Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Non-coding RNA-Encoded Peptides/Proteins in Human Cancer: The Future for Cancer Therapy

Author(s): Seyedeh Zahra Bakhti and Saeid Latifi-Navid*

Volume 29, Issue 22, 2022

Published on: 14 January, 2022

Page: [3819 - 3835] Pages: 17

DOI: 10.2174/0929867328666211111163701

Price: $65

Abstract

Although non-coding RNAs (ncRNAs) were initially thought to be a class of RNA transcripts with no encoding capability, it has been established that some ncRNAs actually contain open reading frames (ORFs), which can be translated into micropeptides or microproteins. Recent studies have reported that ncRNAs-derived micropeptides/ microproteins have regulatory functions on various biological and oncological processes. Some of these micropeptides/microproteins act as tumor inhibitors and some as tumor inducers. Understanding the carcinogenic role of ncRNAs-encoded micropeptides/ microproteins seems to pose potential challenges to cancer research and offer promising practical perspectives on cancer treatment. In this review, we summarized the present information on the association of ncRNAs-derived micropeptides/microproteins with different types of human cancers. We also mentioned their carcinogenic mechanisms in cancer metabolism, signaling pathways, cell proliferation, angiogenesis, metastasis, and so on. Finally, we discussed the potential clinical value of these micropeptides/ microproteins and their potential use in the diagnosis and treatment of cancer. This information may help discover, optimize, and develop new tools based on biological micropeptides/ microproteins for the early diagnosis and development of anticancer drugs.

Keywords: Cancer, micropeptides, microproteins, NcRNAs, LncRNAs, CircRNAs, MiRNAs.

[1]
Wu, P.; Mo, Y.; Peng, M.; Tang, T.; Zhong, Y.; Deng, X.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol. Cancer, 2020, 19(1), 22.
[http://dx.doi.org/10.1186/s12943-020-1147-3] [PMID: 32019587]
[2]
Li, L-J.; Leng, R-X.; Fan, Y-G.; Pan, H-F.; Ye, D-Q. Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. Exp. Cell Res., 2017, 361(1), 1-8.
[http://dx.doi.org/10.1016/j.yexcr.2017.10.010] [PMID: 29031633]
[3]
Rion, N.; Rüegg, M.A. LncRNA-encoded peptides: More than translational noise? Cell Res., 2017, 27(5), 604-605.
[http://dx.doi.org/10.1038/cr.2017.35] [PMID: 28290465]
[4]
Yin, X.; Jing, Y.; Xu, H. Mining for missed sORF-encoded peptides. Expert Rev. Proteomics, 2019, 16(3), 257-266.
[http://dx.doi.org/10.1080/14789450.2019.1571919] [PMID: 30669886]
[5]
Crappé, J.; Van Criekinge, W.; Menschaert, G. Little things make big things happen: a summary of micropeptide encoding genes. EuPA Open Proteom., 2014, 3, 128-137.
[http://dx.doi.org/10.1016/j.euprot.2014.02.006]
[6]
Kong, S.; Tao, M.; Shen, X.; Ju, S. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett., 2020, 483, 59-65.
[http://dx.doi.org/10.1016/j.canlet.2020.04.006] [PMID: 32360179]
[7]
Guttman, M.; Russell, P.; Ingolia, N.T.; Weissman, J.S.; Lander, E.S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013, 154(1), 240-251.
[http://dx.doi.org/10.1016/j.cell.2013.06.009] [PMID: 23810193]
[8]
Kung, J.T.; Colognori, D.; Lee, J.T. Long noncoding RNAs: past, present, and future. Genetics, 2013, 193(3), 651-669.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[9]
Guo-cui, W. Immunoregulation function of long noncoding RNA in rheumatic diseases. Chin. J. Dis. Control. Prev., 2016, 20, 1165-1171.
[10]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[11]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[12]
Nagano, T.; Mitchell, J.A.; Sanz, L.A.; Pauler, F.M.; Ferguson-Smith, A.C.; Feil, R.; Fraser, P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 2008, 322(5908), 1717-1720.
[http://dx.doi.org/10.1126/science.1163802] [PMID: 18988810]
[13]
Carrieri, C.; Cimatti, L.; Biagioli, M.; Beugnet, A.; Zucchelli, S.; Fedele, S.; Pesce, E.; Ferrer, I.; Collavin, L.; Santoro, C.; Forrest, A.R.; Carninci, P.; Biffo, S.; Stupka, E.; Gustincich, S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491(7424), 454-457.
[http://dx.doi.org/10.1038/nature11508] [PMID: 23064229]
[14]
D’Lima, N.G.; Ma, J.; Winkler, L.; Chu, Q.; Loh, K.H.; Corpuz, E.O.; Budnik, B.A.; Lykke-Andersen, J.; Saghatelian, A.; Slavoff, S.A. A human microprotein that interacts with the mRNA decapping complex. Nat. Chem. Biol., 2017, 13(2), 174-180.
[http://dx.doi.org/10.1038/nchembio.2249] [PMID: 27918561]
[15]
Huang, J.-Z.; Chen, M.; Chen, D.; Gao, X.-C.; Zhu, S.; Huang, H.; Hu, M.; Zhu, H.; Yan, G.-R. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol. Cell, 2017, 68(1), 171-184.
[http://dx.doi.org/10.1016/j.molcel.2017.09.015]
[16]
Bi, P.; Ramirez-Martinez, A.; Li, H.; Cannavino, J.; McAnally, J.R.; Shelton, J.M.; Sánchez-Ortiz, E.; Bassel-Duby, R.; Olson, E.N. Control of muscle formation by the fusogenic micropeptide myomixer. Science, 2017, 356(6335), 323-327.
[http://dx.doi.org/10.1126/science.aam9361] [PMID: 28386024]
[17]
Zhang, Q.; Vashisht, A.A.; O’Rourke, J.; Corbel, S.Y.; Moran, R.; Romero, A.; Miraglia, L.; Zhang, J.; Durrant, E.; Schmedt, C.; Sampath, S.C.; Sampath, S.C. The microprotein Minion controls cell fusion and muscle formation. Nat. Commun., 2017, 8(1), 15664.
[http://dx.doi.org/10.1038/ncomms15664] [PMID: 28569745]
[18]
Matsumoto, A.; Pasut, A.; Matsumoto, M.; Yamashita, R.; Fung, J.; Monteleone, E.; Saghatelian, A.; Nakayama, K.I.; Clohessy, J.G.; Pandolfi, P.P. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541(7636), 228-232.
[http://dx.doi.org/10.1038/nature21034] [PMID: 28024296]
[19]
Nelson, B.R.; Makarewich, C.A.; Anderson, D.M.; Winders, B.R.; Troupes, C.D.; Wu, F.; Reese, A.L.; McAnally, J.R.; Chen, X.; Kavalali, E.T.; Cannon, S.C.; Houser, S.R.; Bassel-Duby, R.; Olson, E.N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270), 271-275.
[http://dx.doi.org/10.1126/science.aad4076] [PMID: 26816378]
[20]
Anderson, D.M.; Anderson, K.M.; Chang, C-L.; Makarewich, C.A.; Nelson, B.R.; McAnally, J.R.; Kasaragod, P.; Shelton, J.M.; Liou, J.; Bassel-Duby, R.; Olson, E.N. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell, 2015, 160(4), 595-606.
[http://dx.doi.org/10.1016/j.cell.2015.01.009] [PMID: 25640239]
[21]
Nam, J-W.; Choi, S-W.; You, B-H. Incredible RNA dual functions of coding and noncoding. Mol. Cells, 2016, 39(5), 367-374.
[http://dx.doi.org/10.14348/molcells.2016.0039] [PMID: 27137091]
[22]
Ulveling, D.; Francastel, C.; Hubé, F. Identification of potentially new bifunctional RNA based on genome-wide data-mining of alternative splicing events. Biochimie, 2011, 93(11), 2024-2027.
[http://dx.doi.org/10.1016/j.biochi.2011.06.019] [PMID: 21729736]
[23]
Guo, J.U.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol., 2014, 15(7), 409.
[http://dx.doi.org/10.1186/s13059-014-0409-z] [PMID: 25070500]
[24]
Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E. Translation of circRNAs. Mol. Cell, 2017, 66(1), 9-21.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021]
[25]
Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; Huang, S.; Xie, B.; Zhang, N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst., 2018, 110(3), 304-315.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[26]
Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; Li, Z.; Ming, L.; Xie, B.; Zhang, N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018, 37(13), 1805-1814.
[http://dx.doi.org/10.1038/s41388-017-0019-9] [PMID: 29343848]
[27]
Kontomanolis, E.N.; Koukourakis, M.I.E.; Koukourakis, I.M. MicroRNA: The potential regulator of endometrial carcinogenesis. MicroRNA, 2015, 4(1), 18-25.
[http://dx.doi.org/10.2174/2211536604666150710094418] [PMID: 26088599]
[28]
Dastmalchi, N.; Safaralizadeh, R.; Banan Khojasteh, S.M.; Sam, M.R.; Latifi-Navid, S.; Hussen, B.M.; Abdoli Shadbad, M.; Baradaran, B. An updated review of the cross-talk between microRNAs and epigenetic factors in cancers. Curr. Med. Chem., 2021. [Epub ahead of print].
[http://dx.doi.org/10.2174/0929867328666210514125955] [PMID: 33992051]
[29]
Waterhouse, P.M.; Hellens, R.P. Plant biology: coding in non-coding RNAs. Nature, 2015, 520(7545), 41-42.
[http://dx.doi.org/10.1038/nature14378] [PMID: 25807488]
[30]
Church, V.A.; Pressman, S.; Isaji, M.; Truscott, M.; Cizmecioglu, N.T.; Buratowski, S.; Frolov, M.V.; Carthew, R.W. Microprocessor recruitment to elongating RNA polymerase II is required for differential expression of microRNAs. Cell Rep., 2017, 20(13), 3123-3134.
[http://dx.doi.org/10.1016/j.celrep.2017.09.010] [PMID: 28954229]
[31]
Lauressergues, D.; Couzigou, J-M.; Clemente, H.S.; Martinez, Y.; Dunand, C.; Bécard, G.; Combier, J-P. Primary transcripts of microRNAs encode regulatory peptides. Nature, 2015, 520(7545), 90-93.
[http://dx.doi.org/10.1038/nature14346] [PMID: 25807486]
[32]
Wang, Y.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Guo, B.; Zhang, S.; Wu, R.; Zhang, Z.; Wang, K.; Lu, J.; Zhou, Y. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J. Exp. Med., 2020, 217(3), e20190950.
[http://dx.doi.org/10.1084/jem.20190950] [PMID: 31816634]
[33]
He, C.; Tang, Z.; Tian, H.; Chen, X. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv. Drug Deliv. Rev., 2016, 98, 64-76.
[http://dx.doi.org/10.1016/j.addr.2015.10.021] [PMID: 26546464]
[34]
Leader, B.; Baca, Q.J.; Golan, D.E. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov., 2008, 7(1), 21-39.
[http://dx.doi.org/10.1038/nrd2399] [PMID: 18097458]
[35]
Meng, N.; Chen, M.; Chen, D.; Chen, X.H.; Wang, J.Z.; Zhu, S.; He, Y.T.; Zhang, X.L.; Lu, R.X.; Yan, G.R. Small protein hidden in lncRNA LOC90024 promotes “Cancerous” RNA splicing and tumorigenesis. Adv. Sci. (Weinh.), 2020, 7(10), 1903233.
[http://dx.doi.org/10.1002/advs.201903233] [PMID: 32440474]
[36]
Pan, L.N.; Sun, Y.R. LINC00961 suppresses cell proliferation and induces cell apoptosis in oral squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3358-3365.
[PMID: 31081090]
[37]
Wu, S.; Zhang, L.; Deng, J.; Guo, B.; Li, F.; Wang, Y.; Wu, R.; Zhang, S.; Lu, J.; Zhou, Y. A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res., 2020, 80(13), 2790-2803.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3440] [PMID: 32169859]
[38]
Pan, W.; Geng, X.; Wang, J.; Zhang, C.; Zhou, X.; Jing, J. circCOL6A3_030 is involved in the metastasis of gastric cancer by encoding polypeptide. 2020. [Epub ahead of print].
[39]
Pan, Z.; Cai, J.; Lin, J.; Zhou, H.; Peng, J.; Liang, J.; Xia, L.; Yin, Q.; Zou, B.; Zheng, J.; Qiao, L.; Zhang, L. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol. Cancer, 2020, 19(1), 71.
[http://dx.doi.org/10.1186/s12943-020-01179-5] [PMID: 32241279]
[40]
Cai, C.; Rajaram, M.; Zhou, X.; Liu, Q.; Marchica, J.; Li, J.; Powers, R.S. Activation of multiple cancer pathways and tumor maintenance function of the 3q amplified oncogene FNDC3B. Cell Cycle, 2012, 11(9), 1773-1781.
[http://dx.doi.org/10.4161/cc.20121] [PMID: 22510613]
[41]
Leahy, D.J.; Aukhil, I.; Erickson, H.P. 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell, 1996, 84(1), 155-164.
[http://dx.doi.org/10.1016/S0092-8674(00)81002-8] [PMID: 8548820]
[42]
Leahy, D.J.; Hendrickson, W.A.; Aukhil, I.; Erickson, H.P. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science, 1992, 258(5084), 987-991.
[http://dx.doi.org/10.1126/science.1279805] [PMID: 1279805]
[43]
Hong, Y.; Qin, H.; Li, Y.; Zhang, Y.; Zhuang, X.; Liu, L.; Lu, K.; Li, L.; Deng, X.; Liu, F.; Shi, S.; Liu, G. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E-cadherin and CD44 expression. J. Cell. Physiol., 2019, 234(11), 19895-19910.
[http://dx.doi.org/10.1002/jcp.28588] [PMID: 30963578]
[44]
Zhu, S.; Wang, J-Z.; Chen, D.; He, Y-T.; Meng, N.; Chen, M.; Lu, R-X.; Chen, X-H.; Zhang, X-L.; Yan, G-R. An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nat. Commun., 2020, 11(1), 1685.
[http://dx.doi.org/10.1038/s41467-020-15403-9] [PMID: 32245947]
[45]
Szafron, L.M.; Balcerak, A.; Grzybowska, E.A.; Pienkowska-Grela, B.; Felisiak-Golabek, A.; Podgorska, A.; Kulesza, M.; Nowak, N.; Pomorski, P.; Wysocki, J.; Rubel, T.; Dansonka-Mieszkowska, A.; Konopka, B.; Lukasik, M.; Kupryjanczyk, J. The novel gene CRNDE encodes a nuclear peptide (CRNDEP) which is overexpressed in highly proliferating tissues. PLoS One, 2015, 10(5), e0127475.
[http://dx.doi.org/10.1371/journal.pone.0127475] [PMID: 25978564]
[46]
Zhu, S.; Wang, J.; He, Y.; Meng, N.; Yan, G-R. Peptides/proteins encoded by non-coding RNA: A novel resource bank for drug targets and biomarkers. Front. Pharmacol., 2018, 9, 1295.
[http://dx.doi.org/10.3389/fphar.2018.01295] [PMID: 30483132]
[47]
Zhi, X.; Zhang, J.; Cheng, Z.; Bian, L.; Qin, J. circLgr4 drives colorectal tumorigenesis and invasion through Lgr4-targeting peptide. Int. J. Cancer, 2019.
[http://dx.doi.org/10.1002/ijc.32549] [PMID: 31269234]
[48]
Zheng, X.; Chen, L.; Zhou, Y.; Wang, Q.; Zheng, Z.; Xu, B.; Wu, C.; Zhou, Q.; Hu, W.; Wu, C.; Jiang, J. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer, 2019, 18(1), 47.
[http://dx.doi.org/10.1186/s12943-019-1010-6] [PMID: 30925892]
[49]
Pang, Y.; Liu, Z.; Han, H.; Wang, B.; Li, W.; Mao, C.; Liu, S. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. J. Hepatol., 2020, 73(5), 1155-1169.
[http://dx.doi.org/10.1016/j.jhep.2020.05.028] [PMID: 32461121]
[50]
Unfried, J.P.; Fortes, P. LncRNAs in HCV infection and HCV-related liver disease. Int. J. Mol. Sci., 2020, 21(6), 2255.
[51]
Lun, Y-Z.; Pan, Z-P.; Liu, S-A.; Sun, J.; Han, M.; Liu, B.; Dong, W.; Pan, L-H.; Cheng, J. The peptide encoded by a novel putative lncRNA HBVPTPAP inducing the apoptosis of hepatocellular carcinoma cells by modulating JAK/STAT signaling pathways. Virus Res., 2020, 287, 198104.
[http://dx.doi.org/10.1016/j.virusres.2020.198104] [PMID: 32755630]
[52]
Liang, W-C.; Wong, C-W.; Liang, P-P.; Shi, M.; Cao, Y.; Rao, S-T.; Tsui, S.K-W.; Waye, M.M-Y.; Zhang, Q.; Fu, W-M. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol., 2019, 20(1), 1-12.
[http://dx.doi.org/10.1186/s13059-019-1685-4] [PMID: 30606230]
[53]
Nejak-Bowen, K.N.; Monga, S.P. Seminars in cancer biology; Elsevier, 2011, Vol. 21, pp. 44-58.
[54]
Papadopoulos, M.C.; Saadoun, S.; Verkman, A.S. Aquaporins and cell migration. Pflugers Arch., 2008, 456(4), 693-700.
[http://dx.doi.org/10.1007/s00424-007-0357-5] [PMID: 17968585]
[55]
Stroka, K.M.; Jiang, H.; Chen, S-H.; Tong, Z.; Wirtz, D.; Sun, S.X.; Konstantopoulos, K. Water permeation drives tumor cell migration in confined microenvironments. Cell, 2014, 157(3), 611-623.
[http://dx.doi.org/10.1016/j.cell.2014.02.052] [PMID: 24726433]
[56]
Ding, T.; Gu, F.; Fu, L.; Ma, Y-J. Aquaporin-4 in glioma invasion and an analysis of molecular mechanisms. J. Clin. Neurosci., 2010, 17(11), 1359-1361.
[http://dx.doi.org/10.1016/j.jocn.2010.02.014] [PMID: 20685122]
[57]
Cao, Y.; Lee, I.; Wang, W. Prediction of LncRNA encoded small peptides in glioma and the oligomer channel functional analysis using in silico approaches. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.13.094763]
[58]
Zhang, M.; Zhao, K.; Xu, X.; Yang, Y.; Yan, S.; Wei, P.; Liu, H.; Xu, J.; Xiao, F.; Zhou, H.; Yang, X.; Huang, N.; Liu, J.; He, K.; Xie, K.; Zhang, G.; Huang, S.; Zhang, N. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun., 2018, 9(1), 4475.
[http://dx.doi.org/10.1038/s41467-018-06862-2] [PMID: 30367041]
[59]
Begum, S.; Yiu, A.; Stebbing, J.; Castellano, L. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene, 2018, 37(30), 4055-4057.
[http://dx.doi.org/10.1038/s41388-018-0230-3] [PMID: 29706655]
[60]
Xia, X.; Li, X.; Li, F.; Wu, X.; Zhang, M.; Zhou, H.; Huang, N.; Yang, X.; Xiao, F.; Liu, D. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol. Cancer, 2019, 18(1), 1-16.
[http://dx.doi.org/10.1186/s12943-019-1056-5] [PMID: 30609930]
[61]
Guo, B.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Wang, Y.; Zhang, S.; Wu, R.; Lu, J.; Zhou, Y. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J., 2020, 39(1), e102190.
[http://dx.doi.org/10.15252/embj.2019102190] [PMID: 31755573]
[62]
Charpentier, M.; Croyal, M.; Carbonnelle, D.; Fortun, A.; Florenceau, L.; Rabu, C.; Krempf, M.; Labarrière, N.; Lang, F. IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens. Oncotarget, 2016, 7(37), 59704-59713.
[http://dx.doi.org/10.18632/oncotarget.10923] [PMID: 27486971]
[63]
Ye, M.; Zhang, J.; Wei, M.; Liu, B.; Dong, K. Emerging role of long noncoding RNA-encoded micropeptides in cancer. Cancer Cell Int., 2020, 20(1), 506.
[http://dx.doi.org/10.1186/s12935-020-01589-x] [PMID: 33088214]
[64]
Polycarpou-Schwarz, M.; Groß, M.; Mestdagh, P.; Schott, J.; Grund, S.E.; Hildenbrand, C.; Rom, J.; Aulmann, S.; Sinn, H-P.; Vandesompele, J.; Diederichs, S. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37(34), 4750-4768.
[http://dx.doi.org/10.1038/s41388-018-0281-5] [PMID: 29765154]
[65]
Ye, F.; Gao, G.; Zou, Y.; Zheng, S.; Zhang, L.; Ou, X.; Xie, X.; Tang, H. circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol. Ther. Nucleic Acids, 2019, 18, 88-98.
[http://dx.doi.org/10.1016/j.omtn.2019.07.023] [PMID: 31536884]
[66]
Lu, S.; Zhang, J.; Lian, X.; Sun, L.; Meng, K.; Chen, Y.; Sun, Z.; Yin, X.; Li, Y.; Zhao, J.; Wang, T.; Zhang, G.; He, Q.Y. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res., 2019, 47(15), 8111-8125.
[http://dx.doi.org/10.1093/nar/gkz646] [PMID: 31340039]
[67]
Jiang, B.; Liu, J.; Zhang, Y.H.; Shen, D.; Liu, S.; Lin, F.; Su, J.; Lin, Q.F.; Yan, S.; Li, Y.; Mao, W.D.; Liu, Z.L. Long noncoding RNA LINC00961 inhibits cell invasion and metastasis in human non-small cell lung cancer. Biomed. Pharmacother., 2018, 97, 1311-1318.
[http://dx.doi.org/10.1016/j.biopha.2017.11.062] [PMID: 29156520]
[68]
Yang, L.; Tang, Y.; He, Y.; Wang, Y.; Lian, Y.; Xiong, F.; Shi, L.; Zhang, S.; Gong, Z.; Zhou, Y.; Liao, Q.; Zhou, M.; Li, X.; Xiong, W.; Li, Y.; Li, G.; Zeng, Z.; Guo, C. High expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma. J. Cancer, 2017, 8(1), 97-103.
[http://dx.doi.org/10.7150/jca.16819] [PMID: 28123602]
[69]
Kang, M.; Tang, B.; Li, J.; Zhou, Z.; Liu, K.; Wang, R.; Jiang, Z.; Bi, F.; Patrick, D.; Kim, D.; Mitra, A.K.; Yang-Hartwich, Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol. Cancer, 2020, 19(1), 143.
[http://dx.doi.org/10.1186/s12943-020-01248-9] [PMID: 32928232]
[70]
Gu, C.; Zhou, N.; Wang, Z.; Li, G.; Kou, Y.; Yu, S.; Feng, Y.; Chen, L.; Yang, J.; Tian, F. circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Mol. Ther. Nucleic Acids, 2018, 13, 633-641.
[http://dx.doi.org/10.1016/j.omtn.2018.10.008] [PMID: 30497053]
[71]
Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer, 2007, 7(2), 79-94.
[http://dx.doi.org/10.1038/nrc2069] [PMID: 17251915]
[72]
Lai, Y.; Zhou, B.; Tan, Q.; Xu, J.; Wan, T.; Zhang, L. LINC00116 enhances cervical cancer tumorigenesis through miR-106a/c-Jun pathway. J. Cell. Biochem., 2020, 121(3), 2247-2257.
[http://dx.doi.org/10.1002/jcb.29447] [PMID: 31693227]
[73]
Stein, C.S.; Jadiya, P.; Zhang, X.; McLendon, J.M.; Abouassaly, G.M.; Witmer, N.H.; Anderson, E.J.; Elrod, J.W.; Boudreau, R.L. Mitoregulin: a lncRNA-encoded microprotein that supports mitochondrial supercomplexes and respiratory efficiency. Cell reports, 2018, 23(13), 3710-3720.
[http://dx.doi.org/10.1016/j.celrep.2018.06.002]
[74]
Israelsen, W.J.; Vander Heiden, M.G. Seminars in cell & developmental biology; Elsevier, 2015, Vol. 43, pp. 43-51.
[75]
Zhao, J.; Lee, E.E.; Kim, J.; Yang, R.; Chamseddin, B.; Ni, C.; Gusho, E.; Xie, Y.; Chiang, C-M.; Buszczak, M.; Zhan, X.; Laimins, L.; Wang, R.C. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun., 2019, 10(1), 2300.
[http://dx.doi.org/10.1038/s41467-019-10246-5] [PMID: 31127091]
[76]
Fang, J.; Morsalin, S.; Rao, V.N.; Reddy, E.S.P. Decoding of non-coding DNA and non-coding RNA: pri-micro RNA-encoded novel peptides regulate migration of cancer cells. J. Pharm. Sci. Pharmacol., 2017, 3(1), 23-27.
[http://dx.doi.org/10.1166/jpsp.2017.1070]
[77]
Godet, Y.; Moreau-Aubry, A.; Mompelat, D.; Vignard, V.; Khammari, A.; Dreno, B.; Lang, F.; Jotereau, F.; Labarriere, N. An additional ORF on meloe cDNA encodes a new melanoma antigen, MELOE-2, recognized by melanoma-specific T cells in the HLA-A2 context. Cancer Immunol. Immunother., 2010, 59(3), 431-439.
[http://dx.doi.org/10.1007/s00262-009-0762-z] [PMID: 19730858]
[78]
Carbonnelle, D.; Vignard, V.; Sehedic, D.; Moreau-Aubry, A.; Florenceau, L.; Charpentier, M.; Mikulits, W.; Labarriere, N.; Lang, F. The melanoma antigens MELOE-1 and MELOE-2 are translated from a bona fide polycistronic mRNA containing functional IRES sequences. PLoS One, 2013, 8(9), e75233.
[http://dx.doi.org/10.1371/journal.pone.0075233] [PMID: 24086473]
[79]
Byun, S.; Kim, D-H.; Ryerson, D.; Kim, Y-C.; Sun, H.; Kong, B.; Yau, P.; Guo, G.; Xu, H.E.; Kemper, B.; Kemper, J.K. Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat. Commun., 2018, 9(1), 2590.
[http://dx.doi.org/10.1038/s41467-018-04697-5] [PMID: 29968724]
[80]
Louet, J-F.; Chopra, A.R.; Sagen, J.V.; An, J.; York, B.; Tannour-Louet, M.; Saha, P.K.; Stevens, R.D.; Wenner, B.R.; Ilkayeva, O.R.; Bain, J.R.; Zhou, S.; DeMayo, F.; Xu, J.; Newgard, C.B.; O’Malley, B.W. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab., 2010, 12(6), 606-618.
[http://dx.doi.org/10.1016/j.cmet.2010.11.009] [PMID: 21109193]
[81]
Xing, J.; Liu, H.; Jiang, W.; Wang, L. LncRNA-encoded peptide: Functions and predicting methods. Front. Oncol., 2020, 10, 622294. Available from: https://www.ncbi.nlm. nih.gov/pmc/articles/PMC7842084/
[PMID: 33520729]
[82]
Makarewich, C.A.; Baskin, K.K.; Munir, A.Z.; Bezprozvannaya, S.; Sharma, G.; Khemtong, C.; Shah, A.M.; McAnally, J.R.; Malloy, C.R.; Szweda, L.I.; Bassel-Duby, R.; Olson, E.N. MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep., 2018, 23(13), 3701-3709.
[http://dx.doi.org/10.1016/j.celrep.2018.05.058] [PMID: 29949755]
[83]
Chugunova, A.; Loseva, E.; Mazin, P.; Mitina, A.; Navalayeu, T.; Bilan, D.; Vishnyakova, P.; Marey, M.; Golovina, A.; Serebryakova, M.; Pletnev, P.; Rubtsova, M.; Mair, W.; Vanyushkina, A.; Khaitovich, P.; Belousov, V.; Vysokikh, M.; Sergiev, P.; Dontsova, O. LINC00116 codes for a mitochondrial peptide linking respiration and lipid metabolism. Proc. Natl. Acad. Sci. USA, 2019, 116(11), 4940-4945.
[http://dx.doi.org/10.1073/pnas.1809105116] [PMID: 30796188]
[84]
Spencer, H.L.; Sanders, R.; Boulberdaa, M.; Meloni, M.; Cochrane, A.; Spiroski, A-M.; Mountford, J.; Emanueli, C.; Caporali, A.; Brittan, M.; Rodor, J.; Baker, A.H. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc. Res., 2020, 116(12), 1981-1994.
[http://dx.doi.org/10.1093/cvr/cvaa008] [PMID: 31990292]
[85]
Redington, J.M.; Breydo, L.; Uversky, V.N. When good goes awry: The aggregation of protein therapeutics. Protein Pept. Lett., 2017, 24(4), 340-347.
[http://dx.doi.org/10.2174/0929866524666170209153421] [PMID: 28190397]
[86]
Vaishya, R.; Khurana, V.; Patel, S.; Mitra, A.K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv., 2015, 12(3), 415-440.
[http://dx.doi.org/10.1517/17425247.2015.961420] [PMID: 25251334]
[87]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy