Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

PCSK9 as a New Player in Cancer: New Opportunity or Red Herring?

Author(s): Aldo Bonaventura*, Alessandra Vecchié, Massimiliano Ruscica, Francesco Grossi and Francesco Dentali

Volume 29, Issue 6, 2022

Published on: 14 January, 2022

Page: [960 - 969] Pages: 10

DOI: 10.2174/0929867328666211115122324

Price: $65

conference banner
Abstract

Initially described as a factor involved in liver regeneration and neuronal differentiation, proprotein convertase subtilisin/kexin type 9 (PCSK9) has become one of the key regulators of low-density lipoprotein cholesterol. Beside that, a number of studies have suggested PCSK9 may play a role in cancer biology. This is particularly true for gastroenteric (gastric and liver cancers) and lung cancers, where higher PCSK9 levels were associated with the increased ability of the tumor to develop and give metastasis as well as with reduced overall survival. Accordingly, monoclonal antibodies blocking PCSK9 were recently shown to synergize with immunotherapy in different types of cancers to achieve tumor growth suppression through an increased intratumoral infiltration of cytotoxic T cells. Anti-PCSK9 vaccines have been tested in animal models with encouraging results only in colon carcinoma. As most of this evidence is based on pre-clinical studies, this has led to some controversies and inconsistencies, thus suggesting that additional research is needed to clarify the topic. Finally, modulation of intracellular PCSK9 levels by silencing RNA (siRNA) may help understand the physiological and pathological mechanisms of PCSK9.

Keywords: PCSK9, cancer, cholesterol, immunotherapy, vaccines, therapy.

[1]
Seidah, N.G.; Benjannet, S.; Wickham, L.; Marcinkiewicz, J.; Jasmin, S.B.; Stifani, S.; Basak, A.; Prat, A.; Chretien, M. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 928-933.
[http://dx.doi.org/10.1073/pnas.0335507100] [PMID: 12552133]
[2]
Leigh, S.E.; Leren, T.P.; Humphries, S.E. Commentary PCSK9 variants: a new database. Atherosclerosis, 2009, 203(1), 32-33.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.02.006] [PMID: 19249440]
[3]
Mousavi, S.A.; Berge, K.E.; Leren, T.P. The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostasis. J. Intern. Med., 2009, 266(6), 507-519.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02167.x] [PMID: 19930098]
[4]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[5]
Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; Jukema, J.W.; Lecorps, G.; Mahaffey, K.W.; Moryusef, A.; Pordy, R.; Quintero, K.; Roe, M.T.; Sasiela, W.J.; Tamby, J.F.; Tricoci, P.; White, H.D.; Zeiher, A.M. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med., 2018, 379(22), 2097-2107.
[http://dx.doi.org/10.1056/NEJMoa1801174] [PMID: 30403574]
[6]
Liberale, L.; Montecucco, F.; Camici, G.G.; Dallegri, F.; Vecchie, A.; Carbone, F.; Bonaventura, A. Treatment with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) inhibitors to reduce cardiovascular inflammation and outcomes. Curr. Med. Chem., 2017, 24(14), 1403-1416.
[http://dx.doi.org/10.2174/0929867324666170303123734] [PMID: 28260498]
[7]
Ruscica, M.; Ferri, N.; Santos, R.D.; Sirtori, C.R.; Corsini, A. Lipid lowering drugs: present status and future developments. Curr. Atheroscler. Rep., 2021, 23(5), 17.
[http://dx.doi.org/10.1007/s11883-021-00918-3] [PMID: 33694108]
[8]
Smeekens, S.P.; Steiner, D.F. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem., 1990, 265(6), 2997-3000.
[http://dx.doi.org/10.1016/S0021-9258(19)39721-2] [PMID: 2154467]
[9]
Mbikay, M.; Sirois, F.; Yao, J.; Seidah, N.G.; Chrétien, M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer, 1997, 75(10), 1509-1514.
[http://dx.doi.org/10.1038/bjc.1997.258] [PMID: 9166946]
[10]
Bassi, D.E.; Fu, J.; Lopez de Cicco, R.; Klein-Szanto, A.J. Proprotein convertases: “Master switches” in the regulation of tumor growth and progression. Mol. Carcinog., 2005, 44(3), 151-161.
[http://dx.doi.org/10.1002/mc.20134] [PMID: 16167351]
[11]
Mahboobnia, K.; Pirro, M.; Marini, E.; Grignani, F.; Bezsonov, E.E.; Jamialahmadi, T.; Sahebkar, A. PCSK9 and cancer: Rethinking the link. Biomed. Pharmacother., 2021, 140, 111758.
[http://dx.doi.org/10.1016/j.biopha.2021.111758] [PMID: 34058443]
[12]
Bhattacharya, A.; Chowdhury, A.; Chaudhury, K.; Shukla, P.C. Proprotein convertase subtilisin/kexin type 9 (PCSK9): A potential multifaceted player in cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188581.
[http://dx.doi.org/10.1016/j.bbcan.2021.188581] [PMID: 34144130]
[13]
Spolitu, S.; Dai, W.; Zadroga, J.A.; Ozcan, L. Proprotein convertase subtilisin/kexin type 9 and lipid metabolism. Curr. Opin. Lipidol., 2019, 30(3), 186-191.
[http://dx.doi.org/10.1097/MOL.0000000000000601] [PMID: 30925519]
[14]
Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci., 2007, 32(2), 71-77.
[http://dx.doi.org/10.1016/j.tibs.2006.12.008] [PMID: 17215125]
[15]
Sun, H.; Krauss, R.M.; Chang, J.T.; Teng, B.B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J. Lipid Res., 2018, 59(2), 207-223.
[http://dx.doi.org/10.1194/jlr.M078360] [PMID: 29180444]
[16]
Paciullo, F.; Momi, S.; Gresele, P. PCSK9 in haemostasis and thrombosis: Possible pleiotropic effects of PCSK9 inhibitors in cardiovascular prevention. Thromb. Haemost., 2019, 119(3), 359-367.
[http://dx.doi.org/10.1055/s-0038-1676863] [PMID: 30605918]
[17]
Macchi, C.; Ferri, N.; Sirtori, C.R.; Corsini, A.; Banach, M.; Ruscica, M. Proprotein convertase subtilisin/kexin type 9: a view beyond the canonical cholesterol-lowering impact. Am. J. Pathol., 2021, 191(8), 1385-1397.
[http://dx.doi.org/10.1016/j.ajpath.2021.04.016] [PMID: 34019847]
[18]
Ding, Z.; Pothineni, N.V.K.; Goel, A.; Lüscher, T.F.; Mehta, J.L. PCSK9 and inflammation: Role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovasc. Res., 2020, 116(5), 908-915.
[http://dx.doi.org/10.1093/cvr/cvz313] [PMID: 31746997]
[19]
Boyd, J.H.; Fjell, C.D.; Russell, J.A.; Sirounis, D.; Cirstea, M.S.; Walley, K.R. Increased plasma PCSK9 levels are associated with reduced endotoxin clearance and the development of acute organ failures during sepsis. J. Innate Immun., 2016, 8(2), 211-220.
[http://dx.doi.org/10.1159/000442976] [PMID: 26756586]
[20]
Genga, K.R.; Lo, C.; Cirstea, M.S.; Leitao Filho, F.S.; Walley, K.R.; Russell, J.A.; Linder, A.; Francis, G.A.; Boyd, J.H. Impact of PCSK9 loss-of-function genotype on 1-year mortality and recurrent infection in sepsis survivors. EBioMedicine, 2018, 38, 257-264.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.032] [PMID: 30473376]
[21]
Rannikko, J.; Jacome Sanz, D.; Ortutay, Z.; Seiskari, T.; Aittoniemi, J.; Huttunen, R.; Syrjänen, J.; Pesu, M. Reduced plasma PCSK9 response in patients with bacteraemia is associated with mortality. J. Intern. Med., 2019, 286(5), 553-561.
[http://dx.doi.org/10.1111/joim.12946] [PMID: 31166632]
[22]
Schoergenhofer, C.; Matzneller, P.; Mühlbacher, J.; Hell, L.; Zeitlinger, M.; Jilma, B. PCSK9 decreases during experimental endotoxemia. J. Intern. Med., 2020, 287(3), 333-335.
[http://dx.doi.org/10.1111/joim.13003] [PMID: 31660669]
[23]
Vecchié, A.; Bonaventura, A.; Meessen, J.; Novelli, D.; Minetti, S.; Elia, E.; Ferrara, D.; Ansaldo, A.M.; Scaravilli, V.; Villa, S.; Ferla, L.; Caironi, P.; Latini, R.; Carbone, F.; Montecucco, F. PCSK9 is associated with mortality in patients with septic shock: data from the ALBIOS study. J. Intern. Med., 2021, 289(2), 179-192.
[http://dx.doi.org/10.1111/joim.13150] [PMID: 32686253]
[24]
Guo, Y.; Yan, B.; Gui, Y.; Tang, Z.; Tai, S.; Zhou, S.; Zheng, X.L. Physiology and role of PCSK9 in vascular disease: Potential impact of localized PCSK9 in vascular wall. J. Cell. Physiol., 2021, 236(4), 2333-2351.
[http://dx.doi.org/10.1002/jcp.30025] [PMID: 32875580]
[25]
Norata, G.D.; Tavori, H.; Pirillo, A.; Fazio, S.; Catapano, A.L. Biology of proprotein convertase subtilisin kexin 9: Beyond low-density lipoprotein cholesterol lowering. Cardiovasc. Res., 2016, 112(1), 429-442.
[http://dx.doi.org/10.1093/cvr/cvw194] [PMID: 27496869]
[26]
van Duijnhoven, F.J.; Bueno-De-Mesquita, H.B.; Calligaro, M.; Jenab, M.; Pischon, T.; Jansen, E.H.; Frohlich, J.; Ayyobi, A.; Overvad, K.; Toft-Petersen, A.P.; Tjønneland, A.; Hansen, L.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Cottet, V.; Palli, D.; Tagliabue, G.; Panico, S.; Tumino, R.; Vineis, P.; Kaaks, R.; Teucher, B.; Boeing, H.; Drogan, D.; Trichopoulou, A.; Lagiou, P.; Dilis, V.; Peeters, P.H.; Siersema, P.D.; Rodríguez, L.; González, C.A.; Molina-Montes, E.; Dorronsoro, M.; Tormo, M.J.; Barricarte, A.; Palmqvist, R.; Hallmans, G.; Khaw, K.T.; Tsilidis, K.K.; Crowe, F.L.; Chajes, V.; Fedirko, V.; Rinaldi, S.; Norat, T.; Riboli, E. Blood lipid and lipoprotein concentrations and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Gut, 2011, 60(8), 1094-1102.
[http://dx.doi.org/10.1136/gut.2010.225011] [PMID: 21383385]
[27]
Coppola, J.A.; Shrubsole, M.J.; Cai, Q.; Smalley, W.E.; Dai, Q.; Ness, R.M.; Fazio, S.; Zheng, W.; Murff, H.J. Plasma lipid levels and colorectal adenoma risk. Cancer Causes Control, 2015, 26(4), 635-643.
[http://dx.doi.org/10.1007/s10552-015-0555-y] [PMID: 25761410]
[28]
Guan, X.; Liu, Z.; Zhao, Z.; Zhang, X.; Tao, S.; Yuan, B.; Zhang, J.; Wang, D.; Liu, Q.; Ding, Y. Emerging roles of low-density lipoprotein in the development and treatment of breast cancer. Lipids Health Dis., 2019, 18(1), 137.
[http://dx.doi.org/10.1186/s12944-019-1075-7] [PMID: 31182104]
[29]
Ding, X.; Zhang, W.; Li, S.; Yang, H. The role of cholesterol metabolism in cancer. Am. J. Cancer Res., 2019, 9(2), 219-227.
[PMID: 30906624]
[30]
Cedó, L.; Reddy, S.T.; Mato, E.; Blanco-Vaca, F.; Escolà-Gil, J.C. HDL and LDL: potential new players in breast cancer development. J. Clin. Med., 2019, 8(6), 8.
[http://dx.doi.org/10.3390/jcm8060853] [PMID: 31208017]
[31]
Jacobs, D.; Blackburn, H.; Higgins, M.; Reed, D.; Iso, H.; McMillan, G.; Neaton, J.; Nelson, J.; Potter, J.; Rifkind, B. Report of the conference on low blood cholesterol: mortality associations. Circulation, 1992, 86(3), 1046-1060.
[http://dx.doi.org/10.1161/01.CIR.86.3.1046] [PMID: 1355411]
[32]
Law, M.R.; Thompson, S.G. Low serum cholesterol and the risk of cancer: an analysis of the published prospective studies. Cancer Causes Control, 1991, 2(4), 253-261.
[http://dx.doi.org/10.1007/BF00052142] [PMID: 1831389]
[33]
Folsom, A.R.; Peacock, J.M.; Boerwinkle, E. Sequence variation in proprotein convertase subtilisin/kexin type 9 serine protease gene, low LDL cholesterol, and cancer incidence. Cancer Epidemiol. Biomarkers Prev., 2007, 16(11), 2455-2458.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0502] [PMID: 18006936]
[34]
Benn, M.; Tybjærg-Hansen, A.; Stender, S.; Frikke-Schmidt, R.; Nordestgaard, B.G. Low-density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J. Natl. Cancer Inst., 2011, 103(6), 508-519.
[http://dx.doi.org/10.1093/jnci/djr008] [PMID: 21285406]
[35]
Nowak, C.; Ärnlöv, J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat. Commun., 2018, 9(1), 3957.
[http://dx.doi.org/10.1038/s41467-018-06467-9] [PMID: 30262900]
[36]
Carter, P.; Vithayathil, M.; Kar, S.; Potluri, R.; Mason, A.M.; Larsson, S.C.; Burgess, S. Predicting the effect of statins on cancer risk using genetic variants from a Mendelian randomization study in the UK Biobank. eLife, 2020, 9, 9.
[http://dx.doi.org/10.7554/eLife.57191] [PMID: 33046214]
[37]
Marimuthu, A.; Subbannayya, Y.; Sahasrabuddhe, N.A.; Balakrishnan, L.; Syed, N.; Sekhar, N.R.; Katte, T.V.; Pinto, S.M.; Srikanth, S.M.; Kumar, P.; Pawar, H.; Kashyap, M.K.; Maharudraiah, J.; Ashktorab, H.; Smoot, D.T.; Ramaswamy, G.; Kumar, R.V.; Cheng, Y.; Meltzer, S.J.; Roa, J.C.; Chaerkady, R.; Prasad, T.S.; Harsha, H.C.; Chatterjee, A.; Pandey, A. SILAC-based quantitative proteomic analysis of gastric cancer secretome. Proteomics Clin. Appl., 2013, 7(5-6), 355-366.
[http://dx.doi.org/10.1002/prca.201200069] [PMID: 23161554]
[38]
Xu, B.; Li, S.; Fang, Y.; Zou, Y.; Song, D.; Zhang, S.; Cai, Y. Proprotein Convertase Subtilisin/Kexin Type 9 promotes gastric cancer metastasis and suppresses apoptosis by facilitating MAPK signaling pathway through HSP70 up-regulation. Front. Oncol., 2021, 10, 609663.
[http://dx.doi.org/10.3389/fonc.2020.609663] [PMID: 33489919]
[39]
Ito, M.; Hiwasa, T.; Oshima, Y.; Yajima, S.; Suzuki, T.; Nanami, T.; Sumazaki, M.; Shiratori, F.; Funahashi, K.; Li, S.Y.; Iwadate, Y.; Yamagata, H.; Jambaljav, B.; Takemoto, M.; Yokote, K.; Takizawa, H.; Shimada, H. Association of serum anti-PCSK9 antibody levels with favorable postoperative prognosis in esophageal cancer. Front. Oncol., 2021, 11, 708039.
[http://dx.doi.org/10.3389/fonc.2021.708039] [PMID: 34504788]
[40]
Bhat, M.; Skill, N.; Marcus, V.; Deschenes, M.; Tan, X.; Bouteaud, J.; Negi, S.; Awan, Z.; Aikin, R.; Kwan, J.; Amre, R.; Tabaries, S.; Hassanain, M.; Seidah, N.G.; Maluccio, M.; Siegel, P.; Metrakos, P. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterol., 2015, 15, 176.
[http://dx.doi.org/10.1186/s12876-015-0371-6] [PMID: 26674961]
[41]
He, M.; Hu, J.; Fang, T.; Tang, W.; Lv, B.; Yang, B.; Xia, J. Protein convertase subtilisin/Kexin type 9 inhibits hepatocellular carcinoma growth by interacting with GSTP1 and suppressing the JNK signaling pathway. Cancer Biol. Med., 2021.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2020.0313] [PMID: 33893729]
[42]
Athavale, D.; Chouhan, S.; Pandey, V.; Mayengbam, S.S.; Singh, S.; Bhat, M.K. Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9). Cancer Metab., 2018, 6, 16.
[http://dx.doi.org/10.1186/s40170-018-0187-2] [PMID: 30386595]
[43]
Zhang, S.Z.; Zhu, X.D.; Feng, L.H.; Li, X.L.; Liu, X.F.; Sun, H.C.; Tang, Z.Y. PCSK9 promotes tumor growth by inhibiting tumor cell apoptosis in hepatocellular carcinoma. Exp. Hematol. Oncol., 2021, 10(1), 25.
[http://dx.doi.org/10.1186/s40164-021-00218-1] [PMID: 33789749]
[44]
Sun, X.; Essalmani, R.; Day, R.; Khatib, A.M.; Seidah, N.G.; Prat, A. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver. Neoplasia, 2012, 14(12), 1122-1131.
[http://dx.doi.org/10.1593/neo.121252] [PMID: 23308045]
[45]
Xu, X.; Cui, Y.; Cao, L.; Zhang, Y.; Yin, Y.; Hu, X. PCSK9 regulates apoptosis in human lung adenocarcinoma A549 cells via endoplasmic reticulum stress and mitochondrial signaling pathways. Exp. Ther. Med., 2017, 13(5), 1993-1999.
[http://dx.doi.org/10.3892/etm.2017.4218] [PMID: 28565798]
[46]
Naseri, M.H.; Mahdavi, M.; Davoodi, J.; Tackallou, S.H.; Goudarzvand, M.; Neishabouri, S.H. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int., 2015, 15, 55.
[http://dx.doi.org/10.1186/s12935-015-0204-2] [PMID: 26074734]
[47]
Suh, J.M.; Son, Y.; Yoo, J.Y.; Goh, Y.; Seidah, N.G.; Lee, S.; Bae, Y.S. Proprotein convertase subtilisin/kexin Type 9 is required for Ahnak-mediated metastasis of melanoma into lung epithelial cells. Neoplasia, 2021, 23(9), 993-1001.
[http://dx.doi.org/10.1016/j.neo.2021.07.007] [PMID: 34352405]
[48]
Bonaventura, A.; Grossi, F.; Carbone, F.; Vecchié, A.; Minetti, S.; Bardi, N.; Elia, E.; Ansaldo, A.M.; Ferrara, D.; Rijavec, E.; Dal Bello, M.G.; Rossi, G.; Biello, F.; Tagliamento, M.; Alama, A.; Coco, S.; Spallarossa, P.; Dallegri, F.; Genova, C.; Montecucco, F. Serum PCSK9 levels at the second nivolumab cycle predict overall survival in elderly patients with NSCLC: a pilot study. Cancer Immunol. Immunother., 2019, 68(8), 1351-1358.
[http://dx.doi.org/10.1007/s00262-019-02367-z] [PMID: 31327024]
[49]
Bonaventura, A.; Grossi, F.; Montecucco, F. PCSK9 is a promising prognostic marker in patients with advanced NSCLC. Cancer Immunol. Immunother., 2020, 69(3), 491-492.
[http://dx.doi.org/10.1007/s00262-020-02485-z] [PMID: 31938855]
[50]
Gan, S.S.; Ye, J.Q.; Wang, L.; Qu, F.J.; Chu, C.M.; Tian, Y.J.; Yang, W.; Cui, X.G. Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells. OncoTargets Ther., 2017, 10, 2139-2146.
[http://dx.doi.org/10.2147/OTT.S129413] [PMID: 28442922]
[51]
Cheng, M.; Watson, P.H.; Paterson, J.A.; Seidah, N.; Chrétien, M.; Shiu, R.P. Pro-protein convertase gene expression in human breast cancer. Int. J. Cancer, 1997, 71(6), 966-971.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970611)71:6<966:AID-IJC10>3.0.CO;2-4] [PMID: 9185698]
[52]
Abdelwahed, K.S.; Siddique, A.B.; Mohyeldin, M.M.; Qusa, M.H.; Goda, A.A.; Singh, S.S.; Ayoub, N.M.; King, J.A.; Jois, S.D.; El Sayed, K.A. Pseurotin A as a novel suppressor of hormone dependent breast cancer progression and recurrence by inhibiting PCSK9 secretion and interaction with LDL receptor. Pharmacol. Res., 2020, 158, 104847.
[http://dx.doi.org/10.1016/j.phrs.2020.104847] [PMID: 32438039]
[53]
Llaverias, G.; Danilo, C.; Mercier, I.; Daumer, K.; Capozza, F.; Williams, T.M.; Sotgia, F.; Lisanti, M.P.; Frank, P.G. Role of cholesterol in the development and progression of breast cancer. Am. J. Pathol., 2011, 178(1), 402-412.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.005] [PMID: 21224077]
[54]
Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(4), 284-296.
[http://dx.doi.org/10.3322/caac.21456] [PMID: 29809280]
[55]
Ruscica, M.; Botta, M.; Ferri, N.; Giorgio, E.; Macchi, C.; Franceschini, G.; Magni, P.; Calabresi, L.; Gomaraschi, M. High density lipoproteins inhibit oxidative stress-induced prostate cancer cell proliferation. Sci. Rep., 2018, 8(1), 2236.
[http://dx.doi.org/10.1038/s41598-018-19568-8] [PMID: 29396407]
[56]
Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer, 2016, 16(11), 732-749.
[http://dx.doi.org/10.1038/nrc.2016.89] [PMID: 27658529]
[57]
Tudrej, P.; Olbryt, M.; Zembala-Nożyńska, E.; Kujawa, K.A.; Cortez, A.J.; Fiszer-Kierzkowska, A.; Pigłowski, W.; Nikiel, B.; Głowala-Kosińska, M.; Bartkowska-Chrobok, A.; Smagur, A.; Fidyk, W.; Lisowska, K.M. Establishment and characterization of the novel high-grade serous ovarian cancer cell line OVPA8. Int. J. Mol. Sci., 2018, 19(7), 19.
[http://dx.doi.org/10.3390/ijms19072080] [PMID: 30018258]
[58]
Jacome Sanz, D.; Raivola, J.; Karvonen, H.; Arjama, M.; Barker, H.; Murumägi, A.; Ungureanu, D. Evaluating targeted therapies in ovarian cancer metabolism: novel role for PCSK9 and second generation mTOR inhibitors. Cancers (Basel), 2021, 13(15), 13.
[http://dx.doi.org/10.3390/cancers13153727] [PMID: 34359627]
[59]
Almeida, C.R.; Ferreira, B.H.; Duarte, I.F. Targeting PCSK9: A promising adjuvant strategy in cancer immunotherapy. Signal Transduct. Target. Ther., 2021, 6(1), 111.
[http://dx.doi.org/10.1038/s41392-021-00530-6] [PMID: 33677469]
[60]
Liu, X.; Bao, X.; Hu, M.; Chang, H.; Jiao, M.; Cheng, J.; Xie, L.; Huang, Q.; Li, F.; Li, C.Y. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature, 2020, 588(7839), 693-698.
[http://dx.doi.org/10.1038/s41586-020-2911-7] [PMID: 33177715]
[61]
Yuan, J.; Cai, T.; Zheng, X.; Ren, Y.; Qi, J.; Lu, X.; Chen, H.; Lin, H.; Chen, Z.; Liu, M.; He, S.; Chen, Q.; Feng, S.; Wu, Y.; Zhang, Z.; Ding, Y.; Yang, W. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLR-mediated TCR recycling and signaling. Protein Cell, 2021, 12(4), 240-260.
[http://dx.doi.org/10.1007/s13238-021-00821-2] [PMID: 33606190]
[62]
Nurmohamed, N.S.; Navar, A.M.; Kastelein, J.J.P. New and emerging therapies for reduction of LDL-cholesterol and apolipoprotein B: JACC focus seminar 1/4. J. Am. Coll. Cardiol., 2021, 77(12), 1564-1575.
[http://dx.doi.org/10.1016/j.jacc.2020.11.079] [PMID: 33766264]
[63]
Kosmas, C.E.; Skavdis, A.; Sourlas, A.; Papakonstantinou, E.J.; Peña Genao, E.; Echavarria Uceta, R.; Guzman, E. Safety and tolerability of PCSK9 inhibitors: current insights. Clin. Pharmacol., 2020, 12, 191-202.
[http://dx.doi.org/10.2147/CPAA.S288831] [PMID: 33335431]
[64]
Ball, S.; Ghosh, R.K.; Wongsaengsak, S.; Bandyopadhyay, D.; Ghosh, G.C.; Aronow, W.S.; Fonarow, G.C.; Lenihan, D.J.; Bhatt, D.L. Cardiovascular toxicities of immune checkpoint inhibitors: JACC review topic of the week. J. Am. Coll. Cardiol., 2019, 74(13), 1714-1727.
[http://dx.doi.org/10.1016/j.jacc.2019.07.079] [PMID: 31558256]
[65]
Wright, J.J.; Powers, A.C.; Johnson, D.B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol., 2021, 17(7), 389-399.
[http://dx.doi.org/10.1038/s41574-021-00484-3] [PMID: 33875857]
[66]
Marin-Acevedo, J.A.; Chirila, R.M.; Dronca, R.S. Immune checkpoint inhibitor toxicities. Mayo Clin. Proc., 2019, 94(7), 1321-1329.
[http://dx.doi.org/10.1016/j.mayocp.2019.03.012] [PMID: 31272574]
[67]
Fattori, E.; Cappelletti, M.; Lo Surdo, P.; Calzetta, A.; Bendtsen, C.; Ni, Y.G.; Pandit, S.; Sitlani, A.; Mesiti, G.; Carfí, A.; Monaci, P. Immunization against proprotein convertase subtilisin-like/kexin type 9 lowers plasma LDL-cholesterol levels in mice. J. Lipid Res., 2012, 53(8), 1654-1661.
[http://dx.doi.org/10.1194/jlr.M028340] [PMID: 22611251]
[68]
Crossey, E.; Amar, M.J.A.; Sampson, M.; Peabody, J.; Schiller, J.T.; Chackerian, B.; Remaley, A.T. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine, 2015, 33(43), 5747-5755.
[http://dx.doi.org/10.1016/j.vaccine.2015.09.044] [PMID: 26413878]
[69]
Landlinger, C.; Pouwer, M.G.; Juno, C.; van der Hoorn, J.W.A.; Pieterman, E.J.; Jukema, J.W.; Staffler, G.; Princen, H.M.G.; Galabova, G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur. Heart J., 2017, 38(32), 2499-2507.
[http://dx.doi.org/10.1093/eurheartj/ehx260] [PMID: 28637178]
[70]
Galabova, G.; Brunner, S.; Winsauer, G.; Juno, C.; Wanko, B.; Mairhofer, A.; Lührs, P.; Schneeberger, A.; von Bonin, A.; Mattner, F.; Schmidt, W.; Staffler, G. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One, 2014, 9(12), e114469.
[http://dx.doi.org/10.1371/journal.pone.0114469] [PMID: 25474576]
[71]
Momtazi-Borojeni, A.A.; Jaafari, M.R.; Badiee, A.; Sahebkar, A. Long-term generation of antiPCSK9 antibody using a nanoliposome-based vaccine delivery system. Atherosclerosis, 2019, 283, 69-78.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.02.001] [PMID: 30797988]
[72]
Sahebkar, A.; Momtazi-Borojeni, A.A.; Banach, M. PCSK9 vaccine: so near, yet so far! Eur. Heart J., 2021, 2021, ehab299.
[http://dx.doi.org/10.1093/eurheartj/ehab299] [PMID: 34151957]
[73]
Momtazi-Borojeni, A.A.; Nik, M.E.; Jaafari, M.R.; Banach, M.; Sahebkar, A. Effects of immunization against PCSK9 in an experimental model of breast cancer. Arch. Med. Sci., 2019, 15(3), 570-579.
[http://dx.doi.org/10.5114/aoms.2019.84734] [PMID: 31110521]
[74]
Momtazi-Borojeni, A.A.; Nik, M.E.; Jaafari, M.R.; Banach, M.; Sahebkar, A. Effects of immunisation against PCSK9 in mice bearing melanoma. Arch. Med. Sci., 2019, 16(1), 189-199.
[http://dx.doi.org/10.5114/aoms.2020.91291] [PMID: 32051723]
[75]
Toth, S.; Pella, D.; Fedacko, J. Vaccines targeting PSCK9 for the treatment of hyperlipidemia. Cardiol. Ther., 2020, 9(2), 323-332.
[http://dx.doi.org/10.1007/s40119-020-00191-6] [PMID: 32737796]
[76]
Ruscica, M.; Tokgözoğlu, L.; Corsini, A.; Sirtori, C.R. PCSK9 inhibition and inflammation: a narrative review. Atherosclerosis, 2019, 288, 146-155.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.07.015] [PMID: 31404822]
[77]
Persson, L.; Cao, G.; Ståhle, L.; Sjöberg, B.G.; Troutt, J.S.; Konrad, R.J.; Gälman, C.; Wallén, H.; Eriksson, M.; Hafström, I.; Lind, S.; Dahlin, M.; Amark, P.; Angelin, B.; Rudling, M. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2666-2672.
[http://dx.doi.org/10.1161/ATVBAHA.110.214130] [PMID: 20884874]
[78]
Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543.
[http://dx.doi.org/10.1210/jc.2009-0141] [PMID: 19351729]
[79]
Ferri, N.; Ruscica, M.; Coggi, D.; Bonomi, A.; Amato, M.; Frigerio, B.; Sansaro, D.; Ravani, A.; Veglia, F.; Capra, N.; Lupo, M.G.; Macchi, C.; Castelnuovo, S.; Savonen, K.; Silveira, A.; Kurl, S.; Giral, P.; Pirro, M.; Strawbridge, R.J.; Gigante, B.; Smit, A.J.; Tremoli, E.; Colombo, G.I.; Baldassarre, D. Sex-specific predictors of PCSK9 levels in a European population: The IMPROVE study. Atherosclerosis, 2020, 309, 39-46.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.07.014] [PMID: 32862087]
[80]
Costet, P.; Cariou, B.; Lambert, G.; Lalanne, F.; Lardeux, B.; Jarnoux, A.L.; Grefhorst, A.; Staels, B.; Krempf, M. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J. Biol. Chem., 2006, 281(10), 6211-6218.
[http://dx.doi.org/10.1074/jbc.M508582200] [PMID: 16407292]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy