Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Exploring the N1 Position of Biginelli Compounds: New Insights and Trends for Chemical Diversity Generation of Bioactive Derivatives

Author(s): Itamar Luís Gonçalves*, Gustavo Machado das Neves, Luciano Porto Kagami, Guilherme Arraché Gonçalves, Leonardo Davi and Vera Lucia Eifler-Lima

Volume 22, Issue 11, 2022

Published on: 18 January, 2022

Page: [1545 - 1558] Pages: 14

DOI: 10.2174/1389557521666211027105534

Price: $65

conference banner
Abstract

Dihydropyrimidinones (DHPMs) are heterocycles obtained by the multicomponent Biginelli reaction. Recently, new synthetic protocols have allowed us to explore functionalisation at less explored positions of DHPMs, such as the N1 position. In this context, a full literature survey of N1- substituted DHPMs was performed. We analysed 27 papers and identified 379 compounds with substituents at the N1 position, most of them with alkyl groups, and a total of 28% compounds with aromatic substituents attached at the N1 position. N1-substituted DHPMs were explored mainly due to their effects on cancer cell proliferation via numerous targets, such as kinesin Eg5, heat shock protein 70, heat shock protein 90, and the epidermal growth factor receptor. Similarity analyses were performed using the data of 379 DHPMs from different cheminformatic approaches, i.e., chemical property correlations, principal component analysis, similarity networks, and compound clustering.

Keywords: Multicomponent reactions, DHPMs, Biginelli reactions, privileged structure, molecular diversity, bioactive derivatives.

Graphical Abstract

[1]
Tron, G.C.; Minassi, A.; Appendino, G. Pietro Biginelli: The man behind the reaction. Eur. J. Org. Chem., 2011, 2011(28), 5541-5550.
[http://dx.doi.org/10.1002/ejoc.201100661]
[2]
Costanzo, P.; Nardi, M.; Oliverio, M. Similarity and competition between Biginelli and Hantzsch reac-tions: An opportunity for modern medicinal chemistry. Eur. J. Org. Chem., 2020, 3954-3964.
[http://dx.doi.org/10.1002/ejoc.201901923]
[3]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett., 2016, 57(47), 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[4]
Kolosov, M.A.; Orlov, V.D.; Beloborodov, D.A.; Dotsenko, V.V. A chemical placebo: NaCl as an ef-fective, cheapest, non-acidic and greener catalyst for Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones (-thiones) synthesis. Mol. Divers., 2009, 13(1), 5-25.
[http://dx.doi.org/10.1007/s11030-008-9094-8] [PMID: 19082754]
[5]
Yu, Y.; Liu, D.; Liu, C.; Jiang, H.; Luo, G. An efficient one-pot Biginelli condensation of aliphatic al-dehydes catalyzed by zinc bromide under solvent-free conditions. Prep. Biochem. Biotechnol., 2007, 37(4), 381-387.
[http://dx.doi.org/10.1080/10826060701593290] [PMID: 17849292]
[6]
Gonçalves, I.L.; Davi, L.; Rockenbach, L. das Neves, G.M.; Kagami, L.P.; Canto, R.F.S.; Figueiró, F.; Battastini, A.M.O.; Eifler-Lima, V.L., Versatility of the Biginelli reaction: Synthesis of new biphenyl dihydropyrimidin-2-thiones using different ketones as building blocks. Tetrahedron Lett., 2018, 59(28), 2759-2762.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.006]
[7]
Zhang, Z.; Zhang, L.; Duan, X.; Yan, X.; Yan, Y.; Liu, Q.; Liu, T.; Zhang, G. Iron-catalyzed four-member multicomponent reaction for assembly of (E)-6-arylvinyl-3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron, 2015, 71(40), 7745-7751.
[http://dx.doi.org/10.1016/j.tet.2015.07.039]
[8]
Pachore, S.S.; Ambhaikar, N.B.; Siddaiah, V.; Khobare, S.R.; Kumar, S.; Dahanukar, V.H.; Kumar, U.K.S. Successful utilization of β-ketonitrile in Biginelli reaction: Synthesis of 5-cyanodihydropyrimidine. J. Chem. Sci., 2018, 130(6), 1-9.
[http://dx.doi.org/10.1007/s12039-018-1467-7]
[9]
Zhu, Y-L.; Huang, S-L.; Pan, Y-J. Highly chemoselective multicomponent Biginelli-type condensations of cycloalkanones, urea or thiourea and aldehydes. Eur. J. Org. Chem., 2005, 2005(11), 2354-2367.
[http://dx.doi.org/10.1002/ejoc.200400845]
[10]
Hu, X.; Guo, J.; Wang, C.; Zhang, R.; Borovkov, V. Stereoselective Biginelli-like reaction catalyzed by a chiral phosphoric acid bearing two hydroxy groups. Beilstein J. Org. Chem., 2020, 16(1), 1875-1880.
[http://dx.doi.org/10.3762/bjoc.16.155] [PMID: 32802205]
[11]
Gonçalves, I.L.; Rockenbach, L. das Neves, G.M.; Göethel, G.; Nascimento, F.; Porto Kagami, L.; Figueiró, F.; Oliveira de Azambuja, G.; de Fraga Dias, A.; Amaro, A.; de Souza, L.M.; da Rocha Pit-ta, I.; Avila, D.S.; Kawano, D.F.; Garcia, S.C.; Battastini, A.M.O.; Eifler-Lima, V.L. Effect of N-1 arylation of monastrol on kinesin Eg5 inhibition in glioma cell lines. MedChemComm, 2018, 9(6), 995-1010.
[http://dx.doi.org/10.1039/C8MD00095F] [PMID: 30108989]
[12]
Ostapchuk, E.N.; Plaskon, A.S.; Grygorenko, O.O.; Tolmachev, A.A.; Ryabukhin, S.V. Protecting group free synthesis of carboxyl-substituted dihydropyrimidines through Biginelli reaction. J. Heterocycl. Chem., 2013, 50(6), 1299-1303.
[http://dx.doi.org/10.1002/jhet.1568]
[13]
Barbosa, F.A.R.; Siminski, T.; Canto, R.F.S.; Almeida, G.M.; Mota, N.S.R.S.; Ourique, F.; Pedrosa, R.C.; Braga, A.L. Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma. Eur. J. Med. Chem., 2018, 155, 503-515.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.026] [PMID: 29908443]
[14]
Chen, P.; Tu, M. Synthesis of 2-selenoxo DHPMs by Biginelli reaction with Hf(OTf)4 as catalyst. Tetrahedron Lett., 2018, 59(11), 987-990.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.070]
[15]
Nilsson, B.L.; Overman, L.E. Concise synthesis of guanidine-containing heterocycles using the Bigi-nelli reaction. J. Org. Chem., 2006, 71(20), 7706-7714.
[http://dx.doi.org/10.1021/jo061199m] [PMID: 16995677]
[16]
Werner, S.; Turner, D.M.; Lyon, M.A.; Huryn, D.M.; Wipf, P. A focused library of tetrahydropyrim-idinone amides via a tandem Biginelli-Ugi multi-component process. Synlett, 2006, 2006(14), 2334-2338.
[http://dx.doi.org/10.1055/s-2006-949648]
[17]
Boukis, A.C.; Monney, B.; Meier, M.A. Synthesis of structurally diverse 3,4-dihydropyrimidin-2(1H)-ones via sequential Biginelli and Passerini reactions. Beilstein J. Org. Chem., 2017, 13(1), 54-62.
[http://dx.doi.org/10.3762/bjoc.13.7] [PMID: 28179948]
[18]
Dondoni, A.; Massi, A.; Sabbatini, S.; Bertolasi, V. Three-component Biginelli cyclocondensation re-action using C-glycosylated substrates. Preparation of a collection of dihydropyrimidinone glycocon-jugates and the synthesis of C-glycosylated monastrol analogues. J. Org. Chem., 2002, 67(20), 6979-6994.
[http://dx.doi.org/10.1021/jo0202076] [PMID: 12353991]
[19]
Gonçalves, I.L.; Davi, L.; Neves, G.M.; Kagami, L.P.; Garcia, S.C.; Battastini, A.M.O.; Figueiró, F.; Faria Santos Canto, R.; Merlo, A.A.; Eifler-Lima, V.L. Atropoisomerism in N1-aryl substituted 3,4-dihydropyrimidin-2(1H)-thiones. Chem. Select, 2020, 13, 13212-13222.
[http://dx.doi.org/10.1002/slct.202003229]
[20]
Ryabukhin, S.V.; Plaskon, A.S.; Ostapchuk, E.N.; Volochnyuk, D.M.; Tolmachev, A.A. N-substituted ureas and thioureas in Biginelli reaction promoted by chlorotrimethylsilane: Convenient synthesis of N1-alkyl-, N1-aryl-, and N1,N3-dialkyl-3,4-dihydropyrimidin-2(1H)-(thi)ones. Synthesis, 2007, 2007(03), 417-427.
[http://dx.doi.org/10.1055/s-2007-965881]
[21]
Strocchia, M.; Terracciano, S.; Chini, M.G.; Vassallo, A.; Vaccaro, M.C.; Dal Piaz, F.; Leone, A.; Ric-cio, R.; Bruno, I.; Bifulco, G. Targeting the Hsp90 C-terminal domain by the chemically accessible di-hydropyrimidinone scaffold. Chem. Commun. (Camb.), 2015, 51(18), 3850-3853.
[http://dx.doi.org/10.1039/C4CC10074C] [PMID: 25656927]
[22]
Terracciano, S.; Foglia, A.; Chini, M.G.; Vaccaro, M.C.; Russo, A.; Piaz, F.D.; Saturnino, C.; Riccio, R.; Bifulco, G.; Bruno, I. New dihydropyrimidin-2(1H)-one based Hsp90 C-terminal inhibitors. RSC Advances, 2016, 6(85), 82330-82340.
[http://dx.doi.org/10.1039/C6RA17235K]
[23]
Kolosov, M.A.; Kulyk, O.G.; Al-Ogaili, M.J.K.; Orlov, V.D. An effective Biginelli-type synthesis of 1-methoxy-3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2015, 56(32), 4666-4669.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.041]
[24]
Wuts, P.G.; Greene, T.W. Greene’s protective groups in organic synthesis; John Wiley & Sons, 2006.
[http://dx.doi.org/10.1002/0470053488]
[25]
Srivastava, J.K.; Pillai, G.G.; Bhat, H.R.; Verma, A.; Singh, U.P. Design and discovery of novel mo-nastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor re-ceptor tyrosine kinase. Sci. Rep., 2017, 7(1), 5851.
[http://dx.doi.org/10.1038/s41598-017-05934-5] [PMID: 28724908]
[26]
Wang, M.; Zhang, S.; Hong, J.X.; Zhang Hao, H. Green synthesis and structural characterization of novel N1-substituted 3,4-dihydropyrimidin-2(1H)-ones. Green Process. Synth., 2019, 8(1), 230.
[http://dx.doi.org/10.1515/gps-2018-0074]
[27]
Zalavadiya, P.; Ghetiya, R.; Dodiya, B.; Vekariya, P.; Joshi, H. Synthesis of some new dihydropyrim-idines by iodine as a catalyst at ambient temperature and evaluation of their biological activity. J. Heterocycl. Chem., 2013, 50(4), 973-978.
[http://dx.doi.org/10.1002/jhet.728]
[28]
El-Hamamsy, M.H.; Sharafeldin, N.A.; El-Moselhy, T.F.; Tawfik, H.O. Design, synthesis, and molec-ular docking study of new monastrol analogues as kinesin spindle protein inhibitors. Arch. Pharm. (Weinheim), 2020, 353(8)e2000060
[http://dx.doi.org/10.1002/ardp.202000060] [PMID: 32452567]
[29]
Dallinger, D.; Gorobets, N.Y.; Kappe, C.O. High-throughput synthesis of N3-acylated dihydropyrim-idines combining microwave-assisted synthesis and scavenging techniques. Org. Lett., 2003, 5(8), 1205-1208.
[http://dx.doi.org/10.1021/ol034085v] [PMID: 12688720]
[30]
Goncalves, I.L.; de Azambuja, G.O.; Kawano, D.F.; Eifler-Lima, V.L. Thioureas as building blocks for the generation of heterocycles and compounds with pharmacological activity: An overview. Mini Rev. Org. Chem., 2018, 15(1), 28-35.
[http://dx.doi.org/10.2174/1570193X14666170518125219]
[31]
Gonçalves, I.L.; Davi, L.; Cidade Torres, F.; Faria Santos Canto, R.; Eifler-Lima, V.L. Synthesis of 1-phenylthiourea: An undergraduate organic chemistry experiment illustrating carbonyl transformations. J. Chem. Educ., 2021, 98(3), 986-990.
[http://dx.doi.org/10.1021/acs.jchemed.0c01114]
[32]
Liu, Y.; Liu, J.; Zhang, R.; Guo, Y.; Wang, H.; Meng, Q.; Sun, Y.; Liu, Z. Synthesis, characterization, and anticancer activities evaluation of compounds derived from 3,4-dihydropyrimidin-2(1H)-one. Molecules, 2019, 24(5), 891.
[http://dx.doi.org/10.3390/molecules24050891] [PMID: 30832453]
[33]
Dallinger, D.; Kappe, C.O. Selective N1-alkylation of 3,4-dihydropyrimidin-2(1H)-ones using Mitsunobu-type conditions. Synlett, 2002, 2002(11), 1901-1903.
[http://dx.doi.org/10.1055/s-2002-34881]
[34]
Putatunda, S.; Chakraborty, S.; Ghosh, S.; Nandi, P.; Chakraborty, S.; Sen, P.C.; Chakraborty, A. Regioselective N1-alkylation of 3,4-dihydropyrimidine-2(1H)-ones: Screening of their biological ac-tivities against Ca(2+)-ATPase. Eur. J. Med. Chem., 2012, 54, 223-231.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.043] [PMID: 22658336]
[35]
Singh, K.; Arora, D.; Poremsky, E.; Lowery, J.; Moreland, R.S. N1-Alkylated 3,4-dihydropyrimidine-2(1H)-ones: Convenient one-pot selective synthesis and evaluation of their calcium channel blocking activity. Eur. J. Med. Chem., 2009, 44(5), 1997-2001.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.002] [PMID: 19008020]
[36]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-Varicella-Zoster Virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[37]
Kurbanova, M.M. Synthesis of tetrahydropyrimidin-2-one derivatives from N-tert-butylurea. Russ. J. Org. Chem., 2008, 44(10), 1562-1563.
[http://dx.doi.org/10.1134/S1070428008100321]
[38]
Gadkari, Y.U.; Hatvate, N.T.; Takale, B.S.; Telvekar, V.N. Concentrated solar radiation as a renewa-ble heat source for a preparative-scale and solvent-free Biginelli reaction. New J. Chem., 2020, 44(20), 8167-8170.
[http://dx.doi.org/10.1039/D0NJ01351J]
[39]
Wannberg, J.; Dallinger, D.; Kappe, C.O.; Larhed, M. Microwave-enhanced and metal-catalyzed functionalizations of the 4-aryl-dihydropyrimidone template. J. Comb. Chem., 2005, 7(4), 574-583.
[http://dx.doi.org/10.1021/cc049816c] [PMID: 16004501]
[40]
Brandolese, A.; Ragno, D.; Leonardi, C.; Di Carmine, G.; Bortolini, O.; De Risi, C.; Massi, A. Enan-tioselective N-acylation of Biginelli dihydropyrimidines by oxidative NHC catalysis. Eur. J. Org. Chem., 2020, 3, 2439-2447.
[http://dx.doi.org/10.1002/ejoc.202000151]
[41]
Singh, K.; Singh, S. A mild and practical method for the regioselective synthesis of N-acylated 3,4-dihydropyrimidin-2-ones. New acyl transfer reagents. Tetrahedron Lett., 2006, 47(46), 8143-8146.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.039]
[42]
Myers, S.M.; Collins, I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med. Chem., 2016, 8(4), 463-489.
[http://dx.doi.org/10.4155/fmc.16.5] [PMID: 26976726]
[43]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small mole-cule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971] [PMID: 10542155]
[44]
Prokopcová, H.; Dallinger, D.; Uray, G.; Kaan, H.Y.K.; Ulaganathan, V.; Kozielski, F.; Laggner, C.; Kappe, C.O. Structure-activity relationships and molecular docking of novel dihydropyrimidine-based mitotic Eg5 inhibitors. ChemMedChem, 2010, 5(10), 1760-1769.
[http://dx.doi.org/10.1002/cmdc.201000252] [PMID: 20737530]
[45]
Garcia-Saez, I.; DeBonis, S.; Lopez, R.; Trucco, F.; Rousseau, B.; Thuéry, P.; Kozielski, F. Structure of human Eg5 in complex with a new monastrol-based inhibitor bound in the R configuration. J. Biol. Chem., 2007, 282(13), 9740-9747.
[http://dx.doi.org/10.1074/jbc.M608883200] [PMID: 17251189]
[46]
Gonçalves, I.L.; Rockenbach, L.; Göethel, G.; Saüer, E.; Kagami, L.P. das Neves, G.M.; Munhoz, T.; Figueiró, F.; Garcia, S.C.; Oliveira Battastini, A.M.; Eifler-Lima, V.L. New pharmacological findings linked to biphenyl DHPMs, kinesin Eg5 ligands: Anticancer and antioxidant effects. Future Med. Chem., 2020, 12(12), 1137-1154.
[http://dx.doi.org/10.4155/fmc-2019-0256] [PMID: 32513026]
[47]
Barrott, J.J.; Haystead, T.A.J. Hsp90, an unlikely ally in the war on cancer. FEBS J., 2013, 280(6), 1381-1396.
[http://dx.doi.org/10.1111/febs.12147] [PMID: 23356585]
[48]
Braunstein, M.J.; Scott, S.S.; Scott, C.M.; Behrman, S.; Walter, P.; Wipf, P.; Coplan, J.D.; Chrico, W.; Joseph, D.; Brodsky, J.L. Antimyeloma effects of the heat shock protein 70 molecular chaperone inhibitor MAL3-101. J. Oncol., 2011, 2011232037
[http://dx.doi.org/10.1155/2011/232037]
[49]
Adam, C.; Baeurle, A.; Brodsky, J.L.; Wipf, P.; Schrama, D.; Becker, J.C.; Houben, R. The HSP70 modulator MAL3-101 inhibits Merkel cell carcinoma. PLoS One, 2014, 9(4)e92041
[http://dx.doi.org/10.1371/journal.pone.0092041] [PMID: 24694787]
[50]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[51]
Hansen, G.; Gielen-Haertwig, H.; Reinemer, P.; Schomburg, D.; Harrenga, A.; Niefind, K. Unex-pected active-site flexibility in the structure of human neutrophil elastase in complex with a new di-hydropyrimidone inhibitor. J. Mol. Biol., 2011, 409(5), 681-691.
[http://dx.doi.org/10.1016/j.jmb.2011.04.047] [PMID: 21549129]
[52]
Terracciano, S.; Lauro, G.; Strocchia, M.; Fischer, K.; Werz, O.; Riccio, R.; Bruno, I.; Bifulco, G. Structural Insights for the optimization of dihydropyrimidin-2(1H)-one based mPGES-1 Inhibitors. ACS Med. Chem. Lett., 2015, 6(2), 187-191.
[http://dx.doi.org/10.1021/ml500433j] [PMID: 25699159]
[53]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular proper-ties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[54]
Pollastri, M.P. Overview on the rule of five. In: Curr. Protoc. Pharmacol.,; , 2010. Chapter 9: Unit 9.12.
[http://dx.doi.org/10.1002/0471141755.ph0912s49] [PMID: 22294375]
[55]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[56]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[57]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Ba-bel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[58]
Gütlein, M.; Karwath, A.; Kramer, S. CheS-Mapper - chemical space mapping and visualization in 3D. J. Cheminform., 2012, 4(1), 7.
[http://dx.doi.org/10.1186/1758-2946-4-7] [PMID: 22424447]
[59]
Demšar, J.; Curk, T.; Erjavec, A. Gorup, Č.; Hočevar, T.; Milutinovič M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič A. Orange: Data mining toolbox in Python. J. Mach. Learn. Res., 2013, 14(1), 2349-2353.
[60]
Team, R.R. A language and environment for statistical computing; R Foundation for Statistical Com-puting: Viena, Austria, 2013.
[61]
Team, R.R. R Studio: Integrated Development for R;; Bonston, MA, 2020.
[62]
Wickham, H. Ggplot2: Elegant graphics for data analysis; Springer-Verlag: New York, 2009.
[63]
Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model., 2010, 50(5), 742-754.
[http://dx.doi.org/10.1021/ci100050t] [PMID: 20426451]
[64]
Riniker, S.; Landrum, G.A. Open-source platform to benchmark fingerprints for ligand-based virtual screening. J. Cheminform., 2013, 5(1), 26.
[http://dx.doi.org/10.1186/1758-2946-5-26] [PMID: 23721588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy