] [PMID: 29710481]
[91]
Marin, E.H.; Paek, H.; Li, M.; Ban, Y.; Karaga, M.K.; Shashidharamurthy, R.; Wang, X. Caffeic acid phenethyl ester exerts apoptotic and oxidative stress on human multiple myeloma cells. Invest. New Drugs, 2019, 37(5), 837-848.
[http://dx.doi.org/10.1007/s10637-018-0701-y] [PMID: 30465316]
[92]
Ren, X.; Liu, J.; Hu, L.; Liu, Q.; Wang, D.; Ning, X. Caffeic acid phenethyl ester inhibits the proliferation of HEp2 cells by regulating Stat3/Plk1 pathway and inducing S phase arrest. Biol. Pharm. Bull., 2019, 42(10), 1689-1693.
[http://dx.doi.org/10.1248/bpb.b19-00315] [PMID: 31366853]
[93]
Soda, M.; Hu, D.; Endo, S.; Takemura, M.; Li, J.; Wada, R.; Ifuku, S.; Zhao, H-T.; El-Kabbani, O.; Ohta, S.; Yamamura, K.; Toyooka, N.; Hara, A.; Matsunaga, T. Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity po-cket in the active site of human aldo-keto reductase 1B10. Eur. J. Med. Chem., 2012, 48, 321-329.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.034] [PMID: 22236472]
[94]
Li, C.; Zhao, Y.; Zheng, X.; Zhang, H.; Zhang, L.; Chen, Y.; Li, Q.; Hu, X. In vitro CAPE inhibitory activity towards human AKR1C3 and the molecular basis. Chem. Biol. Interact., 2016, 253, 60-65.
[http://dx.doi.org/10.1016/j.cbi.2016.05.012] [PMID: 27163852]
[95]
Zhang, L.; Zhang, H.; Zheng, X.; Zhao, Y.; Chen, S.; Chen, Y.; Zhang, R.; Li, Q.; Hu, X. Structural basis for the inhibition of AKR1B10 by caffeic acid phenethyl ester (CAPE). ChemMedChem, 2014, 9(4), 706-709.
[http://dx.doi.org/10.1002/cmdc.201300455] [PMID: 24436249]
[96]
Zou, H.; Wu, H.; Zhang, X.; Zhao, Y.; Stöckigt, J.; Lou, Y.; Yu, Y. Synthesis, biological evaluation, and structure-activity relationship study of novel cytotoxic aza-caffeic acid derivatives. Bioorg. Med. Chem., 2010, 18(17), 6351-6359.
[http://dx.doi.org/10.1016/j.bmc.2010.07.016] [PMID: 20673727]
[97]
Hajmohamad Ebrahim Ketabforoosh, S.; Amini, M.; Vosooghi, M.; Shafiee, A.; Azizi, E.; Kobarfard, F. Synthesis, evaluation of anti-cancer activity and QSAR study of heterocyclic esters of caffeic Acid. Iran. J. Pharm. Res., 2013, 12(4), 705-719.
[PMID: 24523750]
[98]
Shi, Z-H.; Li, N-G.; Shi, Q-P.; Tang, H.; Tang, Y-P.; Li, W.; Yin, L.; Yang, J-P.; Duan, J-A. Design, synthesis and biological evaluation of caffeic acid amides as selective MMP-2 and MMP-9 inhibitors. Drug Dev. Res., 2012, 73, 343-351.
[http://dx.doi.org/10.1002/ddr.21038]
[99]
Roomi, M.W.; Monterrey, J.C.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A. Patterns of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol. Rep., 2009, 21(5), 1323-1333.
[PMID: 19360311]
[100]
Narra, N.; Kaki, S.S.; Prasad, R.B.N.; Misra, S.; Dhevendar, K.; Kontham, V.; Korlipara, P.V. Synthesis and evaluation of anti-oxidant and cytotoxic activities of novel 10-undecenoic acid methyl ester based lipoconjugates of phenolic acids. Beilstein J. Org. Chem., 2017, 13, 26-32.
[http://dx.doi.org/10.3762/bjoc.13.4] [PMID: 28179945]
[101]
Castrillón, W.; Herrera-R, A.; Prieto, L.J.; Conesa-Milián, L.; Carda, M.; Naranjo, T.; Maldonado, M.E.; Cardona-G, W. Synthesis and in vitro evaluation of S-allyl cysteine ester - caffeic acid amide hybrids as potential anticancer agents. Iran. J. Pharm. Res., 2019, 18(4), 1770-1789.
[PMID: 32184845]
[102]
Mudjupa, C.; Abdelhamed, S.; Refaat, A.; Yokoyama, S.; Saiki, I.; Vajragupta, O. Lead compound bearing caffeic scaffold induces EGFR suppression in solid tumor cancer cells. J. Appl. Biomed., 2015, 13, 305-317.
[http://dx.doi.org/10.1016/j.jab.2015.05.001]
[103]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[104]
Romano, M.; Clària, J. Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: impli-cations for cancer therapy. FASEB J., 2003, 17(14), 1986-1995.
[http://dx.doi.org/10.1096/fj.03-0053rev] [PMID: 14597668]
[105]
Cai, H.; Huang, X.; Xu, S.; Shen, H.; Zhang, P.; Huang, Y.; Jiang, J.; Sun, Y.; Jiang, B.; Wu, X.; Yao, H.; Xu, J. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur. J. Med. Chem., 2016, 108, 89-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.013] [PMID: 26638042]
[106]
Xie, J.; Yang, F.; Zhang, M.; Lam, C.; Qiao, Y.; Xiao, J.; Zhang, D.; Ge, Y.; Fu, L.; Xie, D. Antiproliferative activity and SARs of caffeic acid esters with mono-substituted phenylethanols moiety. Bioorg. Med. Chem. Lett., 2017, 27(2), 131-134.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.007] [PMID: 27979593]
[107]
Firdaus, S.; Alamsyah, N.; Paramita, S. Synthesis and activity of N-(o-tolyl)caffeamide and N-(o-tolyl)-p-coumaramide against P388 leukemia murine cells. J. Phys. Conf. Ser., 2019, 1341, 032005.
[http://dx.doi.org/10.1088/1742-6596/1341/3/032005]
[108]
Yao, X.; Tang, H.; Ren, Q.; Zhao, X.; Zuo, H.; Li, Z. Inhibited effects of CAPE-pNO2 on cervical carcinoma in vivo and in vitro and its detected metabolites. Oncotarget, 2017, 8(55), 94197-94209.
[http://dx.doi.org/10.18632/oncotarget.21617] [PMID: 29212221]
[109]
Huang, Q.; Li, S.; Zhang, L.; Qiao, X.; Zhang, Y.; Zhao, X.; Xiao, G.; Li, Z. CAPE-pNO2 inhibited the growth and metastasis of triple-negative breast cancer via the EGFR/STAT3/Akt/E-cadherin signaling pathway. Front. Oncol., 2019, 9, 461-461.
[http://dx.doi.org/10.3389/fonc.2019.00461] [PMID: 31214503]
[110]
Sanderson, J.T.; Clabault, H.; Patton, C.; Lassalle-Claux, G.; Jean-François, J.; Paré, A.F.; Hébert, M.J.G.; Surette, M.E.; Touaibia, M. Antiproliferative, antiandrogenic and cytotoxic effects of novel caffeic acid derivatives in LNCaP human androgen-dependent prostate cancer cells. Bioorg. Med. Chem., 2013, 21(22), 7182-7193.
[http://dx.doi.org/10.1016/j.bmc.2013.08.057] [PMID: 24080105]
[111]
Beauregard, A-P.; Harquail, J.; Lassalle-Claux, G.; Belbraouet, M.; Jean-Francois, J.; Touaibia, M.; Robichaud, G.A. CAPE analogs indu-ce growth arrest and apoptosis in breast cancer cells. Molecules, 2015, 20(7), 12576-12589.
[http://dx.doi.org/10.3390/molecules200712576] [PMID: 26184141]
[112]
Morin, P.; St-Coeur, P-D.; Doiron, J.A.; Cormier, M.; Poitras, J.J.; Surette, M.E.; Touaibia, M. Substituted caffeic and ferulic acid phe-nethyl esters: Synthesis, leukotrienes biosynthesis inhibition, and cytotoxic activity. Molecules, 2017, 22(7), 1124.
[http://dx.doi.org/10.3390/molecules22071124] [PMID: 28684707]
[113]
Selka, A.; Doiron, J.A.; Lyons, P.; Dastous, S.; Chiasson, A.; Cormier, M.; Turcotte, S.; Surette, M.E.; Touaibia, M. Discovery of a no-vel 2,5-dihydroxycinnamic acid-based 5-lipoxygenase inhibitor that induces apoptosis and may impair autophagic flux in RCC4 renal cancer cells. Eur. J. Med. Chem., 2019, 179, 347-357.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.060] [PMID: 31260889]
[114]
Murugesan, A.; Lassalle-Claux, G.; Hogan, L.; Vaillancourt, E.; Selka, A.; Luiker, K.; Kim, M.J.; Touaibia, M.; Reiman, T. Antimyeloma potential of caffeic acid phenethyl ester and its analogues through Sp1 mediated downregulation of IKZF1-IRF4-MYC Axis. J. Nat. Prod., 2020, 83(12), 3526-3535.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00350] [PMID: 33210536]
[115]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408(6810), 307-310.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028]
[116]
Turcotte, S.; Chan, D.A.; Sutphin, P.D.; Hay, M.P.; Denny, W.A.; Giaccia, A.J. A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell, 2008, 14(1), 90-102.
[http://dx.doi.org/10.1016/j.ccr.2008.06.004] [PMID: 18598947]
[117]
Sutphin, P.D.; Chan, D.A.; Li, J.M.; Turcotte, S.; Krieg, A.J.; Giaccia, A.J. Targeting the loss of the von Hippel-Lindau tumor suppressor gene in renal cell carcinoma cells. Cancer Res., 2007, 67(12), 5896-5905.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0604] [PMID: 17575159]
[118]
Chan, D.A.; Sutphin, P.D.; Nguyen, P.; Turcotte, S.; Lai, E.W.; Banh, A.; Reynolds, G.E.; Chi, J-T.; Wu, J.; Solow-Cordero, D.E. Targe-ting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med., 2011, 3(94), 94ra70.
[http://dx.doi.org/10.1126/scitranslmed.3002394]
[119]
Greene, C.J.; Sharma, N.J.; Fiorica, P.N.; Forrester, E.; Smith, G.J.; Gross, K.W.; Kauffman, E.C. Suppressive effects of iron chelation in clear cell renal cell carcinoma and their dependency on VHL inactivation. Free Radic. Biol. Med., 2019, 133, 295-309.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.013] [PMID: 30553971]
[120]
Toman, I.; Loree, J.; Klimowicz, A.C.; Bahlis, N.; Lai, R.; Belch, A.; Pilarski, L.; Reiman, T. Expression and prognostic significance of Oct2 and Bob1 in multiple myeloma: implications for targeted therapeutics. Leuk. Lymphoma, 2011, 52(4), 659-667.
[http://dx.doi.org/10.3109/10428194.2010.548535] [PMID: 21438833]
[121]
Klein, U.; Casola, S.; Cattoretti, G.; Shen, Q.; Lia, M.; Mo, T.; Ludwig, T.; Rajewsky, K.; Dalla-Favera, R. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol., 2006, 7(7), 773-782.
[http://dx.doi.org/10.1038/ni1357] [PMID: 16767092]
[122]
Shaffer, A.L.; Emre, N.C.T.; Lamy, L.; Ngo, V.N.; Wright, G.; Xiao, W.; Powell, J.; Dave, S.; Yu, X.; Zhao, H.; Zeng, Y.; Chen, B.; Eps-tein, J.; Staudt, L.M. IRF4 addiction in multiple myeloma. Nature, 2008, 454(7201), 226-231.
[http://dx.doi.org/10.1038/nature07064] [PMID: 18568025]
[123]
Holien, T.; Våtsveen, T.K.; Hella, H.; Waage, A.; Sundan, A. Addiction to c-MYC in multiple myeloma. Blood, 2012, 120(12), 2450-2453.
[http://dx.doi.org/10.1182/blood-2011-08-371567] [PMID: 22806891]
[124]
Marriott, J.B.; Muller, G.; Stirling, D.; Dalgleish, A.G. Immunotherapeutic and antitumour potential of thalidomide analogues. Expert Opin. Biol. Ther., 2001, 1(4), 675-682.
[http://dx.doi.org/10.1517/14712598.1.4.675] [PMID: 11727503]
[125]
Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalido-mide teratogenicity. Science, 2010, 327(5971), 1345-1350.
[http://dx.doi.org/10.1126/science.1177319] [PMID: 20223979]
[126]
Lu, G.; Middleton, R.E.; Sun, H.; Naniong, M.; Ott, C.J.; Mitsiades, C.S.; Wong, K-K.; Bradner, J.E.; Kaelin, W.G., Jr The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 2014, 343(6168), 305-309.
[http://dx.doi.org/10.1126/science.1244917] [PMID: 24292623]
[127]
Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov., 2016, 15(8), 551-567.
[http://dx.doi.org/10.1038/nrd.2016.39] [PMID: 27020098]
[128]
Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[129]
Calle, M.C.; Fernandez, M.L. Inflammation and type 2 diabetes. Diabetes Metab., 2012, 38(3), 183-191.
[http://dx.doi.org/10.1016/j.diabet.2011.11.006] [PMID: 22252015]
[130]
Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; DAcierno, L.; Giordano, R.; Di Palma, G.; Conte, M.; Golino, P.; Russo, M.G.; Calabrò, R.; Calabrò, P. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target. Curr. Atheroscler. Rep., 2014, 16(9), 435.
[http://dx.doi.org/10.1007/s11883-014-0435-z] [PMID: 25037581]
[131]
Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling pathways in inflammation and anti-inflammatory therapies. Curr. Pharm. Des., 2018, 24(14), 1449-1484.
[http://dx.doi.org/10.2174/1381612824666180327165604] [PMID: 29589535]
[132]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[133]
Audial, S.; Bonnotte, B. Inflammation. Rev. Prat., 2015, 65(3), 403-408.
[PMID: 26016209]
[134]
Samuelsson, B. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science, 1983, 220(4597), 568-575.
[http://dx.doi.org/10.1126/science.6301011] [PMID: 6301011]
[135]
Nakamura, M.; Shimizu, T. Leukotriene receptors. Chem. Rev., 2011, 111(10), 6231-6298.
[http://dx.doi.org/10.1021/cr100392s] [PMID: 21526749]
[136]
Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase: Regulation of expression and enzyme activity. Trends Biochem. Sci., 2007, 32(7), 332-341.
[http://dx.doi.org/10.1016/j.tibs.2007.06.002] [PMID: 17576065]
[137]
Bruno, F.; Spaziano, G.; Liparulo, A.; Roviezzo, F.; Nabavi, S.M.; Sureda, A.; Filosa, R.; DAgostino, B. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur. J. Med. Chem., 2018, 153, 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.020] [PMID: 29133059]
[138]
Bader, A.; Martini, F.; Schinella, G.R.; Rios, J.L.; Prieto, J.M. Modulation of Cox-1, 5-, 12- and 15-Lox by popular herbal remedies used in southern Italy against psoriasis and other skin diseases. Phytother. Res., 2015, 29(1), 108-113.
[http://dx.doi.org/10.1002/ptr.5234] [PMID: 25278440]
[139]
Singh, R.K.; Tandon, R.; Dastidar, S.G.; Ray, A. A review on leukotrienes and their receptors with reference to asthma. J. Asthma, 2013, 50(9), 922-931.
[http://dx.doi.org/10.3109/02770903.2013.823447] [PMID: 23859232]
[140]
Montuschi, P.; Sala, A.; Dahlén, S-E.; Folco, G. Pharmacological modulation of the leukotriene pathway in allergic airway disease. Drug Discov. Today, 2007, 12(9-10), 404-412.
[http://dx.doi.org/10.1016/j.drudis.2007.03.004] [PMID: 17467577]
[141]
Khan, R.; Spagnoli, V.; Tardif, J-C.; LAllier, P.L. Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis, 2015, 240(2), 497-509.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.04.783] [PMID: 25917947]
[142]
Chu, J.; Praticò, D. The 5-Lipoxygenase as modulator of Alzheimer'sγ -secretase and therapeutic target. Brain Res. Bull., 2016, 126(Pt 2), 207-212.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.010] [PMID: 27005438]
[143]
Chen, Y.; Li, D.; Li, S. The Alox5 gene is a novel therapeutic target in cancer stem cells of chronic myeloid leukemia. Cell Cycle, 2009, 8(21), 3488-3492.
[http://dx.doi.org/10.4161/cc.8.21.9852] [PMID: 19823023]
[144]
Roos, J.; Grösch, S.; Werz, O.; Schröder, P.; Ziegler, S.; Fulda, S.; Paulus, P.; Urbschat, A.; Kühn, B.; Maucher, I.; Fettel, J.; Vorup-Jensen, T.; Piesche, M.; Matrone, C.; Steinhilber, D.; Parnham, M.J.; Maier, T.J. Regulation of tumorigenic Wnt signaling by cyclooxyge-nase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol. Ther., 2016, 157, 43-64.
[http://dx.doi.org/10.1016/j.pharmthera.2015.11.001] [PMID: 26549540]
[145]
Peters-Golden, M.; Henderson, W.R. Jr Leukotrienes. N. Engl. J. Med., 2007, 357(18), 1841-1854.
[http://dx.doi.org/10.1056/NEJMra071371] [PMID: 17978293]
[146]
Food, U.; Administration, D. FDA briefing document, Pediatric Advisory Committee Meeting Update on safety issues associated with Exjade (deferasirox) use in young children who have fever, 2019.
[147]
Awni, W.M.; Braeckman, R.A.; Granneman, G.R.; Witt, G.; Dubé, L.M. Pharmacokinetics and pharmacodynamics of zileuton after oral administration of single and multiple dose regimens of zileuton 600mg in healthy volunteers. Clin. Pharmacokinet., 1995, 29(Suppl. 2), 22-33.
[http://dx.doi.org/10.2165/00003088-199500292-00005] [PMID: 8620668]
[148]
Dubé, L.M.; Swanson, L.J.; Awni, W. Zileuton, a leukotriene synthesis inhibitor in the management of chronic asthma. Clinical pharma-cokinetics and safety. Clin. Rev. Allergy Immunol., 1999, 17(1-2), 213-221.
[http://dx.doi.org/10.1007/BF02737605] [PMID: 10436867]
[149]
Boudreau, L.H.; Maillet, J.; LeBlanc, L.M.; Jean-François, J.; Touaibia, M.; Flamand, N.; Surette, M.E. Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PLoS One, 2012, 7(2), e31833.
[http://dx.doi.org/10.1371/journal.pone.0031833] [PMID: 22347509]
[150]
Hébert, M.J.G.; Flewelling, A.J.; Clark, T.N.; Levesque, N.A.; Jean-François, J.; Surette, M.E.; Gray, C.A.; Vogels, C.M.; Touaibia, M.; Westcott, S.A. Synthesis and biological activity of arylspiroborate salts derived from caffeic Acid phenethyl ester. Int. J. Med. Chem., 2015, 2015, 418362.
[http://dx.doi.org/10.1155/2015/418362] [PMID: 25834744]
[151]
Boudreau, L.H.; Lassalle-Claux, G.; Cormier, M.; Blanchard, S.; Doucet, M.S.; Surette, M.E.; Touaibia, M. New hydroxycinnamic acid esters as novel 5-lipoxygenase inhibitors that affect leukotriene biosynthesis. Mediators Inflamm., 2017, 2017, 6904634.
[http://dx.doi.org/10.1155/2017/6904634] [PMID: 28680195]
[152]
Doiron, J.A.; Leblanc, L.M.; Hébert, M.J.G.; Levesque, N.A.; Paré, A.F.; Jean-François, J.; Cormier, M.; Surette, M.E.; Touaibia, M. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors. Chem. Biol. Drug Des., 2017, 89(4), 514-528.
[http://dx.doi.org/10.1111/cbdd.12874] [PMID: 27717142]
[153]
Doiron, J.; Boudreau, L.H.; Picot, N.; Villebonet, B.; Surette, M.E.; Touaibia, M. Synthesis and 5-lipoxygenase inhibitory activity of new cinnamoyl and caffeoyl clusters. Bioorg. Med. Chem. Lett., 2009, 19(4), 1118-1121.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.108] [PMID: 19152786]
[154]
Boudreau, L.H.; Picot, N.; Doiron, J.; Villebonnet, B.; Surette, M.E.; Robichaud, G.A.; Touaibia, M. Caffeoyl and cinnamoyl clusters with anti-inflammatory and anti-cancer effects. Synthesis and structure-activity relationship. New J. Chem., 2009, 33, 1932-1940.
[http://dx.doi.org/10.1039/b907878a]
[155]
De Lucia, D.; Lucio, O.M.; Musio, B.; Bender, A.; Listing, M.; Dennhardt, S.; Koeberle, A.; Garscha, U.; Rizzo, R.; Manfredini, S.; Werz, O.; Ley, S.V. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase in-hibitors. Eur. J. Med. Chem., 2015, 101, 573-583.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.011] [PMID: 26197161]
[156]
Doiron, J.A.; Métayer, B.; Richard, R.R.; Desjardins, D.; Boudreau, L.H.; Levesque, N.A.; Jean-François, J.; Poirier, S.J.; Surette, M.E.; Touaibia, M. Clicked cinnamic/caffeic esters and amides as radical scavengers and 5-lipoxygenase inhibitors. Int. J. Med. Chem., 2014, 2014, 931756.
[http://dx.doi.org/10.1155/2014/931756] [PMID: 25383225]
[157]
Roy, P-P.; Faye, D.; Blanchard, S.; Cormier, M.; Doiron, J.A.; Surette, M.E.; Touaibia, M. New caffeic acid phenylethyl ester analogs bearing substituted triazole: synthesis and structure-activity relationship study towards 5-lipoxygenase inhibition. J. Chem., 2017, 2017, 2380531.
[http://dx.doi.org/10.1155/2017/2380531]
[158]
Porrini, M.; Riso, P. Factors influencing the bioavailability of antioxidants in foods: a critical appraisal. Nutr. Metab. Cardiovasc. Dis., 2008, 18(10), 647-650.
[http://dx.doi.org/10.1016/j.numecd.2008.08.004] [PMID: 18996686]
[159]
Day, A.J.; Bao, Y.; Morgan, M.R.A.; Williamson, G. Conjugation position of quercetin glucuronides and effect on biological activity. Free Radic. Biol. Med., 2000, 29(12), 1234-1243.
[http://dx.doi.org/10.1016/S0891-5849(00)00416-0] [PMID: 11118813]
[160]
Wen, X.; Walle, T. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab. Dispos., 2006, 34(10), 1786-1792.
[http://dx.doi.org/10.1124/dmd.106.011122] [PMID: 16868069]
[161]
Del Rio, D.; Costa, L.G.; Lean, M.E.J.; Crozier, A. Polyphenols and health: What compounds are involved? Nutr. Metab. Cardiovasc. Dis., 2010, 20(1), 1-6.
[http://dx.doi.org/10.1016/j.numecd.2009.05.015] [PMID: 19713090]
[162]
Waterman, K.C.; Adami, R.C. Accelerated aging: prediction of chemical stability of pharmaceuticals. Int. J. Pharm., 2005, 293(1-2), 101-125.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.013] [PMID: 15778049]
[163]
Touaibia, M.; Hébert, M.J.G.; Levesque, N.A.; Doiron, J.A.; Doucet, M.S.; Jean-François, J.; Cormier, M.; Boudreau, L.H.; Surette, M.E. Sinapic acid phenethyl ester as a potent selective 5-lipoxygenase inhibitor: Synthesis and structure-activity relationship. Chem. Biol. Drug Des., 2018, 92(5), 1876-1887.
[http://dx.doi.org/10.1111/cbdd.13360] [PMID: 29953727]
[164]
Mbarik, M.; Poirier, S.J.; Doiron, J.; Selka, A.; Barnett, D.A.; Cormier, M.; Touaibia, M.; Surette, M.E. Phenolic acid phenethylesters and their corresponding ketones: Inhibition of 5-lipoxygenase and stability in human blood and HepaRG cells. Pharmacol. Res. Perspect., 2019, 7(5), e00524.
[http://dx.doi.org/10.1002/prp2.524] [PMID: 31523435]
[165]
Burgaletto, C.; Munafò, A.; Di Benedetto, G.; De Francisci, C.; Caraci, F.; Di Mauro, R.; Bucolo, C.; Bernardini, R.; Cantarella, G. The immune system on the TRAIL of Alzheimers disease. J. Neuroinflammation, 2020, 17(1), 298.
[http://dx.doi.org/10.1186/s12974-020-01968-1] [PMID: 33050925]
[166]
Schwartz, M.; Kipnis, J.; Rivest, S.; Prat, A. How do immune cells support and shape the brain in health, disease, and aging? J. Neurosci., 2013, 33(45), 17587-17596.
[http://dx.doi.org/10.1523/JNEUROSCI.3241-13.2013] [PMID: 24198349]
[167]
Chitnis, T.; Weiner, H.L. CNS inflammation and neurodegeneration. J. Clin. Invest., 2017, 127(10), 3577-3587.
[http://dx.doi.org/10.1172/JCI90609] [PMID: 28872464]
[168]
Lin, T.; Liu, G.A.; Perez, E.; Rainer, R.D.; Febo, M.; Cruz-Almeida, Y.; Ebner, N.C. Systemic inflammation mediates age-related cogniti-ve deficits. Front. Aging Neurosci., 2018, 10, 236.
[http://dx.doi.org/10.3389/fnagi.2018.00236] [PMID: 30127734]
[169]
Khan, M.; Elango, C.; Ansari, M.A.; Singh, I.; Singh, A.K. Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia. J. Neurochem., 2007, 102(2), 365-377.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04526.x] [PMID: 17437550]
[170]
dos Santos, N.A.; Martins, N.M. Silva, Rde.B.; Ferreira, R.S.; Sisti, F.M.; dos Santos, A.C. Caffeic acid phenethyl ester (CAPE) protects PC12 cells from MPP+ toxicity by inducing the expression of neuron-typical proteins. Neurotoxicology, 2014, 45, 131-138.
[http://dx.doi.org/10.1016/j.neuro.2014.09.007] [PMID: 25454720]
[171]
Gülçin, İ.; Scozzafava, A.; Supuran, C.T.; Akıncıoğlu, H.; Koksal, Z.; Turkan, F.; Alwasel, S. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. . J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1095-1101.
[http://dx.doi.org/10.3109/14756366.2015.1094470] [PMID: 26453427]
[172]
Morroni, F.; Sita, G.; Graziosi, A.; Turrini, E.; Fimognari, C.; Tarozzi, A.; Hrelia, P. Neuroprotective effect of caffeic acid phenethyl ester in a mouse model of Alzheimers disease involves Nrf2/HO-1 pathway. Aging Dis., 2018, 9(4), 605-622.
[http://dx.doi.org/10.14336/AD.2017.0903] [PMID: 30090650]
[173]
He, X.X.; Yang, X.H.; Ou, R.Y.; Ouyang, Y.; Wang, S.N.; Chen, Z.W.; Wen, S.J.; Pi, R.B. Synthesis and evaluation of multifunctional ferulic and caffeic acid dimers for Alzheimers disease. Nat. Prod. Res., 2017, 31(6), 734-737.
[http://dx.doi.org/10.1080/14786419.2016.1219862] [PMID: 27531418]
[174]
Tu, L-H.; Tseng, N-H.; Tsai, Y-R.; Lin, T-W.; Lo, Y-W.; Charng, J-L.; Hsu, H-T.; Chen, Y-S.; Chen, R-J.; Wu, Y-T.; Chan, Y.T.; Chen, C.S.; Fang, J.M.; Chen, Y.R. Rationally designed divalent caffeic amides inhibit amyloid- fibrillization, induce fibril dissociation, and ameliorate cytotoxicity. Eur. J. Med. Chem., 2018, 158, 393-404.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.084] [PMID: 30227353]
[175]
Murakami, K.; Irie, K.; Ohigashi, H.; Hara, H.; Nagao, M.; Shimizu, T.; Shirasawa, T. Formation and stabilization model of the 42-mer Abeta radical: implications for the long-lasting oxidative stress in Alzheimers disease. J. Am. Chem. Soc., 2005, 127(43), 15168-15174.
[http://dx.doi.org/10.1021/ja054041c] [PMID: 16248658]
[176]
Miyamae, Y.; Kurisu, M.; Murakami, K.; Han, J.; Isoda, H.; Irie, K.; Shigemori, H. Protective effects of caffeoylquinic acids on the aggregation and neurotoxicity of the 42-residue amyloid β-protein. Bioorg. Med. Chem., 2012, 20(19), 5844-5849.
[http://dx.doi.org/10.1016/j.bmc.2012.08.001] [PMID: 22921742]
[177]
Digiacomo, M.; Chen, Z.; Wang, S.; Lapucci, A.; Macchia, M.; Yang, X.; Chu, J.; Han, Y.; Pi, R.; Rapposelli, S. Synthesis and pharmaco-logical evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett., 2015, 25(4), 807-810.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.084] [PMID: 25597007]
[178]
Arai, T.; Ohno, A.; Mori, K.; Kuwata, H.; Mizuno, M.; Imai, K.; Hara, S.; Shibanuma, M.; Kurihara, M.; Miyata, N.; Nakagawa, H.; Fu-kuhara, K. Inhibition of amyloid fibril formation and cytotoxicity by caffeic acid-conjugated amyloid-β C-terminal peptides. Bioorg. Med. Chem. Lett., 2016, 26(22), 5468-5471.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.027] [PMID: 27789140]
[179]
Gießel, J.M.; Loesche, A.; Csuk, R.; Serbian, I. Caffeic acid phenethyl ester (CAPE)-derivatives act as selective inhibitors of acetylcholi-nesterase. Eur. J. Med. Chem., 2019, 177, 259-268.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.059] [PMID: 31158743]
[180]
Benchekroun, M.; Pachón-Angona, I.; Luzet, V.; Martin, H.; Oset-Gasque, M-J.; Marco-Contelles, J.; Ismaili, L. Synthesis, antioxidant and A anti-aggregation properties of new ferulic, caffeic and lipoic acid derivatives obtained by the Ugi four-component reaction. Bioorg. Chem., 2019, 85, 221-228.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.029] [PMID: 30640071]
[181]
Wan, T.; Wang, Z.; Luo, Y.; Zhang, Y.; He, W.; Mei, Y.; Xue, J.; Li, M.; Pan, H.; Li, W.; Wang, Q.; Huang, Y. FA-97, a new synthetic caffeic acid phenethyl ester derivative, protects against oxidative stress-mediated neuronal cell apoptosis and scopolamine-induced cog-nitive impairment by activating Nrf2/HO-1 signaling. Oxid. Med. Cell. Longev., 2019, 2019, 8239642.
[http://dx.doi.org/10.1155/2019/8239642] [PMID: 31885818]
[182]
Cuadrado, A.; Manda, G.; Hassan, A.; Alcaraz, M.J.; Barbas, C.; Daiber, A.; Ghezzi, P.; León, R.; López, M.G.; Oliva, B.; Pajares, M.; Rojo, A.I.; Robledinos-Antón, N.; Valverde, A.M.; Guney, E.; Schmidt, H.H.H.W. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine approach. Pharmacol. Rev., 2018, 70(2), 348-383.
[http://dx.doi.org/10.1124/pr.117.014753] [PMID: 29507103]
[183]
Selka, A.; Ndongou Moutombi, F.J.; Cormier, M.; Touaibia, M. Phenethyl esters and amide of ferulic acid, hydroferulic acid, homovani-llic acid, and vanillic acid: Synthesis, free radicals scavenging activity, and molecular modeling as potential cholinesterases inhibitors. Molbank, 2020, 2020, M1151.
[http://dx.doi.org/10.3390/M1151]
[184]
Shi, H.; Xie, D.; Yang, R.; Cheng, Y. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells. J. Agric. Food Chem., 2014, 62(22), 5046-5053.
[http://dx.doi.org/10.1021/jf500464k] [PMID: 24840770]
[185]
Tohda, C.; Kuboyama, T.; Komatsu, K. Search for natural products related to regeneration of the neuronal network. Neurosignals, 2005, 14(1-2), 34-45.
[http://dx.doi.org/10.1159/000085384] [PMID: 15956813]
[186]
More, S.V.; Koppula, S.; Kim, I-S.; Kumar, H.; Kim, B-W.; Choi, D-K. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules, 2012, 17(6), 6728-6753.
[http://dx.doi.org/10.3390/molecules17066728] [PMID: 22664464]
[187]
Feng, J-H.; Hu, X-L.; Lv, X-Y.; Wang, B-L.; Lin, J.; Zhang, X-Q.; Ye, W-C.; Xiong, F.; Wang, H. Synthesis and biological evaluation of clovamide analogues with catechol functionality as potent Parkinsons disease agents in vitro and in vivo. Bioorg. Med. Chem. Lett., 2019, 29(2), 302-312.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.030] [PMID: 30470490]
[188]
Otterbein, L.E.; Choi, A.M.K. Heme oxygenase: colors of defense against cellular stress. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000, 279(6), L1029-L1037.
[http://dx.doi.org/10.1152/ajplung.2000.279.6.L1029] [PMID: 11076792]
[189]
Morse, D.; Choi, A.M.K. Heme oxygenase-1: The “emerging molecule” has arrived. Am. J. Respir. Cell Mol. Biol., 2002, 27(1), 8-16.
[http://dx.doi.org/10.1165/ajrcmb.27.1.4862] [PMID: 12091240]
[190]
Uang, Y-S.; Hsu, K-Y. A dose-dependent pharmacokinetic study on caffeic acid in rabbits after intravenous administration. Biopharm. Drug Dispos., 1997, 18(8), 727-736.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199711)18:8<727:AID-BDD58>3.0.CO;2-F] [PMID: 9373729]
[191]
Sidoryk, K.; Jaromin, A.; Filipczak, N.; Cmoch, P.; Cybulski, M. Synthesis and antioxidant activity of caffeic acid derivatives. Molecules, 2018, 23(9), 2199.
[http://dx.doi.org/10.3390/molecules23092199] [PMID: 30200272]
[192]
Gandolfi, R.; Contini, A.; Pinto, D.; Marzani, B.; Pandini, S.; Nava, D.; Pini, E. Synthesis and biological evaluation of new natural phenolic (2E,4E,6E)-Octa-2,4,6-trienoic esters. Chem. Biodivers., 2017, 14(12), e1700294.
[http://dx.doi.org/10.1002/cbdv.201700294] [PMID: 28902448]
[193]
Lira, A.B.; Montenegro, C.A.; de Oliveira, K.M.; de Oliveira Filho, A.A.; da Paz, A.R.; de Araújo, M.O.; de Sousa, D.P.; de Almeida, C.L.F.; da Silva, T.G.; Lima, C.M.B.L.; Diniz, M.F.F.M.; Pessôa, H.L.F. Isopropyl caffeate: A caffeic acid derivative-antioxidant poten-tial and toxicity. Oxid. Med. Cell. Longev., 2018, 2018, 6179427.
[http://dx.doi.org/10.1155/2018/6179427] [PMID: 29849905]
[194]
Misra, K.; Maity, H.S.; Nag, A.; Sonawane, A. Radical scavenging and antibacterial activity of caffemides against gram positive, gram negative and clinical drug resistance bacteria. Bioorg. Med. Chem. Lett., 2016, 26(24), 5943-5946.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.089] [PMID: 27865704]
[195]
Wang, J.; Gu, S-S.; Pang, N.; Wang, F-Q.; Pang, F.; Cui, H-S.; Wu, X-Y.; Wu, F-A. Alkyl caffeates improve the antioxidant activity, anti-tumor property and oxidation stability of edible oil. PLoS One, 2014, 9(4), e95909.
[http://dx.doi.org/10.1371/journal.pone.0095909] [PMID: 24760050]
[196]
Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant activity of phenolic acids and their metaboli-tes: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem., 2012, 60(50), 12312-12323.
[http://dx.doi.org/10.1021/jf304076z] [PMID: 23157164]
[197]
Peng, X.; Hu, T.; Zhang, Y.; Zhao, A.; Natarajan, B.; Wei, J.; Yan, H.; Chen, H.; Lin, C. Synthesis of caffeic acid sulfonamide derivatives and their protective effect against H2O2 induced oxidative damage in A549 cells. RSC Advances, 2020, 10, 9924-9933.
[http://dx.doi.org/10.1039/D0RA00227E]
[198]
Peng, X.; Wu, G.; Zhao, A.; Huang, K.; Chai, L.; Natarajan, B.; Yang, S.; Chen, H.; Lin, C. Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway. Life Sci., 2020, 247, 117439.
[http://dx.doi.org/10.1016/j.lfs.2020.117439] [PMID: 32070709]
[199]
Chavarria, D.; Fernandes, C.; Aguiar, B.; Silva, T.; Garrido, J.; Remião, F.; Oliveira, P.J.; Uriarte, E.; Borges, F. Insights into the disco-very of novel neuroprotective agents: A comparative study between sulfanylcinnamic acid derivatives and related phenolic analogues. Molecules, 2019, 24(23), 4405.
[http://dx.doi.org/10.3390/molecules24234405] [PMID: 31810314]
[200]
Teixeira, J.; Cagide, F.; Benfeito, S.; Soares, P.; Garrido, J.; Baldeiras, I.; Ribeiro, J.A.; Pereira, C.M.; Silva, A.F.; Andrade, P.B.; Oliveira, P.J.; Borges, F. Development of a mitochondriotropic antioxidant based on caffeic acid: Proof of concept on cellular and mitochondrial oxidative stress models. J. Med. Chem., 2017, 60(16), 7084-7098.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00741] [PMID: 28745898]
[201]
Li, J.; He, D.; Wang, B.; Zhang, L.; Li, K.; Xie, Q.; Zheng, L. Synthesis of hydroxycinnamic acid derivatives as mitochondria-targeted antioxidants and cytotoxic agents. Acta Pharm. Sin. B, 2017, 7(1), 106-115.
[http://dx.doi.org/10.1016/j.apsb.2016.05.002] [PMID: 28119815]
[202]
Ku, H-C.; Lee, S-Y.; Yang, K-C.; Kuo, Y-H.; Su, M-J. Modification of caffeic acid with pyrrolidine enhances antioxidant ability by acti-vating AKT/HO-1 pathway in heart. PLoS One, 2016, 11(2), e0148545.
[http://dx.doi.org/10.1371/journal.pone.0148545] [PMID: 26845693]
[203]
Yang, J-K. Lee, E.; Hwang, I-J.; Yim, D.; Han, J.; Lee, Y-S.; Kim, J-H. β-lactoglobulin peptide fragments conjugated with caffeic acid displaying dual activities for tyrosinase inhibition and antioxidant effect. Bioconjug. Chem., 2018, 29(4), 1000-1005.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00050] [PMID: 29533643]
[204]
Gaglione, M.; Malgieri, G.; Pacifico, S.; Severino, V.; DAbrosca, B.; Russo, L.; Fiorentino, A.; Messere, A. Synthesis and biological properties of caffeic acid-PNA dimers containing guanine. Molecules, 2013, 18(8), 9147-9162.
[http://dx.doi.org/10.3390/molecules18089147] [PMID: 23912270]
[205]
Choi, K-H.; Nam, K.C.; Lee, S-Y.; Cho, G.; Jung, J-S.; Kim, H-J.; Park, B.J. Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles. Nanomaterials (Basel), 2017, 7(6), 148.
[http://dx.doi.org/10.3390/nano7060148] [PMID: 28621707]
[206]
Arriagada, F.; Günther, G.; Nos, J.; Nonell, S.; Olea-Azar, C.; Morales, J. Antioxidant nanomaterial based on coreshell silica nanosphe-res with surface-bound caffeic acid: A promising vehicle for oxidation-sensitive drugs. Nanomaterials (Basel), 2019, 9(2), 214.
[http://dx.doi.org/10.3390/nano9020214] [PMID: 30736331]
[207]
Morais, E.S.; Silva, N.H.C.S.; Sintra, T.E.; Santos, S.A.O.; Neves, B.M.; Almeida, I.F.; Costa, P.C.; Correia-Sá, I.; Ventura, S.P.M.; Sil-vestre, A.J.D.; Freire, M.G.; Freire, C.S.R. Anti-inflammatory and antioxidant nanostructured cellulose membranes loaded with pheno-lic-based ionic liquids for cutaneous application. Carbohydr. Polym., 2019, 206, 187-197.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.051] [PMID: 30553312]
[208]
Eom, T-K.; Senevirathne, M.; Kim, S-K. Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environ. Toxicol. Pharmacol., 2012, 34(2), 519-527.
[http://dx.doi.org/10.1016/j.etap.2012.05.004] [PMID: 22809749]
[209]
Liu, Z.; Fu, J.; Shan, L.; Sun, Q.; Zhang, W. Synthesis, preliminary bioevaluation and computational analysis of caffeic acid analogues. Int. J. Mol. Sci., 2014, 15(5), 8808-8820.
[http://dx.doi.org/10.3390/ijms15058808] [PMID: 24857914]
[210]
Li, Y.; Zhu, Y.; Liang, R.; Yang, C. Synthesis and antioxidant properties of caffeic acid corn bran arabinoxylan esters. Int. J. Cosmet. Sci., 2017, 39(4), 402-410.
[http://dx.doi.org/10.1111/ics.12389] [PMID: 28094854]
[211]
LeBlanc, L.M.; Paré, A.F.; Jean-François, J.; Hébert, M.J.G.; Surette, M.E.; Touaibia, M. Synthesis and antiradical/antioxidant activities of caffeic acid phenethyl ester and its related propionic, acetic, and benzoic acid analogues. Molecules, 2012, 17(12), 14637-14650.
[http://dx.doi.org/10.3390/molecules171214637] [PMID: 23222926]
[212]
Ayla, Ş.; Tunalı, G.; Bilgiç, B.E.; Sofuoğlu, K.; Özdemir, A.A.; Tanrıverdi, G.; Özdemir, S.; Soner, B.C.; Öztürk, B.; Karahüseyinoğlu, S.; Aslan, E.G.; Seçkin, I. Antioxidant activity of CAPE (caffeic acid phenethyl ester) in vitro can protect human sperm deoxyribonucleic acid from oxidative damage. Acta Histochem., 2018, 120(2), 117-121.
[http://dx.doi.org/10.1016/j.acthis.2018.01.001] [PMID: 29325972]
[213]
Carreño, A.L.; Alday, E.; Quintero, J.; Pérez, L.; Valencia, D.; Robles-Zepeda, R.; Valdez-Ortega, J.; Hernandez, J.; Velazquez, C. Protec-tive effect of Caffeic Acid Phenethyl Ester (CAPE) against oxidative stress. J. Funct. Foods, 2017, 29, 178-184.
[http://dx.doi.org/10.1016/j.jff.2016.12.008]
[214]
Zhou, K.; Li, X.; Du, Q.; Li, D.; Hu, M.; Yang, X.; Jiang, Q.; Li, Z. A CAPE analogue as novel antiplatelet agent efficiently inhibits colla-gen-induced platelet aggregation. Pharmazie, 2014, 69(8), 615-620.
[PMID: 25158573]
[215]
Motohashi, H.; Yamamoto, M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med., 2004, 10(11), 549-557.
[http://dx.doi.org/10.1016/j.molmed.2004.09.003] [PMID: 15519281]
[216]
Li, W.; Kong, A-N. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog., 2009, 48(2), 91-104.
[http://dx.doi.org/10.1002/mc.20465] [PMID: 18618599]
[217]
Kim, H.; Kim, W.; Yum, S.; Hong, S.; Oh, J-E.; Lee, J-W.; Kwak, M-K.; Park, E.J.; Na, D.H.; Jung, Y. Caffeic acid phenethyl ester acti-vation of Nrf2 pathway is enhanced under oxidative state: Structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radic. Biol. Med., 2013, 65, 552-562.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.015] [PMID: 23892357]
[218]
Chang, Y-C.; Lee, F-W.; Chen, C-S.; Huang, S-T.; Tsai, S-H.; Huang, S-H.; Lin, C-M. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities. Free Radic. Biol. Med., 2007, 43(11), 1541-1551.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.08.018] [PMID: 17964425]
[219]
Lin, H-C.; Tsai, S-H.; Chen, C-S.; Chang, Y-C.; Lee, C-M.; Lai, Z-Y.; Lin, C-M. Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities. Biochem. Pharmacol., 2008, 75(6), 1416-1425.
[http://dx.doi.org/10.1016/j.bcp.2007.11.023] [PMID: 18201686]
[220]
Choi, W.; Villegas, V.; Istre, H.; Heppler, B.; Gonzalez, N.; Brusman, N.; Snider, L.; Hogle, E.; Tucker, J.; Oñate, A.; Oñate, S.; Ma, L.; Paula, S. Synthesis and characterization of CAPE derivatives as xanthine oxidase inhibitors with radical scavenging properties. Bioorg. Chem., 2019, 86, 686-695.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.049] [PMID: 30831530]
[221]
Sorrenti, V.; Raffaele, M.; Vanella, L.; Acquaviva, R.; Salerno, L.; Pittalà, V.; Intagliata, S.; Di Giacomo, C. Protective effects of Caffeic Acid Phenethyl Ester (CAPE) and novel cape analogue as inducers of heme oxygenase-1 in streptozotocin-induced type 1 diabetic rats. Int. J. Mol. Sci., 2019, 20(10), 2441.
[http://dx.doi.org/10.3390/ijms20102441] [PMID: 31108850]
[222]
Palm, F.; Onozato, M.L.; Luo, Z.; Wilcox, C.S. Dimethylarginine dimethylaminohydrolase (DDAH): Expression, regulation, and fun-ction in the cardiovascular and renal systems. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(6), H3227-H3245.
[http://dx.doi.org/10.1152/ajpheart.00998.2007] [PMID: 17933965]
[223]
Mei, Y.; Wang, Z.; Zhang, Y.; Wan, T.; Xue, J.; He, W.; Luo, Y.; Xu, Y.; Bai, X.; Wang, Q.; Huang, Y. FA-97, a new synthetic caffeic acid phenethyl ester derivative, ameliorates DSS-induced colitis against oxidative stress by activating Nrf2/HO-1 pathway. Front. Immunol., 2020, 10, 2969.
[http://dx.doi.org/10.3389/fimmu.2019.02969] [PMID: 31969881]
[224]
Collins, W.; Lowen, N.; Blake, D.J. Caffeic acid esters are effective bactericidal compounds against Paenibacillus larvae by altering intracellular oxidant and antioxidant levels. Biomolecules, 2019, 9(8), 312.
[http://dx.doi.org/10.3390/biom9080312] [PMID: 31357646]
[225]
Karamac M.; Koleva, L.; Kancheva, V.D.; Amarowicz, R. The structure-antioxidant activity relationship of ferulates. Molecules, 2017, 22(4), 527.
[http://dx.doi.org/10.3390/molecules22040527] [PMID: 28346342]
[226]
Montaser, A.; Huttunen, J.; Ibrahim, S.A.; Huttunen, K.M. Astrocyte-targeted transporter-utilizing derivatives of ferulic acid can have multifunctional effects ameliorating inflammation and oxidative stress in the brain. Oxid. Med. Cell. Longev., 2019, 2019, 3528148.
[http://dx.doi.org/10.1155/2019/3528148] [PMID: 31814871]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy