Review Article

人类癌症中非编码RNA编码的肽/蛋白:癌症治疗的未来

卷 29, 期 22, 2022

发表于: 14 January, 2022

页: [3819 - 3835] 页: 17

弟呕挨: 10.2174/0929867328666211111163701

价格: $65

摘要

虽然非编码RNA(non-coding RNAs,ncRNAs)最初被认为是一类没有编码能力的RNA转录物,但已经证实的是, 一些非编码RNA (ncRNAs)实际上包含开放阅读框(open reading frames,ORF),可以翻译成微肽或微蛋白。最近的研究表明,ncRNAs衍生的微肽/微蛋白对各种生物和肿瘤过程具有调节功能。其中一些微肽/微蛋白起到肿瘤抑制剂的作用,另一些则起到肿瘤诱导剂的作用。了解 ncRNAs编码的微肽/微蛋白的致癌作用可能会给癌症研究带来了潜在的挑战,并为癌症治疗提供了实用前景。在这篇综述中,我们总结了ncRNAs衍生的微肽/微蛋白与人类不同类型的癌症相关的现有信息。我们还提到了它们在癌症代谢、信号通路、细胞增殖、血管生成、癌转移等方面的致癌机制。最后,我们论述了这些微肽/微蛋白的潜在临床价值及其在癌症诊断和治疗中的应用。这些信息可能有助于我们发现、优化和开发基于生物微肽/微蛋白的新方法,用于早期诊断和开发抗癌药物。

关键词: 癌症,微肽,微蛋白,非编码RNA (NcRNAs),长链非编码RNA(LncRNAs),环状RNA(CircRNAs),MiRNAs

[1]
Wu, P.; Mo, Y.; Peng, M.; Tang, T.; Zhong, Y.; Deng, X.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol. Cancer, 2020, 19(1), 22.
[http://dx.doi.org/10.1186/s12943-020-1147-3] [PMID: 32019587]
[2]
Li, L-J.; Leng, R-X.; Fan, Y-G.; Pan, H-F.; Ye, D-Q. Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp. Cell Res., 2017, 361(1), 1-8.
[http://dx.doi.org/10.1016/j.yexcr.2017.10.010] [PMID: 29031633]
[3]
Rion, N.; Rüegg, M.A. LncRNA-encoded peptides: More than translational noise? Cell Res., 2017, 27(5), 604-605.
[http://dx.doi.org/10.1038/cr.2017.35] [PMID: 28290465]
[4]
Yin, X.; Jing, Y.; Xu, H. Mining for missed sORF-encoded peptides. Expert Rev. Proteomics, 2019, 16(3), 257-266.
[http://dx.doi.org/10.1080/14789450.2019.1571919] [PMID: 30669886]
[5]
Crappé, J.; Van Criekinge, W.; Menschaert, G. Little things make big things happen: a summary of micropeptide encoding genes. EuPA Open Proteom., 2014, 3, 128-137.
[http://dx.doi.org/10.1016/j.euprot.2014.02.006]
[6]
Kong, S.; Tao, M.; Shen, X.; Ju, S. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett., 2020, 483, 59-65.
[http://dx.doi.org/10.1016/j.canlet.2020.04.006] [PMID: 32360179]
[7]
Guttman, M.; Russell, P.; Ingolia, N.T.; Weissman, J.S.; Lander, E.S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1), 240-251.
[http://dx.doi.org/10.1016/j.cell.2013.06.009] [PMID: 23810193]
[8]
Kung, J.T.; Colognori, D.; Lee, J.T. Long noncoding RNAs: past, present, and future. Genetics, 2013, 193(3), 651-669.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[9]
Guo-cui, W. Immunoregulation function of long noncoding RNA in rheumatic diseases. Chin. J. Dis. Control. Prev., 2016, 20, 1165-1171.
[10]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[11]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[12]
Nagano, T.; Mitchell, J.A.; Sanz, L.A.; Pauler, F.M.; Ferguson-Smith, A.C.; Feil, R.; Fraser, P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 2008, 322(5908), 1717-1720.
[http://dx.doi.org/10.1126/science.1163802] [PMID: 18988810]
[13]
Carrieri, C.; Cimatti, L.; Biagioli, M.; Beugnet, A.; Zucchelli, S.; Fedele, S.; Pesce, E.; Ferrer, I.; Collavin, L.; Santoro, C.; Forrest, A.R.; Carninci, P.; Biffo, S.; Stupka, E.; Gustincich, S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491(7424), 454-457.
[http://dx.doi.org/10.1038/nature11508] [PMID: 23064229]
[14]
D’Lima, N.G.; Ma, J.; Winkler, L.; Chu, Q.; Loh, K.H.; Corpuz, E.O.; Budnik, B.A.; Lykke-Andersen, J.; Saghatelian, A.; Slavoff, S.A. A human microprotein that interacts with the mRNA decapping complex. Nat. Chem. Biol., 2017, 13(2), 174-180.
[http://dx.doi.org/10.1038/nchembio.2249] [PMID: 27918561]
[15]
Huang, J.-Z.; Chen, M.; Chen, D.; Gao, X.-C.; Zhu, S.; Huang, H.; Hu, M.; Zhu, H.; Yan, G.-R. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol. Cell, 2017, 68(1), 171-184.
[http://dx.doi.org/10.1016/j.molcel.2017.09.015]
[16]
Bi, P.; Ramirez-Martinez, A.; Li, H.; Cannavino, J.; McAnally, J.R.; Shelton, J.M.; Sánchez-Ortiz, E.; Bassel-Duby, R.; Olson, E.N. Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017, 356(6335), 323-327.
[http://dx.doi.org/10.1126/science.aam9361] [PMID: 28386024]
[17]
Zhang, Q.; Vashisht, A.A.; O’Rourke, J.; Corbel, S.Y.; Moran, R.; Romero, A.; Miraglia, L.; Zhang, J.; Durrant, E.; Schmedt, C.; Sampath, S.C.; Sampath, S.C. The microprotein Minion controls cell fusion and muscle formation. Nat. Commun., 2017, 8(1), 15664.
[http://dx.doi.org/10.1038/ncomms15664] [PMID: 28569745]
[18]
Matsumoto, A.; Pasut, A.; Matsumoto, M.; Yamashita, R.; Fung, J.; Monteleone, E.; Saghatelian, A.; Nakayama, K.I.; Clohessy, J.G.; Pandolfi, P.P. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541(7636), 228-232.
[http://dx.doi.org/10.1038/nature21034] [PMID: 28024296]
[19]
Nelson, B.R.; Makarewich, C.A.; Anderson, D.M.; Winders, B.R.; Troupes, C.D.; Wu, F.; Reese, A.L.; McAnally, J.R.; Chen, X.; Kavalali, E.T.; Cannon, S.C.; Houser, S.R.; Bassel-Duby, R.; Olson, E.N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270), 271-275.
[http://dx.doi.org/10.1126/science.aad4076] [PMID: 26816378]
[20]
Anderson, D.M.; Anderson, K.M.; Chang, C-L.; Makarewich, C.A.; Nelson, B.R.; McAnally, J.R.; Kasaragod, P.; Shelton, J.M.; Liou, J.; Bassel-Duby, R.; Olson, E.N. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell, 2015, 160(4), 595-606.
[http://dx.doi.org/10.1016/j.cell.2015.01.009] [PMID: 25640239]
[21]
Nam, J-W.; Choi, S-W.; You, B-H. Incredible RNA dual functions of coding and noncoding. Mol. Cells, 2016, 39(5), 367-374.
[http://dx.doi.org/10.14348/molcells.2016.0039] [PMID: 27137091]
[22]
Ulveling, D.; Francastel, C.; Hubé, F. Identification of potentially new bifunctional RNA based on genome-wide data-mining of alternative splicing events. Biochimie, 2011, 93(11), 2024-2027.
[http://dx.doi.org/10.1016/j.biochi.2011.06.019] [PMID: 21729736]
[23]
Guo, J.U.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol., 2014, 15(7), 409.
[http://dx.doi.org/10.1186/s13059-014-0409-z] [PMID: 25070500]
[24]
Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E. Translation of circRNAs. Mol. Cell, 2017, 66(1), 9-21.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021]
[25]
Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; Huang, S.; Xie, B.; Zhang, N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst., 2018, 110(3), 304-315.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[26]
Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; Li, Z.; Ming, L.; Xie, B.; Zhang, N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018, 37(13), 1805-1814.
[http://dx.doi.org/10.1038/s41388-017-0019-9] [PMID: 29343848]
[27]
Kontomanolis, E.N.; Koukourakis, M.I.E.; Koukourakis, I.M. MicroRNA: The potential regulator of endometrial carcinogenesis. MicroRNA, 2015, 4(1), 18-25.
[http://dx.doi.org/10.2174/2211536604666150710094418] [PMID: 26088599]
[28]
Dastmalchi, N.; Safaralizadeh, R.; Banan Khojasteh, S.M.; Sam, M.R.; Latifi-Navid, S.; Hussen, B.M.; Abdoli Shadbad, M.; Baradaran, B. An updated review of the cross-talk between microRNAs and epigenetic factors in cancers. Curr. Med. Chem., 2021. [Epub ahead of print].
[http://dx.doi.org/10.2174/0929867328666210514125955] [PMID: 33992051]
[29]
Waterhouse, P.M.; Hellens, R.P. Plant biology: coding in non-coding RNAs. Nature, 2015, 520(7545), 41-42.
[http://dx.doi.org/10.1038/nature14378] [PMID: 25807488]
[30]
Church, V.A.; Pressman, S.; Isaji, M.; Truscott, M.; Cizmecioglu, N.T.; Buratowski, S.; Frolov, M.V.; Carthew, R.W. Microprocessor recruitment to elongating RNA polymerase II is required for differential expression of microRNAs. Cell Rep., 2017, 20(13), 3123-3134.
[http://dx.doi.org/10.1016/j.celrep.2017.09.010] [PMID: 28954229]
[31]
Lauressergues, D.; Couzigou, J-M.; Clemente, H.S.; Martinez, Y.; Dunand, C.; Bécard, G.; Combier, J-P. Primary transcripts of microRNAs encode regulatory peptides. Nature, 2015, 520(7545), 90-93.
[http://dx.doi.org/10.1038/nature14346] [PMID: 25807486]
[32]
Wang, Y.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Guo, B.; Zhang, S.; Wu, R.; Zhang, Z.; Wang, K.; Lu, J.; Zhou, Y. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J. Exp. Med., 2020, 217(3), e20190950.
[http://dx.doi.org/10.1084/jem.20190950] [PMID: 31816634]
[33]
He, C.; Tang, Z.; Tian, H.; Chen, X. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Deliv. Rev., 2016, 98, 64-76.
[http://dx.doi.org/10.1016/j.addr.2015.10.021] [PMID: 26546464]
[34]
Leader, B.; Baca, Q.J.; Golan, D.E. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov., 2008, 7(1), 21-39.
[http://dx.doi.org/10.1038/nrd2399] [PMID: 18097458]
[35]
Meng, N.; Chen, M.; Chen, D.; Chen, X.H.; Wang, J.Z.; Zhu, S.; He, Y.T.; Zhang, X.L.; Lu, R.X.; Yan, G.R. Small protein hidden in lncRNA LOC90024 promotes “Cancerous” RNA splicing and tumorigenesis. Adv. Sci. (Weinh.), 2020, 7(10), 1903233.
[http://dx.doi.org/10.1002/advs.201903233] [PMID: 32440474]
[36]
Pan, L.N.; Sun, Y.R. LINC00961 suppresses cell proliferation and induces cell apoptosis in oral squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3358-3365.
[PMID: 31081090]
[37]
Wu, S.; Zhang, L.; Deng, J.; Guo, B.; Li, F.; Wang, Y.; Wu, R.; Zhang, S.; Lu, J.; Zhou, Y. A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res., 2020, 80(13), 2790-2803.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3440] [PMID: 32169859]
[38]
Pan, W.; Geng, X.; Wang, J.; Zhang, C.; Zhou, X.; Jing, J. circCOL6A3_030 is involved in the metastasis of gastric cancer by encoding polypeptide. 2020. [Epub ahead of print].
[39]
Pan, Z.; Cai, J.; Lin, J.; Zhou, H.; Peng, J.; Liang, J.; Xia, L.; Yin, Q.; Zou, B.; Zheng, J.; Qiao, L.; Zhang, L. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol. Cancer, 2020, 19(1), 71.
[http://dx.doi.org/10.1186/s12943-020-01179-5] [PMID: 32241279]
[40]
Cai, C.; Rajaram, M.; Zhou, X.; Liu, Q.; Marchica, J.; Li, J.; Powers, R.S. Activation of multiple cancer pathways and tumor maintenance function of the 3q amplified oncogene FNDC3B. Cell Cycle, 2012, 11(9), 1773-1781.
[http://dx.doi.org/10.4161/cc.20121] [PMID: 22510613]
[41]
Leahy, D.J.; Aukhil, I.; Erickson, H.P. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell, 1996, 84(1), 155-164.
[http://dx.doi.org/10.1016/S0092-8674(00)81002-8] [PMID: 8548820]
[42]
Leahy, D.J.; Hendrickson, W.A.; Aukhil, I.; Erickson, H.P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science, 1992, 258(5084), 987-991.
[http://dx.doi.org/10.1126/science.1279805] [PMID: 1279805]
[43]
Hong, Y.; Qin, H.; Li, Y.; Zhang, Y.; Zhuang, X.; Liu, L.; Lu, K.; Li, L.; Deng, X.; Liu, F.; Shi, S.; Liu, G. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J. Cell. Physiol., 2019, 234(11), 19895-19910.
[http://dx.doi.org/10.1002/jcp.28588] [PMID: 30963578]
[44]
Zhu, S.; Wang, J-Z.; Chen, D.; He, Y-T.; Meng, N.; Chen, M.; Lu, R-X.; Chen, X-H.; Zhang, X-L.; Yan, G-R. An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nat. Commun., 2020, 11(1), 1685.
[http://dx.doi.org/10.1038/s41467-020-15403-9] [PMID: 32245947]
[45]
Szafron, L.M.; Balcerak, A.; Grzybowska, E.A.; Pienkowska-Grela, B.; Felisiak-Golabek, A.; Podgorska, A.; Kulesza, M.; Nowak, N.; Pomorski, P.; Wysocki, J.; Rubel, T.; Dansonka-Mieszkowska, A.; Konopka, B.; Lukasik, M.; Kupryjanczyk, J. The novel gene CRNDE encodes a nuclear peptide (CRNDEP) which is overexpressed in highly proliferating tissues. PLoS One, 2015, 10(5), e0127475.
[http://dx.doi.org/10.1371/journal.pone.0127475] [PMID: 25978564]
[46]
Zhu, S.; Wang, J.; He, Y.; Meng, N.; Yan, G-R. Peptides/proteins encoded by non-coding RNA: A novel resource bank for drug targets and biomarkers. Front. Pharmacol., 2018, 9, 1295.
[http://dx.doi.org/10.3389/fphar.2018.01295] [PMID: 30483132]
[47]
Zhi, X.; Zhang, J.; Cheng, Z.; Bian, L.; Qin, J. circLgr4 drives colorectal tumorigenesis and invasion through Lgr4-targeting peptide. Int. J. Cancer, 2019.
[http://dx.doi.org/10.1002/ijc.32549] [PMID: 31269234]
[48]
Zheng, X.; Chen, L.; Zhou, Y.; Wang, Q.; Zheng, Z.; Xu, B.; Wu, C.; Zhou, Q.; Hu, W.; Wu, C.; Jiang, J. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer, 2019, 18(1), 47.
[http://dx.doi.org/10.1186/s12943-019-1010-6] [PMID: 30925892]
[49]
Pang, Y.; Liu, Z.; Han, H.; Wang, B.; Li, W.; Mao, C.; Liu, S. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. J. Hepatol., 2020, 73(5), 1155-1169.
[http://dx.doi.org/10.1016/j.jhep.2020.05.028] [PMID: 32461121]
[50]
Unfried, J.P.; Fortes, P. LncRNAs in HCV infection and HCV-related liver disease. Int. J. Mol. Sci., 2020, 21(6), 2255.
[51]
Lun, Y-Z.; Pan, Z-P.; Liu, S-A.; Sun, J.; Han, M.; Liu, B.; Dong, W.; Pan, L-H.; Cheng, J. The peptide encoded by a novel putative lncRNA HBVPTPAP inducing the apoptosis of hepatocellular carcinoma cells by modulating JAK/STAT signaling pathways. Virus Res., 2020, 287, 198104.
[http://dx.doi.org/10.1016/j.virusres.2020.198104] [PMID: 32755630]
[52]
Liang, W-C.; Wong, C-W.; Liang, P-P.; Shi, M.; Cao, Y.; Rao, S-T.; Tsui, S.K-W.; Waye, M.M-Y.; Zhang, Q.; Fu, W-M. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol., 2019, 20(1), 1-12.
[http://dx.doi.org/10.1186/s13059-019-1685-4] [PMID: 30606230]
[53]
Nejak-Bowen, K.N.; Monga, S.P. Seminars in cancer biology; Elsevier, 2011, Vol. 21, pp. 44-58.
[54]
Papadopoulos, M.C.; Saadoun, S.; Verkman, A.S. Aquaporins and cell migration. Pflugers Arch., 2008, 456(4), 693-700.
[http://dx.doi.org/10.1007/s00424-007-0357-5] [PMID: 17968585]
[55]
Stroka, K.M.; Jiang, H.; Chen, S-H.; Tong, Z.; Wirtz, D.; Sun, S.X.; Konstantopoulos, K. Water permeation drives tumor cell migration in confined microenvironments. Cell, 2014, 157(3), 611-623.
[http://dx.doi.org/10.1016/j.cell.2014.02.052] [PMID: 24726433]
[56]
Ding, T.; Gu, F.; Fu, L.; Ma, Y-J. Aquaporin-4 in glioma invasion and an analysis of molecular mechanisms. J. Clin. Neurosci., 2010, 17(11), 1359-1361.
[http://dx.doi.org/10.1016/j.jocn.2010.02.014] [PMID: 20685122]
[57]
Cao, Y.; Lee, I.; Wang, W. Prediction of LncRNA encoded small peptides in glioma and the oligomer channel functional analysis using in silico approaches. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.13.094763]
[58]
Zhang, M.; Zhao, K.; Xu, X.; Yang, Y.; Yan, S.; Wei, P.; Liu, H.; Xu, J.; Xiao, F.; Zhou, H.; Yang, X.; Huang, N.; Liu, J.; He, K.; Xie, K.; Zhang, G.; Huang, S.; Zhang, N. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun., 2018, 9(1), 4475.
[http://dx.doi.org/10.1038/s41467-018-06862-2] [PMID: 30367041]
[59]
Begum, S.; Yiu, A.; Stebbing, J.; Castellano, L. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene, 2018, 37(30), 4055-4057.
[http://dx.doi.org/10.1038/s41388-018-0230-3] [PMID: 29706655]
[60]
Xia, X.; Li, X.; Li, F.; Wu, X.; Zhang, M.; Zhou, H.; Huang, N.; Yang, X.; Xiao, F.; Liu, D. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol. Cancer, 2019, 18(1), 1-16.
[http://dx.doi.org/10.1186/s12943-019-1056-5] [PMID: 30609930]
[61]
Guo, B.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Wang, Y.; Zhang, S.; Wu, R.; Lu, J.; Zhou, Y. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J., 2020, 39(1), e102190.
[http://dx.doi.org/10.15252/embj.2019102190] [PMID: 31755573]
[62]
Charpentier, M.; Croyal, M.; Carbonnelle, D.; Fortun, A.; Florenceau, L.; Rabu, C.; Krempf, M.; Labarrière, N.; Lang, F. IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens. Oncotarget, 2016, 7(37), 59704-59713.
[http://dx.doi.org/10.18632/oncotarget.10923] [PMID: 27486971]
[63]
Ye, M.; Zhang, J.; Wei, M.; Liu, B.; Dong, K. Emerging role of long noncoding RNA-encoded micropeptides in cancer. Cancer Cell Int., 2020, 20(1), 506.
[http://dx.doi.org/10.1186/s12935-020-01589-x] [PMID: 33088214]
[64]
Polycarpou-Schwarz, M.; Groß, M.; Mestdagh, P.; Schott, J.; Grund, S.E.; Hildenbrand, C.; Rom, J.; Aulmann, S.; Sinn, H-P.; Vandesompele, J.; Diederichs, S. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37(34), 4750-4768.
[http://dx.doi.org/10.1038/s41388-018-0281-5] [PMID: 29765154]
[65]
Ye, F.; Gao, G.; Zou, Y.; Zheng, S.; Zhang, L.; Ou, X.; Xie, X.; Tang, H. circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol. Ther. Nucleic Acids, 2019, 18, 88-98.
[http://dx.doi.org/10.1016/j.omtn.2019.07.023] [PMID: 31536884]
[66]
Lu, S.; Zhang, J.; Lian, X.; Sun, L.; Meng, K.; Chen, Y.; Sun, Z.; Yin, X.; Li, Y.; Zhao, J.; Wang, T.; Zhang, G.; He, Q.Y. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res., 2019, 47(15), 8111-8125.
[http://dx.doi.org/10.1093/nar/gkz646] [PMID: 31340039]
[67]
Jiang, B.; Liu, J.; Zhang, Y.H.; Shen, D.; Liu, S.; Lin, F.; Su, J.; Lin, Q.F.; Yan, S.; Li, Y.; Mao, W.D.; Liu, Z.L. Long noncoding RNA LINC00961 inhibits cell invasion and metastasis in human non-small cell lung cancer. Biomed. Pharmacother., 2018, 97, 1311-1318.
[http://dx.doi.org/10.1016/j.biopha.2017.11.062] [PMID: 29156520]
[68]
Yang, L.; Tang, Y.; He, Y.; Wang, Y.; Lian, Y.; Xiong, F.; Shi, L.; Zhang, S.; Gong, Z.; Zhou, Y.; Liao, Q.; Zhou, M.; Li, X.; Xiong, W.; Li, Y.; Li, G.; Zeng, Z.; Guo, C. High expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma. J. Cancer, 2017, 8(1), 97-103.
[http://dx.doi.org/10.7150/jca.16819] [PMID: 28123602]
[69]
Kang, M.; Tang, B.; Li, J.; Zhou, Z.; Liu, K.; Wang, R.; Jiang, Z.; Bi, F.; Patrick, D.; Kim, D.; Mitra, A.K.; Yang-Hartwich, Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol. Cancer, 2020, 19(1), 143.
[http://dx.doi.org/10.1186/s12943-020-01248-9] [PMID: 32928232]
[70]
Gu, C.; Zhou, N.; Wang, Z.; Li, G.; Kou, Y.; Yu, S.; Feng, Y.; Chen, L.; Yang, J.; Tian, F. circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Mol. Ther. Nucleic Acids, 2018, 13, 633-641.
[http://dx.doi.org/10.1016/j.omtn.2018.10.008] [PMID: 30497053]
[71]
Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer, 2007, 7(2), 79-94.
[http://dx.doi.org/10.1038/nrc2069] [PMID: 17251915]
[72]
Lai, Y.; Zhou, B.; Tan, Q.; Xu, J.; Wan, T.; Zhang, L. LINC00116 enhances cervical cancer tumorigenesis through miR-106a/c-Jun pathway. J. Cell. Biochem., 2020, 121(3), 2247-2257.
[http://dx.doi.org/10.1002/jcb.29447] [PMID: 31693227]
[73]
Stein, C.S.; Jadiya, P.; Zhang, X.; McLendon, J.M.; Abouassaly, G.M.; Witmer, N.H.; Anderson, E.J.; Elrod, J.W.; Boudreau, R.L. Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell reports, 2018, 23(13), 3710-3720.
[http://dx.doi.org/10.1016/j.celrep.2018.06.002]
[74]
Israelsen, W.J.; Vander Heiden, M.G. Seminars in cell & developmental biology; Elsevier, 2015, Vol. 43, pp. 43-51.
[75]
Zhao, J.; Lee, E.E.; Kim, J.; Yang, R.; Chamseddin, B.; Ni, C.; Gusho, E.; Xie, Y.; Chiang, C-M.; Buszczak, M.; Zhan, X.; Laimins, L.; Wang, R.C. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun., 2019, 10(1), 2300.
[http://dx.doi.org/10.1038/s41467-019-10246-5] [PMID: 31127091]
[76]
Fang, J.; Morsalin, S.; Rao, V.N.; Reddy, E.S.P. Decoding of non-coding DNA and non-coding RNA: pri-micro RNA-encoded novel peptides regulate migration of cancer cells. J. Pharm. Sci. Pharmacol., 2017, 3(1), 23-27.
[http://dx.doi.org/10.1166/jpsp.2017.1070]
[77]
Godet, Y.; Moreau-Aubry, A.; Mompelat, D.; Vignard, V.; Khammari, A.; Dreno, B.; Lang, F.; Jotereau, F.; Labarriere, N. An additional ORF on meloe cDNA encodes a new melanoma antigen, MELOE-2, recognized by melanoma-specific T cells in the HLA-A2 context. Cancer Immunol. Immunother., 2010, 59(3), 431-439.
[http://dx.doi.org/10.1007/s00262-009-0762-z] [PMID: 19730858]
[78]
Carbonnelle, D.; Vignard, V.; Sehedic, D.; Moreau-Aubry, A.; Florenceau, L.; Charpentier, M.; Mikulits, W.; Labarriere, N.; Lang, F. The melanoma antigens MELOE-1 and MELOE-2 are translated from a bona fide polycistronic mRNA containing functional IRES sequences. PLoS One, 2013, 8(9), e75233.
[http://dx.doi.org/10.1371/journal.pone.0075233] [PMID: 24086473]
[79]
Byun, S.; Kim, D-H.; Ryerson, D.; Kim, Y-C.; Sun, H.; Kong, B.; Yau, P.; Guo, G.; Xu, H.E.; Kemper, B.; Kemper, J.K. Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat. Commun., 2018, 9(1), 2590.
[http://dx.doi.org/10.1038/s41467-018-04697-5] [PMID: 29968724]
[80]
Louet, J-F.; Chopra, A.R.; Sagen, J.V.; An, J.; York, B.; Tannour-Louet, M.; Saha, P.K.; Stevens, R.D.; Wenner, B.R.; Ilkayeva, O.R.; Bain, J.R.; Zhou, S.; DeMayo, F.; Xu, J.; Newgard, C.B.; O’Malley, B.W. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab., 2010, 12(6), 606-618.
[http://dx.doi.org/10.1016/j.cmet.2010.11.009] [PMID: 21109193]
[81]
Xing, J.; Liu, H.; Jiang, W.; Wang, L. LncRNA-encoded peptide: Functions and predicting methods. Front. Oncol., 2020, 10, 622294. Available from: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC7842084/
[PMID: 33520729]
[82]
Makarewich, C.A.; Baskin, K.K.; Munir, A.Z.; Bezprozvannaya, S.; Sharma, G.; Khemtong, C.; Shah, A.M.; McAnally, J.R.; Malloy, C.R.; Szweda, L.I.; Bassel-Duby, R.; Olson, E.N. MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep., 2018, 23(13), 3701-3709.
[http://dx.doi.org/10.1016/j.celrep.2018.05.058] [PMID: 29949755]
[83]
Chugunova, A.; Loseva, E.; Mazin, P.; Mitina, A.; Navalayeu, T.; Bilan, D.; Vishnyakova, P.; Marey, M.; Golovina, A.; Serebryakova, M.; Pletnev, P.; Rubtsova, M.; Mair, W.; Vanyushkina, A.; Khaitovich, P.; Belousov, V.; Vysokikh, M.; Sergiev, P.; Dontsova, O. LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism. Proc. Natl. Acad. Sci. USA, 2019, 116(11), 4940-4945.
[http://dx.doi.org/10.1073/pnas.1809105116] [PMID: 30796188]
[84]
Spencer, H.L.; Sanders, R.; Boulberdaa, M.; Meloni, M.; Cochrane, A.; Spiroski, A-M.; Mountford, J.; Emanueli, C.; Caporali, A.; Brittan, M.; Rodor, J.; Baker, A.H. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc. Res., 2020, 116(12), 1981-1994.
[http://dx.doi.org/10.1093/cvr/cvaa008] [PMID: 31990292]
[85]
Redington, J.M.; Breydo, L.; Uversky, V.N. When good goes awry: The aggregation of protein therapeutics. Protein Pept. Lett., 2017, 24(4), 340-347.
[http://dx.doi.org/10.2174/0929866524666170209153421] [PMID: 28190397]
[86]
Vaishya, R.; Khurana, V.; Patel, S.; Mitra, A.K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv., 2015, 12(3), 415-440.
[http://dx.doi.org/10.1517/17425247.2015.961420] [PMID: 25251334]
[87]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy