Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

GABA System in Depression: Impact on Pathophysiology and Psychopharmacology

Author(s): Alessandra Della Vecchia *, Alessandro Arone, Armando Piccinni , Federico Mucci and Donatella Marazziti

Volume 29, Issue 36, 2022

Published on: 17 January, 2022

Page: [5710 - 5730] Pages: 21

DOI: 10.2174/0929867328666211115124149

Price: $65

Abstract

Background: The pathophysiology of major depressive disorder (MDD), one of the major causes of worldwide disability, is still largely unclear, despite the increasing data reporting evidence of multiple alterations of different systems. Recently, there was a renewed interest in the signalling of gamma aminobutyric acid (GABA) - the main inhibitory neurotransmitter.

Objective: The aim of this study was to review and comment on the available literature about the involvement of GABA in MDD, as well as on novel GABAergic compounds possibly useful as antidepressants.

Methods: We carried out a narrative review through Pubmed, Google Scholar and Scopus, by using specific keywords.

Results: The results, derived from various research tools, strongly support the presence of a deficiency of the GABA system in MDD, which appears to be restored by common antidepressant treatments. More recent publications would indicate the complex interactions between GABA and all the other processes involved in MDD, such as monoamine neurotransmission, hypothalamus-pituitary adrenal axis functioning, neurotrophism, and immune response. Taken together, all these findings seem to further support the complexity of the pathophysiology of MDD, possibly reflecting the heterogeneity of the clinical pictures.

Conclusion: Although further data are necessary to support the specificity of GABA deficiency in MDD, the available findings would suggest that novel GABAergic compounds might constitute innovative therapeutic strategies in MDD.

Keywords: Depression, pathophysiology, GABA system, GABA dysfunctions, human data, antidepressants, gabaergic compounds.

[1]
World Health Organization (WHO). Depression. Available on: https://www.who.int/news-room/fact-sheets/detail/depression. (Accessed June 10, 2021).
[2]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed; American Psychiatric Publishing: Arlington, VA, 2013.
[3]
Krishnan, V.; Nestler, E.J. The molecular neurobiology of depression. Nature, 2008, 455(7215), 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[4]
Schildkraut, J.J. The catecholamine hypothesis of affective disorders: A review of supporting evidence. Am. J. Psychiatry, 1965, 122(5), 509-522.
[http://dx.doi.org/10.1176/ajp.122.5.509] [PMID: 5319766]
[5]
van Praag, H.M. Management of depression with serotonin precursors. Biol. Psychiatry, 1981, 16(3), 291-310.
[PMID: 6164407]
[6]
Heninger, G.R.; Delgado, P.L.; Charney, D.S. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry, 1996, 29(1), 2-11.
[http://dx.doi.org/10.1055/s-2007-979535] [PMID: 8852528]
[7]
Nemeroff, C.B. The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol. Psychiatry, 1996, 1(4), 336-342.
[PMID: 9118360]
[8]
Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry, 2006, 59(12), 1116-1127.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[9]
Maes, M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuroendocrinol. Lett., 2008, 29(3), 287-291.
[PMID: 18580840]
[10]
Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci., 2008, 31(9), 464-468.
[http://dx.doi.org/10.1016/j.tins.2008.06.006] [PMID: 18675469]
[11]
Felger, J.C. Role of inflammation in depression and treatment implications. Handb. Exp. Pharmacol., 2019, 250, 255-286.
[http://dx.doi.org/10.1007/164_2018_166] [PMID: 30368652]
[12]
Bartholini, G.; Lloyd, K.G.; Scatton, B.; Zivkovic, B.; Morselli, P.L. The GABA hypothesis of depression and antidepressant drug action. Psychopharmacol. Bull., 1985, 21(3), 385-388.
[PMID: 2994153]
[13]
Lloyd, K.G.; Zivkovic, B.; Scatton, B.; Morselli, P.L.; Bartholini, G. The gabaergic hypothesis of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1989, 13(3-4), 341-351.
[http://dx.doi.org/10.1016/0278-5846(89)90123-1] [PMID: 2664889]
[14]
Tatti, R.; Haley, M.S.; Swanson, O.K.; Tselha, T.; Maffei, A. Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits. Biol. Psychiatry, 2017, 81(10), 821-831.
[http://dx.doi.org/10.1016/j.biopsych.2016.09.017] [PMID: 27865453]
[15]
Sheline, Y.I.; Gado, M.H.; Kraemer, H.C. Untreated depression and hippocampal volume loss. Am. J. Psychiatry, 2003, 160(8), 1516-1518.
[http://dx.doi.org/10.1176/appi.ajp.160.8.1516] [PMID: 12900317]
[16]
Hasler, G.; van der Veen, J.W.; Tumonis, T.; Meyers, N.; Shen, J.; Drevets, W.C. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 2007, 64(2), 193-200.
[http://dx.doi.org/10.1001/archpsyc.64.2.193] [PMID: 17283286]
[17]
Sanacora, G.; Saricicek, A. GABAergic contributions to the pathophysiology of depression and the mechanism of antidepressant action. CNS Neurol. Disord. Drug Targets, 2007, 6(2), 127-140.
[http://dx.doi.org/10.2174/187152707780363294] [PMID: 17430150]
[18]
MacQueen, G.; Frodl, T. The hippocampus in major depression: Evidence for the convergence of the bench and bedside in psychiatric research? Mol. Psychiatry, 2011, 16(3), 252-264.
[http://dx.doi.org/10.1038/mp.2010.80] [PMID: 20661246]
[19]
Luscher, B.; Fuchs, T. GABAergic control of depression-related brain states. Adv. Pharmacol., 2015, 73, 97-144.
[http://dx.doi.org/10.1016/bs.apha.2014.11.003] [PMID: 25637439]
[20]
Fee, C.; Banasr, M.; Sibille, E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: Cortical microcircuit and therapeutic perspectives. Biol. Psychiatry, 2017, 82(8), 549-559.
[http://dx.doi.org/10.1016/j.biopsych.2017.05.024] [PMID: 28697889]
[21]
Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 2019, 102(1), 75-90.
[http://dx.doi.org/10.1016/j.neuron.2019.03.013] [PMID: 30946828]
[22]
Fogaça, M.V.; Duman, R.S. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front. Cell. Neurosci., 2019, 13, 87.
[http://dx.doi.org/10.3389/fncel.2019.00087] [PMID: 30914923]
[23]
Sohal, V.S.; Rubenstein, J.L.R. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatry, 2019, 24(9), 1248-1257.
[http://dx.doi.org/10.1038/s41380-019-0426-0] [PMID: 31089192]
[24]
Petty, F.; Kramer, G.L.; Gullion, C.M.; Rush, A.J. Low plasma gamma-aminobutyric acid levels in male patients with depression. Biol. Psychiatry, 1992, 32(4), 354-363.
[http://dx.doi.org/10.1016/0006-3223(92)90039-3] [PMID: 1420649]
[25]
Petty, F. GABA and mood disorders: a brief review and hypothesis. J. Affect. Disord., 1995, 34(4), 275-281.
[http://dx.doi.org/10.1016/0165-0327(95)00025-I] [PMID: 8550953]
[26]
Sharpley, C. Malfunction in GABA and glutamate as pathways to depression: a review of the evidence. Clin. Med. Insights Ther., 2009, 1, 1511-1519.
[27]
Rajkowska, G.; O’Dwyer, G.; Teleki, Z.; Stockmeier, C.A.; Miguel-Hidalgo, J.J. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology, 2007, 32(2), 471-482.
[http://dx.doi.org/10.1038/sj.npp.1301234] [PMID: 17063153]
[28]
Cotter, D.; Landau, S.; Beasley, C.; Stevenson, R.; Chana, G.; MacMillan, L.; Everall, I. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol. Psychiatry, 2002, 51(5), 377-386.
[http://dx.doi.org/10.1016/S0006-3223(01)01243-4] [PMID: 11904132]
[29]
Shen, Q.; Lal, R.; Luellen, B.A.; Earnheart, J.C.; Andrews, A.M.; Luscher, B. gamma-Aminobutyric acid-type A receptor deficits cause hypothalamic-pituitary-adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. Biol. Psychiatry, 2010, 68(6), 512-520.
[http://dx.doi.org/10.1016/j.biopsych.2010.04.024] [PMID: 20579975]
[30]
Maguire, J. Neuroactive steroids and GABAergic involvement in the neuroendocrine dysfunction associated with major depressive disorder and postpartum depression. Front. Cell. Neurosci., 2019, 13, 83.
[http://dx.doi.org/10.3389/fncel.2019.00083] [PMID: 30906252]
[31]
Xu, S.; Liu, Y.; Pu, J.; Gui, S.; Zhong, X.; Tian, L.; Song, X.; Qi, X.; Wang, H.; Xie, P. Chronic stress in a rat model of depression disturbs the glutamine-glutamate-GABA cycle in the striatum, hippocampus, and cerebellum. Neuropsychiatr. Dis. Treat., 2020, 16, 557-570.
[http://dx.doi.org/10.2147/NDT.S245282] [PMID: 32158215]
[32]
Ghose, S.; Winter, M.K.; McCarson, K.E.; Tamminga, C.A.; Enna, S.J. The GABA; receptor as a target for antidepressant drug action. Br. J. Pharmacol., 2011, 162(1), 1-17.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01004.x] [PMID: 20735410]
[33]
Wilkinson, S.T.; Sanacora, G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today, 2019, 24(2), 606-615.
[http://dx.doi.org/10.1016/j.drudis.2018.11.007] [PMID: 30447328]
[34]
Erdö, S.L. Peripheral GABAergic mechanisms. Trends Pharmacol. Sci., 1985, 6, 205-208.
[35]
Diana, M.; Quílez, J.; Rafecas, M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J. Funct. Foods, 2014, 10, 407-420.
[http://dx.doi.org/10.1016/j.jff.2014.07.004]
[36]
Martin, D.L.; Olsen, R.W. GABA in the Nervous System: The View at 50 Years; Lippincott Williams & Wilkins: Philadelphia, 2000.
[37]
Erlander, M.G.; Tillakaratne, N.J.; Feldblum, S.; Patel, N.; Tobin, A.J. Two genes encode distinct glutamate decarboxylases. Neuron, 1991, 7(1), 91-100.
[http://dx.doi.org/10.1016/0896-6273(91)90077-D] [PMID: 2069816]
[38]
Bowers, G.; Cullinan, W.E.; Herman, J.P. Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J. Neurosci., 1998, 18(15), 5938-5947.
[http://dx.doi.org/10.1523/JNEUROSCI.18-15-05938.1998] [PMID: 9671680]
[39]
Martin, D.L.; Rimvall, K. Regulation of gamma-aminobutyric acid synthesis in the brain. J. Neurochem., 1993, 60(2), 395-407.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb03165.x] [PMID: 8419527]
[40]
Minelli, A.; Alonso-Nanclares, L.; Edwards, R.H.; DeFelipe, J.; Conti, F. Postnatal development of the vesicular GABA transporter in rat cerebral cortex. Neuroscience, 2003, 117(2), 337-346.
[http://dx.doi.org/10.1016/S0306-4522(02)00864-3] [PMID: 12614674]
[41]
Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem., 2006, 98(3), 641-653.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03913.x] [PMID: 16787421]
[42]
Takanaga, H.; Ohtsuki, S.; Hosoya, K.; Terasaki, T. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J. Cereb. Blood Flow Metab., 2001, 21(10), 1232-1239.
[http://dx.doi.org/10.1097/00004647-200110000-00012] [PMID: 11598501]
[43]
Madsen, K.K.; Clausen, R.P.; Larsson, O.M.; Krogsgaard-Larsen, P.; Schousboe, A.; White, H.S. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J. Neurochem., 2009, 109(Suppl. 1), 139-144.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05982.x] [PMID: 19393020]
[44]
Macdonald, R.L.; Olsen, R.W. GABAA receptor channels. Annu. Rev. Neurosci., 1994, 17, 569-602.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.003033] [PMID: 7516126]
[45]
Lee, V.; Maguire, J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front. Neural Circuits, 2014, 8, 3.
[http://dx.doi.org/10.3389/fncir.2014.00003] [PMID: 24550784]
[46]
Sieghart, W.; Sperk, G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr. Top. Med. Chem., 2002, 2(8), 795-816.
[http://dx.doi.org/10.2174/1568026023393507] [PMID: 12171572]
[47]
Misgeld, U.; Bijak, M.; Jarolimek, W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog. Neurobiol., 1995, 46(4), 423-462.
[http://dx.doi.org/10.1016/0301-0082(95)00012-K] [PMID: 8532848]
[48]
Couve, A.; Moss, S.J.; Pangalos, M.N. GABAB receptors: A new paradigm in G protein signaling. Mol. Cell. Neurosci., 2000, 16(4), 296-312.
[http://dx.doi.org/10.1006/mcne.2000.0908] [PMID: 11085869]
[49]
Padgett, C.L.; Slesinger, P.A. GABAB receptor coupling to G-proteins and ion channels. Adv. Pharmacol., 2010, 58, 123-147.
[http://dx.doi.org/10.1016/S1054-3589(10)58006-2] [PMID: 20655481]
[50]
Barnard, E.A.; Skolnick, P.; Olsen, R.W.; Mohler, H.; Sieghart, W.; Biggio, G.; Braestrup, C.; Bateson, A.N.; Langer, S.Z. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: Classification on the basis of subunit structure and receptor function. Pharmacol. Rev., 1998, 50(2), 291-313.
[PMID: 9647870]
[51]
DeFelipe, J.; López-Cruz, P.L.; Benavides-Piccione, R.; Bielza, C.; Larrañaga, P.; Anderson, S.; Burkhalter, A.; Cauli, B.; Fairén, A.; Feldmeyer, D.; Fishell, G.; Fitzpatrick, D.; Freund, T.F.; González-Burgos, G.; Hestrin, S.; Hill, S.; Hof, P.R.; Huang, J.; Jones, E.G.; Kawaguchi, Y.; Kisvárday, Z.; Kubota, Y.; Lewis, D.A.; Marín, O.; Markram, H.; McBain, C.J.; Meyer, H.S.; Monyer, H.; Nelson, S.B.; Rockland, K.; Rossier, J.; Rubenstein, J.L.; Rudy, B.; Scanziani, M.; Shepherd, G.M.; Sherwood, C.C.; Staiger, J.F.; Tamás, G.; Thomson, A.; Wang, Y.; Yuste, R.; Ascoli, G.A. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci., 2013, 14(3), 202-216.
[http://dx.doi.org/10.1038/nrn3444] [PMID: 23385869]
[52]
Jie, F.; Yin, G.; Yang, W.; Yang, M.; Gao, S.; Lv, J.; Li, B. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Front. Neurosci., 2018, 12, 562.
[http://dx.doi.org/10.3389/fnins.2018.00562] [PMID: 30154693]
[53]
Gottesmann, C. GABA mechanisms and sleep. Neuroscience, 2002, 111(2), 231-239.
[http://dx.doi.org/10.1016/S0306-4522(02)00034-9] [PMID: 11983310]
[54]
Stagg, C.J.; Bachtiar, V.; Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol., 2011, 21(6), 480-484.
[http://dx.doi.org/10.1016/j.cub.2011.01.069] [PMID: 21376596]
[55]
Nuss, P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatr. Dis. Treat., 2015, 11, 165-175.
[PMID: 25653526]
[56]
Wang, D.D.; Kriegstein, A.R. Defining the role of GABA in cortical development. J. Physiol., 2009, 587(Pt 9), 1873-1879.
[http://dx.doi.org/10.1113/jphysiol.2008.167635] [PMID: 19153158]
[57]
Sandberg, K.; Blicher, J.U.; Dong, M.Y.; Rees, G.; Near, J.; Kanai, R. Occipital GABA correlates with cognitive failures in daily life. Neuroimage, 2014, 87(100), 55-60.
[http://dx.doi.org/10.1016/j.neuroimage.2013.10.059] [PMID: 24188817]
[58]
Zhou, C.; Li, C.; Yu, H.M.; Zhang, F.; Han, D.; Zhang, G.Y. Neuroprotection of gamma-aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia. J. Neurosci. Res., 2008, 86(13), 2973-2983.
[http://dx.doi.org/10.1002/jnr.21728] [PMID: 18512761]
[59]
Waldvogel, H.J.; Baer, K.; Eady, E.; Allen, K.L.; Gilbert, R.T.; Mohler, H.; Rees, M.I.; Nicholson, L.F.; Faull, R.L. Differential localization of gamma-aminobutyric acid type A and glycine receptor subunits and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal cord: an immunohistochemical study. J. Comp. Neurol., 2010, 518(3), 305-328.
[http://dx.doi.org/10.1002/cne.22212] [PMID: 19950251]
[60]
Soltani, N.; Qiu, H.; Aleksic, M.; Glinka, Y.; Zhao, F.; Liu, R.; Li, Y.; Zhang, N.; Chakrabarti, R.; Ng, T.; Jin, T.; Zhang, H.; Lu, W.Y.; Feng, Z.P.; Prud’homme, G.J.; Wang, Q. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc. Natl. Acad. Sci. USA, 2011, 108(28), 11692-11697.
[http://dx.doi.org/10.1073/pnas.1102715108] [PMID: 21709230]
[61]
Hori, A.; Hara, T.; Honma, K.; Joh, T. Suppressive effect of γ-aminobutyric acid (GABA) on histamine release in rat basophilic RBL-2H3 cells. Niigata Daigaku Nogakubu Kenkyu Hokoku, 2008, 61, 47-51.
[62]
Oh, C.H.; Oh, S.H. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food, 2004, 7(1), 19-23.
[http://dx.doi.org/10.1089/109662004322984653] [PMID: 15117548]
[63]
Sokovic Bajic, S.; Djokic, J.; Dinic, M.; Veljovic, K.; Golic, N.; Mihajlovic, S.; Tolinacki, M. GABA-producing natural dairy isolate from artisanal zlatar cheese attenuates gut inflammation and strengthens gut epithelial barrier in vitro. Front. Microbiol., 2019, 10, 527.
[http://dx.doi.org/10.3389/fmicb.2019.00527] [PMID: 30936860]
[64]
Zhu, Z.; Shi, Z.; Xie, C.; Gong, W.; Hu, Z.; Peng, Y. A novel mechanism of Gamma-aminobutyric acid (GABA) protecting human umbilical vein endothelial cells (HUVECs) against H2O2-induced oxidative injury. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2019, 217, 68-75.
[http://dx.doi.org/10.1016/j.cbpc.2018.11.018] [PMID: 30500452]
[65]
Suzdak, P.D.; Gianutsos, G. GABA-noradrenergic interaction: Evidence for differential sites of action for GABA-A and GABA-B receptors. J. Neural Transm. (Vienna), 1985, 64(3-4), 163-172.
[http://dx.doi.org/10.1007/BF01256464] [PMID: 3003249]
[66]
Slattery, D.A.; Desrayaud, S.; Cryan, J.F. GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent. J. Pharmacol. Exp. Ther., 2005, 312(1), 290-296.
[http://dx.doi.org/10.1124/jpet.104.073536] [PMID: 15333677]
[67]
Bhandage, A.K.; Cunningham, J.L.; Jin, Z.; Shen, Q.; Bongiovanni, S.; Korol, S.V.; Syk, M.; Kamali-Moghaddam, M.; Ekselius, L.; Birnir, B. Depression, GABA, and age correlate with plasma levels of inflammatory markers. Int. J. Mol. Sci., 2019, 20(24), 6172.
[http://dx.doi.org/10.3390/ijms20246172] [PMID: 31817800]
[68]
Ragguett, R.M.; Tamura, J.K.; McIntyre, R.S. Keeping up with the clinical advances: depression. CNS Spectr., 2019, 24(S1), 25-37.
[http://dx.doi.org/10.1017/S1092852919001159] [PMID: 31248466]
[69]
Brambilla, P.; Perez, J.; Barale, F.; Schettini, G.; Soares, J.C. GABAergic dysfunction in mood disorders. Mol. Psychiatry, 2003, 8(8), 721-737, 715.
[http://dx.doi.org/10.1038/sj.mp.4001362] [PMID: 12888801]
[70]
Luscher, B.; Shen, Q.; Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. Mol. Psychiatry, 2011, 16(4), 383-406.
[http://dx.doi.org/10.1038/mp.2010.120] [PMID: 21079608]
[71]
Pehrson, A.L.; Sanchez, C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther., 2015, 9, 603-624.
[http://dx.doi.org/10.2147/DDDT.S62912] [PMID: 25653499]
[72]
Andrade, R.; Nicoll, R.A. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J. Physiol., 1987, 394(1), 99-124.
[http://dx.doi.org/10.1113/jphysiol.1987.sp016862] [PMID: 3443977]
[73]
Ropert, N.; Guy, N. Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J. Physiol., 1991, 441, 121-136.
[http://dx.doi.org/10.1113/jphysiol.1991.sp018742] [PMID: 1687746]
[74]
Bennett, B.D.; Huguenard, J.R.; Prince, D.A. Adrenergic modulation of GABAA receptor-mediated inhibition in rat sensorimotor cortex. J. Neurophysiol., 1998, 79(2), 937-946.
[http://dx.doi.org/10.1152/jn.1998.79.2.937] [PMID: 9463454]
[75]
Kaneko, K.; Tamamaki, N.; Owada, H.; Kakizaki, T.; Kume, N.; Totsuka, M.; Yamamoto, T.; Yawo, H.; Yagi, T.; Obata, K.; Yanagawa, Y. Noradrenergic excitation of a subpopulation of GABAergic cells in the basolateral amygdala via both activation of nonselective cationic conductance and suppression of resting K+ conductance: a study using glutamate decarboxylase 67-green fluorescent protein knock-in mice. Neuroscience, 2008, 157(4), 781-797.
[http://dx.doi.org/10.1016/j.neuroscience.2008.09.029] [PMID: 18950687]
[76]
Sibille, E.; Pavlides, C.; Benke, D.; Toth, M. Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor α subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J. Neurosci., 2000, 20(8), 2758-2765.
[http://dx.doi.org/10.1523/JNEUROSCI.20-08-02758.2000] [PMID: 10751426]
[77]
Boothman, L.; Raley, J.; Denk, F.; Hirani, E.; Sharp, T. In vivo evidence that 5-HT(2C) receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. Br. J. Pharmacol., 2006, 149(7), 861-869.
[http://dx.doi.org/10.1038/sj.bjp.0706935] [PMID: 17043669]
[78]
Zhou, L.; Liu, M.Z.; Li, Q.; Deng, J.; Mu, D.; Sun, Y.G. Organization of functional long-range circuits controlling the activity of serotonergic neurons in the dorsal raphe nucleus. Cell Rep., 2017, 18(12), 3018-3032.
[http://dx.doi.org/10.1016/j.celrep.2017.02.077] [PMID: 28329692]
[79]
Kawaguchi, Y.; Shindou, T. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J. Neurosci., 1998, 18(17), 6963-6976.
[http://dx.doi.org/10.1523/JNEUROSCI.18-17-06963.1998] [PMID: 9712665]
[80]
Samuels, B.A.; Hen, R. Neurogenesis and affective disorders. Eur. J. Neurosci., 2011, 33(6), 1152-1159.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07614.x] [PMID: 21395859]
[81]
Schmidt, H.D.; Duman, R.S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav. Pharmacol., 2007, 18(5-6), 391-418.
[http://dx.doi.org/10.1097/FBP.0b013e3282ee2aa8] [PMID: 17762509]
[82]
Luscher, B.; Fuchs, T. Adult hippocampal neurogenesis in the absence of serotonin (Commentary on Diaz et al.). Eur. J. Neurosci., 2013, 38(5), 2649.
[http://dx.doi.org/10.1111/ejn.12335] [PMID: 23992131]
[83]
Duveau, V.; Laustela, S.; Barth, L.; Gianolini, F.; Vogt, K.E.; Keist, R.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Fritschy, J.M. Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis. Eur. J. Neurosci., 2011, 34(3), 362-373.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07782.x] [PMID: 21722213]
[84]
Ren, Z.; Sahir, N.; Murakami, S.; Luellen, B.A.; Earnheart, J.C.; Lal, R.; Kim, J.Y.; Song, H.; Luscher, B. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice. Neuropharmacology, 2015, 88, 171-179.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.019] [PMID: 25107590]
[85]
Tozuka, Y.; Fukuda, S.; Namba, T.; Seki, T.; Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron, 2005, 47(6), 803-815.
[http://dx.doi.org/10.1016/j.neuron.2005.08.023] [PMID: 16157276]
[86]
Earnheart, J.C.; Schweizer, C.; Crestani, F.; Iwasato, T.; Itohara, S.; Mohler, H.; Lüscher, B. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J. Neurosci., 2007, 27(14), 3845-3854.
[http://dx.doi.org/10.1523/JNEUROSCI.3609-06.2007] [PMID: 17409249]
[87]
Tan, H.; Zhong, P.; Yan, Z. Corticotropin-releasing factor and acute stress prolongs serotonergic regulation of GABA transmission in prefrontal cortical pyramidal neurons. J. Neurosci., 2004, 24(21), 5000-5008.
[http://dx.doi.org/10.1523/JNEUROSCI.0143-04.2004] [PMID: 15163692]
[88]
Waselus, M.; Valentino, R.J.; Van Bockstaele, E.J. Ultrastructural evidence for a role of gamma-aminobutyric acid in mediating the effects of corticotropin-releasing factor on the rat dorsal raphe serotonin system. J. Comp. Neurol., 2005, 482(2), 155-165.
[http://dx.doi.org/10.1002/cne.20360] [PMID: 15611993]
[89]
Radley, J.J.; Gosselink, K.L.; Sawchenko, P.E. A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J. Neurosci., 2009, 29(22), 7330-7340.
[http://dx.doi.org/10.1523/JNEUROSCI.5924-08.2009] [PMID: 19494154]
[90]
Cullinan, W.E.; Wolfe, T.J. Chronic stress regulates levels of mRNA transcripts encoding beta subunits of the GABA(A) receptor in the rat stress axis. Brain Res., 2000, 887(1), 118-124.
[http://dx.doi.org/10.1016/S0006-8993(00)03000-6] [PMID: 11134596]
[91]
Northoff, G.; Sibille, E. Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol. Psychiatry, 2014, 19(9), 966-977.
[http://dx.doi.org/10.1038/mp.2014.68] [PMID: 25048001]
[92]
Orchinik, M.; Carroll, S.S.; Li, Y.H.; McEwen, B.S.; Weiland, N.G. Heterogeneity of hippocampal GABA(A) receptors: regulation by corticosterone. J. Neurosci., 2001, 21(1), 330-339.
[http://dx.doi.org/10.1523/JNEUROSCI.21-01-00330.2001] [PMID: 11150350]
[93]
Holm, M.M.; Nieto-Gonzalez, J.L.; Vardya, I.; Henningsen, K.; Jayatissa, M.N.; Wiborg, O.; Jensen, K. Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus, 2011, 21(4), 422-433.
[http://dx.doi.org/10.1002/hipo.20758] [PMID: 20087886]
[94]
Cushman, J.D.; Moore, M.D.; Olsen, R.W.; Fanselow, M.S. The role of the δ GABA(A) receptor in ovarian cycle-linked changes in hippocampus-dependent learning and memory. Neurochem. Res., 2014, 39(6), 1140-1146.
[http://dx.doi.org/10.1007/s11064-014-1282-6] [PMID: 24667980]
[95]
Sheline, Y.I. 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol. Psychiatry, 2000, 48(8), 791-800.
[http://dx.doi.org/10.1016/S0006-3223(00)00994-X] [PMID: 11063975]
[96]
MacQueen, G.M.; Campbell, S.; McEwen, B.S.; Macdonald, K.; Amano, S.; Joffe, R.T.; Nahmias, C.; Young, L.T. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1387-1392.
[http://dx.doi.org/10.1073/pnas.0337481100] [PMID: 12552118]
[97]
Price, J.L.; Drevets, W.C. Neurocircuitry of mood disorders. Neuropsychopharmacology, 2010, 35(1), 192-216.
[http://dx.doi.org/10.1038/npp.2009.104] [PMID: 19693001]
[98]
Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci., 2000, 20(24), 9104-9110.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09104.2000] [PMID: 11124987]
[99]
Hoshaw, B.A.; Malberg, J.E.; Lucki, I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res., 2005, 1037(1-2), 204-208.
[http://dx.doi.org/10.1016/j.brainres.2005.01.007] [PMID: 15777771]
[100]
Casarotto, P.C.; Girych, M.; Fred, S.M.; Kovaleva, V.; Moliner, R.; Enkavi, G.; Biojone, C.; Cannarozzo, C.; Sahu, M.P.; Kaurinkoski, K.; Brunello, C.A.; Steinzeig, A.; Winkel, F.; Patil, S.; Vestring, S.; Serchov, T.; Diniz, C.R.A.F.; Laukkanen, L.; Cardon, I.; Antila, H.; Rog, T.; Piepponen, T.P.; Bramham, C.R.; Normann, C.; Lauri, S.E.; Saarma, M.; Vattulainen, I.; Castrén, E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell, 2021, 184(5), 1299-1313.
[http://dx.doi.org/10.1016/j.cell.2021.01.034] [PMID: 33606976]
[101]
Duman, R.S.; Deyama, S.; Fogaça, M.V. Role of BDNF in the pathophysiology and treatment of depression: activity-dependent effects distinguish rapid-acting antidepressants. Eur. J. Neurosci., 2021, 53(1), 126-139.
[http://dx.doi.org/10.1111/ejn.14630] [PMID: 31811669]
[102]
Gottmann, K.; Mittmann, T.; Lessmann, V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Exp. Brain Res., 2009, 199(3-4), 203-234.
[http://dx.doi.org/10.1007/s00221-009-1994-z] [PMID: 19777221]
[103]
Porcher, C.; Medina, I.; Gaiarsa, J.L. Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains. Front. Cell. Neurosci., 2018, 12, 273.
[http://dx.doi.org/10.3389/fncel.2018.00273] [PMID: 30210299]
[104]
Ohba, S.; Ikeda, T.; Ikegaya, Y.; Nishiyama, N.; Matsuki, N.; Yamada, M.K. BDNF locally potentiates GABAergic presynaptic machineries: target-selective circuit inhibition. Cereb. Cortex, 2005, 15(3), 291-298.
[http://dx.doi.org/10.1093/cercor/bhh130] [PMID: 15238431]
[105]
Xu, H.; Wang, J.; Jing, H.; Ellenbroek, B.; Shao, F.; Wang, W. mPFC GABAergic transmission mediated the role of BDNF signaling in cognitive impairment but not anxiety induced by adolescent social stress. Neuropharmacology, 2021, 184, 108412.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108412] [PMID: 33245959]
[106]
Miller, A.H.; Raison, C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol., 2016, 16(1), 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[107]
Maes, M. Major depression and activation of the inflammatory response system. Adv. Exp. Med. Biol., 1999, 461, 25-46.
[http://dx.doi.org/10.1007/978-0-585-37970-8_2] [PMID: 10442165]
[108]
Müller, N.; Myint, A.M.; Schwarz, M.J. Inflammatory biomarkers and depression. Neurotox. Res., 2011, 19(2), 308-318.
[http://dx.doi.org/10.1007/s12640-010-9210-2] [PMID: 20658274]
[109]
Munkholm, K.; Braüner, J.V.; Kessing, L.V.; Vinberg, M. Cytokines in bipolar disorder vs. healthy control subjects: A systematic review and meta-analysis. J. Psychiatr. Res., 2013, 47(9), 1119-1133.
[http://dx.doi.org/10.1016/j.jpsychires.2013.05.018] [PMID: 23768870]
[110]
Lee, M.; Schwab, C.; McGeer, P.L. Astrocytes are GABAergic cells that modulate microglial activity. Glia, 2011, 59(1), 152-165.
[http://dx.doi.org/10.1002/glia.21087] [PMID: 21046567]
[111]
Young, J.J.; Bruno, D.; Pomara, N. A review of the relationship between proinflammatory cytokines and major depressive disorder. J. Affect. Disord., 2014, 169, 15-20.
[http://dx.doi.org/10.1016/j.jad.2014.07.032] [PMID: 25128861]
[112]
Amodeo, G.; Trusso, M.A.; Fagiolini, A. Depression and inflammation: disentangling a clear yet complex and multifaceted link. Neuropsychiatry (London), 2018, 7(4), 448-457.
[http://dx.doi.org/10.4172/Neuropsychiatry.1000236]
[113]
Raison, C.L.; Miller, A.H. Do cytokines really sing the blues? Cerebrum, 2013, 2013, 10.
[PMID: 24116267]
[114]
Wohleb, E.S.; McKim, D.B.; Sheridan, J.F.; Godbout, J.P. Monocyte trafficking to the brain with stress and inflammation: A novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci., 2015, 8, 447.
[http://dx.doi.org/10.3389/fnins.2014.00447] [PMID: 25653581]
[115]
Bhandage, A.K.; Hellgren, C.; Jin, Z.; Olafsson, E.B.; Sundström-Poromaa, I.; Birnir, B. Expression of GABA receptors subunits in peripheral blood mononuclear cells is gender dependent, altered in pregnancy and modified by mental health. Acta Physiol. (Oxf.), 2015, 213(3), 575-585.
[http://dx.doi.org/10.1111/apha.12440] [PMID: 25529063]
[116]
Bjurstöm, H.; Wang, J.; Ericsson, I.; Bengtsson, M.; Liu, Y.; Kumar-Mendu, S.; Issazadeh-Navikas, S.; Birnir, B. GABA, a natural immunomodulator of T lymphocytes. J. Neuroimmunol., 2008, 205(1-2), 44-50.
[http://dx.doi.org/10.1016/j.jneuroim.2008.08.017] [PMID: 18954912]
[117]
Plog, B.A.; Nedergaard, M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu. Rev. Pathol., 2018, 13, 379-394.
[http://dx.doi.org/10.1146/annurev-pathol-051217-111018] [PMID: 29195051]
[118]
Löscher, W.; Frey, H.H. Transport of GABA at the blood-CSF interface. J. Neurochem., 1982, 38(4), 1072-1079.
[http://dx.doi.org/10.1111/j.1471-4159.1982.tb05350.x] [PMID: 6801203]
[119]
Berrettini, W.H.; Nurnberger, J.I., Jr; Hare, T.A.; Simmons-Alling, S.; Gershon, E.S.; Post, R.M. Reduced plasma and CSF gamma-aminobutyric acid in affective illness: effect of lithium carbonate. Biol. Psychiatry, 1983, 18(2), 185-194.
[PMID: 6403063]
[120]
Crowley, T.; Cryan, J.F.; Downer, E.J.; O’Leary, O.F. Inhibiting neuroinflammation: the role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav. Immun., 2016, 54, 260-277.
[http://dx.doi.org/10.1016/j.bbi.2016.02.001] [PMID: 26851553]
[121]
Ferrini, F.; De Koninck, Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast., 2013, 2013, 429815.
[http://dx.doi.org/10.1155/2013/429815] [PMID: 24089642]
[122]
Stellwagen, D.; Beattie, E.C.; Seo, J.Y.; Malenka, R.C. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J. Neurosci., 2005, 25(12), 3219-3228.
[http://dx.doi.org/10.1523/JNEUROSCI.4486-04.2005] [PMID: 15788779]
[123]
Leinninger, G.M.; Opland, D.M.; Jo, Y.H.; Faouzi, M.; Christensen, L.; Cappellucci, L.A.; Rhodes, C.J.; Gnegy, M.E.; Becker, J.B.; Pothos, E.N.; Seasholtz, A.F.; Thompson, R.C.; Myers, M.G., Jr Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab., 2011, 14(3), 313-323.
[http://dx.doi.org/10.1016/j.cmet.2011.06.016] [PMID: 21907138]
[124]
Gold, B.I.; Bowers, M.B., Jr; Roth, R.H.; Sweeney, D.W. GABA levels in CSF of patients with psychiatric disorders. Am. J. Psychiatry, 1980, 137(3), 362-364.
[http://dx.doi.org/10.1176/ajp.137.3.362] [PMID: 7356067]
[125]
Gerner, R.H.; Hare, T.A. CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am. J. Psychiatry, 1981, 138(8), 1098-1101.
[http://dx.doi.org/10.1176/ajp.138.8.1098] [PMID: 7258390]
[126]
Petty, F.; Schlesser, M.A. Plasma GABA in affective illness. A preliminary investigation. J. Affect. Disord., 1981, 3(4), 339-343.
[http://dx.doi.org/10.1016/0165-0327(81)90003-3] [PMID: 6459350]
[127]
Petty, F. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: a blood test for manic depressive disease? Clin. Chem., 1994, 40(2), 296-302.
[http://dx.doi.org/10.1093/clinchem/40.2.296] [PMID: 8313610]
[128]
Bielau, H.; Steiner, J.; Mawrin, C.; Trübner, K.; Brisch, R.; Meyer-Lotz, G.; Brodhun, M.; Dobrowolny, H.; Baumann, B.; Gos, T.; Bernstein, H.G.; Bogerts, B. Dysregulation of GABAergic neurotransmission in mood disorders: A postmortem study. Ann. N. Y. Acad. Sci., 2007, 1096, 157-169.
[http://dx.doi.org/10.1196/annals.1397.081] [PMID: 17405927]
[129]
Gos, T.; Günther, K.; Bielau, H.; Dobrowolny, H.; Mawrin, C.; Trübner, K.; Brisch, R.; Steiner, J.; Bernstein, H.G.; Jankowski, Z.; Bogerts, B. Suicide and depression in the quantitative analysis of glutamic acid decarboxylase-Immunoreactive neuropil. J. Affect. Disord., 2009, 113(1-2), 45-55.
[http://dx.doi.org/10.1016/j.jad.2008.04.021] [PMID: 18538859]
[130]
Karolewicz, B.; Maciag, D.; O’Dwyer, G.; Stockmeier, C.A.; Feyissa, A.M.; Rajkowska, G. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int. J. Neuropsychopharmacol., 2010, 13(4), 411-420.
[http://dx.doi.org/10.1017/S1461145709990587] [PMID: 20236554]
[131]
Guilloux, J.P.; Douillard-Guilloux, G.; Kota, R.; Wang, X.; Gardier, A.M.; Martinowich, K.; Tseng, G.C.; Lewis, D.A.; Sibille, E. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol. Psychiatry, 2012, 17(11), 1130-1142.
[http://dx.doi.org/10.1038/mp.2011.113] [PMID: 21912391]
[132]
Sibille, E.; Morris, H.M.; Kota, R.S.; Lewis, D.A. GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int. J. Neuropsychopharmacol., 2011, 14(6), 721-734.
[http://dx.doi.org/10.1017/S1461145710001616] [PMID: 21226980]
[133]
Tripp, A.; Kota, R.S.; Lewis, D.A.; Sibille, E. Reduced somatostatin in subgenual anterior cingulate cortex in major depression. Neurobiol. Dis., 2011, 42(1), 116-124.
[http://dx.doi.org/10.1016/j.nbd.2011.01.014] [PMID: 21232602]
[134]
Anderson, K.M.; Krienen, F.M.; Choi, E.Y.; Reinen, J.M.; Yeo, B.T.T.; Holmes, A.J. Gene expression links functional networks across cortex and striatum. Nat. Commun., 2018, 9(1), 1428.
[http://dx.doi.org/10.1038/s41467-018-03811-x] [PMID: 29651138]
[135]
Tremblay, R.; Lee, S.; Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 2016, 91(2), 260-292.
[http://dx.doi.org/10.1016/j.neuron.2016.06.033] [PMID: 27477017]
[136]
Lin, L.C.; Sibille, E. Somatostatin, neuronal vulnerability and behavioral emotionality. Mol. Psychiatry, 2015, 20(3), 377-387.
[http://dx.doi.org/10.1038/mp.2014.184] [PMID: 25600109]
[137]
Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry, 2017, 4(2), 146-158.
[http://dx.doi.org/10.1016/S2215-0366(16)30263-2] [PMID: 27856392]
[138]
Sequeira, A.; Mamdani, F.; Ernst, C.; Vawter, M.P.; Bunney, W.E.; Lebel, V.; Rehal, S.; Klempan, T.; Gratton, A.; Benkelfat, C.; Rouleau, G.A.; Mechawar, N.; Turecki, G. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One, 2009, 4(8), e6585.
[http://dx.doi.org/10.1371/journal.pone.0006585] [PMID: 19668376]
[139]
Merali, Z.; Du, L.; Hrdina, P.; Palkovits, M.; Faludi, G.; Poulter, M.O.; Anisman, H. Dysregulation in the suicide brain: mRNA expression of corticotropin-releasing hormone receptors and GABA(A) receptor subunits in frontal cortical brain region. J. Neurosci., 2004, 24(6), 1478-1485.
[http://dx.doi.org/10.1523/JNEUROSCI.4734-03.2004] [PMID: 14960621]
[140]
Choudary, P.V.; Molnar, M.; Evans, S.J.; Tomita, H.; Li, J.Z.; Vawter, M.P.; Myers, R.M.; Bunney, W.E., Jr; Akil, H.; Watson, S.J.; Jones, E.G. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15653-15658.
[http://dx.doi.org/10.1073/pnas.0507901102] [PMID: 16230605]
[141]
Kang, H.J.; Adams, D.H.; Simen, A.; Simen, B.B.; Rajkowska, G.; Stockmeier, C.A.; Overholser, J.C.; Meltzer, H.Y.; Jurjus, G.J.; Konick, L.C.; Newton, S.S.; Duman, R.S. Gene expression profiling in postmortem prefrontal cortex of major depressive disorder. J. Neurosci., 2007, 27(48), 13329-13340.
[http://dx.doi.org/10.1523/JNEUROSCI.4083-07.2007] [PMID: 18045927]
[142]
Sequeira, A.; Klempan, T.; Canetti, L.; ffrench-Mullen, J.; Benkelfat, C.; Rouleau, G.A.; Turecki, G. Patterns of gene expression in the limbic system of suicides with and without major depression. Mol. Psychiatry, 2007, 12(7), 640-655.
[http://dx.doi.org/10.1038/sj.mp.4001969] [PMID: 17353912]
[143]
Zhao, J.; Verwer, R.W.H.; Gao, S.F.; Qi, X.R.; Lucassen, P.J.; Kessels, H.W.; Swaab, D.F. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J. Psychiatr. Res., 2018, 102, 261-274.
[http://dx.doi.org/10.1016/j.jpsychires.2018.04.020] [PMID: 29753198]
[144]
Fatemi, S.H.; Folsom, T.D.; Thuras, P.D. Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr. Res., 2011, 128(1-3), 37-43.
[http://dx.doi.org/10.1016/j.schres.2010.12.025] [PMID: 21303731]
[145]
Cross, J.A.; Cheetham, S.C.; Crompton, M.R.; Katona, C.L.; Horton, R.W. Brain GABAB binding sites in depressed suicide victims. Psychiatry Res., 1988, 26(2), 119-129.
[http://dx.doi.org/10.1016/0165-1781(88)90066-2] [PMID: 2853398]
[146]
Arranz, B.; Cowburn, R.; Eriksson, A.; Vestling, M.; Marcusson, J. Gamma-aminobutyric acid-B (GABAB) binding sites in postmortem suicide brains. Neuropsychobiology, 1992, 26(1-2), 33-36.
[http://dx.doi.org/10.1159/000118893] [PMID: 1335560]
[147]
Anderson, K.M.; Collins, M.A.; Chin, R.; Ge, T.; Rosenberg, M.D.; Holmes, A.J. Transcriptional and imaging-genetic association of cortical interneurons, brain function, and schizophrenia risk. Nat. Commun., 2020, 11(1), 2889.
[http://dx.doi.org/10.1038/s41467-020-16710-x] [PMID: 32514083]
[148]
Mariotti, L.; Losi, G.; Lia, A.; Melone, M.; Chiavegato, A.; Gómez-Gonzalo, M.; Sessolo, M.; Bovetti, S.; Forli, A.; Zonta, M.; Requie, L.M.; Marcon, I.; Pugliese, A.; Viollet, C.; Bettler, B.; Fellin, T.; Conti, F.; Carmignoto, G. Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat. Commun., 2018, 9(1), 82.
[http://dx.doi.org/10.1038/s41467-017-02642-6] [PMID: 29311610]
[149]
Seidlitz, J.; Nadig, A.; Liu, S.; Bethlehem, R.A.I.; Vértes, P.E.; Morgan, S.E.; Váša, F.; Romero-Garcia, R.; Lalonde, F.M.; Clasen, L.S.; Blumenthal, J.D.; Paquola, C.; Bernhardt, B.; Wagstyl, K.; Polioudakis, D.; de la Torre-Ubieta, L.; Geschwind, D.H.; Han, J.C.; Lee, N.R.; Murphy, D.G.; Bullmore, E.T.; Raznahan, A. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun., 2020, 11(1), 3358.
[http://dx.doi.org/10.1038/s41467-020-17051-5] [PMID: 32620757]
[150]
Boersma, G.J.; Lee, R.S.; Cordner, Z.A.; Ewald, E.R.; Purcell, R.H.; Moghadam, A.A.; Tamashiro, K.L. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics, 2014, 9(3), 437-447.
[http://dx.doi.org/10.4161/epi.27558] [PMID: 24365909]
[151]
Poulter, M.O.; Du, L.; Weaver, I.C.; Palkovits, M.; Faludi, G.; Merali, Z.; Szyf, M.; Anisman, H. GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol. Psychiatry, 2008, 64(8), 645-652.
[http://dx.doi.org/10.1016/j.biopsych.2008.05.028] [PMID: 18639864]
[152]
de Kloet, E.R.; Sibug, R.M.; Helmerhorst, F.M.; Schmidt, M.V. Stress, genes and the mechanism of programming the brain for later life [published correction appears in Neurosci. Biobehav. Rev. 2006, 30(4), 576. Schmidt, Mathias [corrected to Schmidt, Mathias V]]. Neurosci. Biobehav. Rev., 2005, 29(2), 271-281.
[http://dx.doi.org/10.1016/j.neubiorev.2004.10.008] [PMID: 15811498]
[153]
Gabbay, V.; Mao, X.; Klein, R.G.; Ely, B.A.; Babb, J.S.; Panzer, A.M.; Alonso, C.M.; Shungu, D.C. Anterior cingulate cortex γ-aminobutyric acid in depressed adolescents: relationship to anhedonia. Arch. Gen. Psychiatry, 2012, 69(2), 139-149.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.131] [PMID: 21969419]
[154]
Godfrey, K.E.M.; Gardner, A.C.; Kwon, S.; Chea, W.; Muthukumaraswamy, S.D. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: a systematic review and meta-analysis. J. Psychiatr. Res., 2018, 105, 33-44.
[http://dx.doi.org/10.1016/j.jpsychires.2018.08.015] [PMID: 30144668]
[155]
Benson, K.L.; Bottary, R.; Schoerning, L.; Baer, L.; Gonenc, A.; Eric Jensen, J.; Winkelman, J.W. 1H MRS measurement of cortical GABA and glutamate in primary insomnia and major depressive disorder: Relationship to sleep quality and depression severity. J. Affect. Disord., 2020, 274, 624-631.
[http://dx.doi.org/10.1016/j.jad.2020.05.026] [PMID: 32663996]
[156]
Sanacora, G.; Mason, G.F.; Rothman, D.L.; Krystal, J.H. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am. J. Psychiatry, 2002, 159(4), 663-665.
[http://dx.doi.org/10.1176/appi.ajp.159.4.663] [PMID: 11925309]
[157]
Bhagwagar, Z.; Wylezinska, M.; Taylor, M.; Jezzard, P.; Matthews, P.M.; Cowen, P.J. Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am. J. Psychiatry, 2004, 161(2), 368-370.
[http://dx.doi.org/10.1176/appi.ajp.161.2.368] [PMID: 14754790]
[158]
Dubin, M.J.; Mao, X.; Banerjee, S.; Goodman, Z.; Lapidus, K.A.; Kang, G.; Liston, C.; Shungu, D.C. Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy. J. Psychiatry Neurosci., 2016, 41(3), E37-E45.
[http://dx.doi.org/10.1503/jpn.150223] [PMID: 26900793]
[159]
Sanacora, G.; Mason, G.F.; Rothman, D.L.; Hyder, F.; Ciarcia, J.J.; Ostroff, R.B.; Berman, R.M.; Krystal, J.H. Increased cortical GABA concentrations in depressed patients receiving ECT. Am. J. Psychiatry, 2003, 160(3), 577-579.
[http://dx.doi.org/10.1176/appi.ajp.160.3.577] [PMID: 12611844]
[160]
Sanacora, G.; Fenton, L.R.; Fasula, M.K.; Rothman, D.L.; Levin, Y.; Krystal, J.H.; Mason, G.F. Cortical gamma-aminobutyric acid concentrations in depressed patients receiving cognitive behavioral therapy. Biol. Psychiatry, 2006, 59(3), 284-286.
[http://dx.doi.org/10.1016/j.biopsych.2005.07.015] [PMID: 16139814]
[161]
Levinson, A.J.; Fitzgerald, P.B.; Favalli, G.; Blumberger, D.M.; Daigle, M.; Daskalakis, Z.J. Evidence of cortical inhibitory deficits in major depressive disorder. Biol. Psychiatry, 2010, 67(5), 458-464.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.025] [PMID: 19922906]
[162]
Radhu, N.; de Jesus, D.R.; Ravindran, L.N.; Zanjani, A.; Fitzgerald, P.B.; Daskalakis, Z.J. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin. Neurophysiol., 2013, 124(7), 1309-1320.
[http://dx.doi.org/10.1016/j.clinph.2013.01.014] [PMID: 23485366]
[163]
Schür, R.R.; Draisma, L.W.; Wijnen, J.P.; Boks, M.P.; Koevoets, M.G.; Joëls, M.; Klomp, D.W.; Kahn, R.S.; Vinkers, C.H. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum. Brain Mapp., 2016, 37(9), 3337-3352.
[http://dx.doi.org/10.1002/hbm.23244] [PMID: 27145016]
[164]
Draganov, M.; Vives-Gilabert, Y.; de Diego-Adeliño, J.; Vicent-Gil, M.; Puigdemont, D.; Portella, M.J. Glutamatergic and GABA-ergic abnormalities in First-episode depression. A 1-year follow-up 1H-MR spectroscopic study. J. Affect. Disord., 2020, 266, 572-577.
[http://dx.doi.org/10.1016/j.jad.2020.01.138] [PMID: 32056929]
[165]
Bradley, K.A.; Alonso, C.M.; Mehra, L.M.; Xu, J.; Gabbay, V. Elevated striatal γ-aminobutyric acid in youth with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 203-210.
[http://dx.doi.org/10.1016/j.pnpbp.2018.06.004] [PMID: 29890194]
[166]
Pinna, G.; Costa, E.; Guidotti, A. Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl.), 2006, 186(3), 362-372.
[http://dx.doi.org/10.1007/s00213-005-0213-2] [PMID: 16432684]
[167]
Mihalek, R.M.; Banerjee, P.K.; Korpi, E.R.; Quinlan, J.J.; Firestone, L.L.; Mi, Z.P.; Lagenaur, C.; Tretter, V.; Sieghart, W.; Anagnostaras, S.G.; Sage, J.R.; Fanselow, M.S.; Guidotti, A.; Spigelman, I.; Li, Z.; DeLorey, T.M.; Olsen, R.W.; Homanics, G.E. Attenuated sensitivity to neuroactive steroids in γ-aminobutyrate type A receptor delta subunit knockout mice. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12905-12910.
[http://dx.doi.org/10.1073/pnas.96.22.12905] [PMID: 10536021]
[168]
Shen, R.Y.; Andrade, R. 5-Hydroxytryptamine2 receptor facilitates GABAergic neurotransmission in rat hippocampus. J. Pharmacol. Exp. Ther., 1998, 285(2), 805-812.
[PMID: 9580630]
[169]
Vithlani, M.; Hines, R.M.; Zhong, P.; Terunuma, M.; Hines, D.J.; Revilla-Sanchez, R.; Jurd, R.; Haydon, P.; Rios, M.; Brandon, N.; Yan, Z.; Moss, S.J. The ability of BDNF to modify neurogenesis and depressive-like behaviors is dependent upon phosphorylation of tyrosine residues 365/367 in the GABA(A)-receptor γ2 subunit. J. Neurosci., 2013, 33(39), 15567-15577.
[http://dx.doi.org/10.1523/JNEUROSCI.1845-13.2013] [PMID: 24068823]
[170]
Essrich, C.; Lorez, M.; Benson, J.A.; Fritschy, J.M.; Lüscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat. Neurosci., 1998, 1(7), 563-571.
[http://dx.doi.org/10.1038/2798] [PMID: 10196563]
[171]
Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry, 2000, 47(4), 351-354.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[172]
Wohleb, E.S.; Gerhard, D.; Thomas, A.; Duman, R.S. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr. Neuropharmacol., 2017, 15(1), 11-20.
[http://dx.doi.org/10.2174/1570159X14666160309114549] [PMID: 26955968]
[173]
Luscher, B.; Feng, M.; Jefferson, S.J. Antidepressant mechanisms of ketamine: focus on GABAergic inhibition. Adv. Pharmacol., 2020, 89, 43-78.
[http://dx.doi.org/10.1016/bs.apha.2020.03.002] [PMID: 32616214]
[174]
Neis, V.B.; Rosado, A.F.; Olescowicz, G.; Moretti, M.; Rosa, P.B.; Platt, N.; Rodrigues, A.L.S. The involvement of GABAergic system in the antidepressant-like effect of agmatine. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(10), 1931-1939.
[http://dx.doi.org/10.1007/s00210-020-01910-5] [PMID: 32447465]
[175]
Breilmann, J.; Girlanda, F.; Guaiana, G.; Barbui, C.; Cipriani, A.; Castellazzi, M.; Bighelli, I.; Davies, S.J.; Furukawa, T.A.; Koesters, M. Benzodiazepines versus placebo for panic disorder in adults. Cochrane Database Syst. Rev., 2019, 3(3), CD010677.
[http://dx.doi.org/10.1002/14651858.CD010677.pub2] [PMID: 30921478]
[176]
Fawcett, J.; Edwards, J.H.; Kravitz, H.M.; Jeffriess, H. Alprazolam: an antidepressant? Alprazolam, desipramine, and an alprazolam-desipramine combination in the treatment of adult depressed outpatients. J. Clin. Psychopharmacol., 1987, 7(5), 295-310.
[http://dx.doi.org/10.1097/00004714-198710000-00002] [PMID: 3316312]
[177]
Petty, F.; Trivedi, M.H.; Fulton, M.; Rush, A.J. Benzodiazepines as antidepressants: does GABA play a role in depression? Biol. Psychiatry, 1995, 38(9), 578-591.
[http://dx.doi.org/10.1016/0006-3223(95)00049-7] [PMID: 8573660]
[178]
Benasi, G.; Guidi, J.; Offidani, E.; Balon, R.; Rickels, K.; Fava, G.A. Benzodiazepines as a monotherapy in depressive disorders: a systematic review. Psychother. Psychosom., 2018, 87(2), 65-74.
[http://dx.doi.org/10.1159/000486696] [PMID: 29466801]
[179]
Ren, Z.; Pribiag, H.; Jefferson, S.J.; Shorey, M.; Fuchs, T.; Stellwagen, D.; Luscher, B. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment. Biol. Psychiatry, 2016, 80(6), 457-468.
[http://dx.doi.org/10.1016/j.biopsych.2016.02.009] [PMID: 27062563]
[180]
Hasler, G.; Neumeister, A.; van der Veen, J.W.; Tumonis, T.; Bain, E.E.; Shen, J.; Drevets, W.C.; Charney, D.S. Normal prefrontal gamma-aminobutyric acid levels in remitted depressed subjects determined by proton magnetic resonance spectroscopy. Biol. Psychiatry, 2005, 58(12), 969-973.
[http://dx.doi.org/10.1016/j.biopsych.2005.05.017] [PMID: 16043137]
[181]
Chiu, C.Q.; Lur, G.; Morse, T.M.; Carnevale, N.T.; Ellis- Davies, G.C.; Higley, M.J. Compartmentalization of GABAergic inhibition by dendritic spines. Science, 2013, 340(6133), 759-762.
[http://dx.doi.org/10.1126/science.1234274] [PMID: 23661763]
[182]
Krystal, J.H.; Anticevic, A.; Yang, G.J.; Dragoi, G.; Driesen, N.R.; Wang, X.J.; Murray, J.D. Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: A translational and computational neuroscience perspective. Biol. Psychiatry, 2017, 81(10), 874-885.
[http://dx.doi.org/10.1016/j.biopsych.2017.01.004] [PMID: 28434616]
[183]
Shen, Q.; Fuchs, T.; Sahir, N.; Luscher, B. GABAergic control of critical developmental periods for anxiety- and depression-related behavior in mice. PLoS One, 2012, 7(10), e47441.
[http://dx.doi.org/10.1371/journal.pone.0047441] [PMID: 23071808]
[184]
Lopizzo, N.; Bocchio Chiavetto, L.; Cattane, N.; Plazzotta, G.; Tarazi, F.I.; Pariante, C.M.; Riva, M.A.; Cattaneo, A. Gene-environment interaction in major depression: focus on experience-dependent biological systems. Front. Psychiatry, 2015, 6, 68.
[http://dx.doi.org/10.3389/fpsyt.2015.00068] [PMID: 26005424]
[185]
McKlveen, J.M.; Morano, R.L.; Fitzgerald, M.; Zoubovsky, S.; Cassella, S.N.; Scheimann, J.R.; Ghosal, S.; Mahbod, P.; Packard, B.A.; Myers, B.; Baccei, M.L.; Herman, J.P. Chronic stress increases prefrontal inhibition: A mechanism for stress-induced prefrontal dysfunction. Biol. Psychiatry, 2016, 80(10), 754-764.
[http://dx.doi.org/10.1016/j.biopsych.2016.03.2101] [PMID: 27241140]
[186]
Ramaswami, R.; Bayer, R.; Galea, S. Precision medicine from a public health perspective. Annu. Rev. Public Health, 2018, 39, 153-168.
[http://dx.doi.org/10.1146/annurev-publhealth-040617-014158] [PMID: 29166244]
[187]
Kalueff, A.V.; Nutt, D.J. Role of GABA in anxiety and depression. Depress. Anxiety, 2007, 24(7), 495-517.
[http://dx.doi.org/10.1002/da.20262] [PMID: 17117412]
[188]
Kumar, S.; Porcu, P.; Werner, D.F.; Matthews, D.B.; Diaz-Granados, J.L.; Helfand, R.S.; Morrow, A.L. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl.), 2009, 205(4), 529-564.
[http://dx.doi.org/10.1007/s00213-009-1562-z] [PMID: 19455309]
[189]
Rivero, O.; Selten, M.M.; Sich, S.; Popp, S.; Bacmeister, L.; Amendola, E.; Negwer, M.; Schubert, D.; Proft, F.; Kiser, D.; Schmitt, A.G.; Gross, C.; Kolk, S.M.; Strekalova, T.; van den Hove, D.; Resink, T.J.; Nadif Kasri, N.; Lesch, K.P. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl. Psychiatry, 2015, 5(10), e655.
[http://dx.doi.org/10.1038/tp.2015.152] [PMID: 26460479]
[190]
McLachlan, G. Treatment resistant depression: what are the options? BMJ, 2018, 363, k5354.
[http://dx.doi.org/10.1136/bmj.k5354] [PMID: 30563939]
[191]
Zorumski, C.F.; Paul, S.M.; Izumi, Y.; Covey, D.F.; Mennerick, S. Neurosteroids, stress and depression: Potential therapeutic opportunities. Neurosci. Biobehav. Rev., 2013, 37(1), 109-122.
[http://dx.doi.org/10.1016/j.neubiorev.2012.10.005] [PMID: 23085210]
[192]
Fasipe, O.J.; Agede, O.A.; Enikuomehin, A.C. Announcing the novel class of GABA-A receptor selective positive allosteric modulator antidepressants. Future Sci. OA, 2020, 7(2), FSO654.
[http://dx.doi.org/10.2144/fsoa-2020-0108] [PMID: 33437518]
[193]
Meltzer-Brody, S.; Colquhoun, H.; Riesenberg, R.; Epperson, C.N.; Deligiannidis, K.M.; Rubinow, D.R.; Li, H.; Sankoh, A.J.; Clemson, C.; Schacterle, A.; Jonas, J.; Kanes, S. Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet, 2018, 392(10152), 1058-1070.
[http://dx.doi.org/10.1016/S0140-6736(18)31551-4] [PMID: 30177236]
[194]
Powell, J.G.; Garland, S.; Preston, K.; Piszczatoski, C. Brexanolone (Zulresso): finally, an FDA-approved treatment for postpartum depression. Ann. Pharmacother., 2020, 54(2), 157-163.
[http://dx.doi.org/10.1177/1060028019873320] [PMID: 31476884]
[195]
Martinez Botella, G.; Salituro, F.G.; Harrison, B.L.; Beresis, R.T.; Bai, Z.; Blanco, M.J.; Belfort, G.M.; Dai, J.; Loya, C.M.; Ackley, M.A.; Althaus, A.L.; Grossman, S.J.; Hoffmann, E.; Doherty, J.J.; Robichaud, A.J. Neuroactive steroids. 2. 3α-Hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1′-yl)-19-nor-5β-pregnan-20-one (SAGE-217): a clinical next generation neuroactive steroid positive allosteric modulator of the (γ-aminobutyric acid)A receptor. J. Med. Chem., 2017, 60(18), 7810-7819.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00846] [PMID: 28753313]
[196]
Gunduz-Bruce, H.; Silber, C.; Kaul, I.; Rothschild, A.J.; Riesenberg, R.; Sankoh, A.J.; Li, H.; Lasser, R.; Zorumski, C.F.; Rubinow, D.R.; Paul, S.M.; Jonas, J.; Doherty, J.J.; Kanes, S.J. Trial of SAGE-217 in patients with major depressive disorder. N. Engl. J. Med., 2019, 381(10), 903-911.
[http://dx.doi.org/10.1056/NEJMoa1815981] [PMID: 31483961]
[197]
Dichtel, L.E.; Nyer, M.; Dording, C.; Fisher, L.B.; Cusin, C.; Shapero, B.G.; Pedrelli, P.; Kimball, A.S.; Rao, E.M.; Mischouldon, D.; Fava, M.; Miller, K.K. Effects of open-label, adjunctive ganaxolone on persistent depression despite adequate antidepressant treatment in postmenopausal women: a pilot study. J. Clin. Psychiatry, 2020, 81(4), 19m12887.
[http://dx.doi.org/10.4088/JCP.19m12887] [PMID: 32558402]
[198]
Alexander, R.C. The potential efficacy of GABAB antagonists in depression. Curr. Opin. Pharmacol., 2017, 35, 101-104.
[http://dx.doi.org/10.1016/j.coph.2017.07.009] [PMID: 28807483]
[199]
Li, Y.F. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: aiming for fast-onset antidepressant discovery. Pharmacol. Ther., 2020, 208, 107494.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107494] [PMID: 31991195]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy