Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Ternary System of Bacogenins with Fulvic Acid and Hydrogenated Soy Lecithin: Preparation, Characterization and, In vivo Studies

Author(s): Kattamanchi Gnananath, Kalakonda Sri Nataraj*, Battu Ganga Rao, Kolli Prabhanjan Kumar, Kommavari Chandrasekhar, Pooja Jain and Mohd. Aamir Mirza*

Volume 22, Issue 23, 2022

Published on: 30 November, 2021

Page: [1966 - 1978] Pages: 13

DOI: 10.2174/1568026621666211111155425

Price: $65

Abstract

Aims: The aim of this study was to simultaneously enhance the solubility and stability of bacogenins hydrolyzed bacoside rich extract by a ternary system comprised of hydrogenated soy lecithin and a third auxiliary substance, fulvic acid.

Methods: Both ternary and binary complexes were prepared using the solvent evaporation method were characterized by Fourier transform infrared technique, differential scanning calorimeter and scanning electron microscope. The entrapment efficacy in both binary and ternary system was calculated and the effect on the solubility, dissolution and stability of bacogenins was found out. Furthermore, the prepared complexes were subjected to behavioural pharmacological studies.

Results: FTIR, DSC, and SEM studies in totality confirmed the formation of binary and ternary complexes. Enhancement in solubility was observed, and the order of release characteristics was found to be BHFS> BHSL>BHF> BH when the dissolution studies were carried out in 40% aqueous solution of ethanol. A significant improvement in the memory and antioxidant capacity was noticed in both binary, ternary complexes and fulvic acid treatment groups.

Conclusion: The results revealed that the ternary complex could be a promising drug delivery system to improve the oral bioavailability of the bacogenins.

Keywords: Bacopa monnieri aglycones, Ebelin lactone, Auxiliary substance, Phospholipid complex, Memory enhancement, Supramolecular assembly.

« Previous
Graphical Abstract

[1]
Dhawan, B.N. Experimental and clinical evaluation of nootropic activity of Bacopa monniera Linn. (Brahmi). Ann. Natl. Acad. Med. Sci., 2014, 50(1 & 2), 20-33.
[2]
Singh, H.K.; Dhawan, B.N. Neuropsychopharmacological effects of the ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Indian J. Pharmacol., 1997, 29(5), 359-365.
[PMID: 31831931]
[3]
Anbarasi, K.; Vani, G.; Balakrishna, K.; Devi, C.S. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci., 2006, 78(12), 1378-1384.
[http://dx.doi.org/10.1016/j.lfs.2005.07.030] [PMID: 16226278]
[4]
Nemetchek, M.D.; Stierle, A.A.; Stierle, D.B.; Lurie, D.I. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J. Ethnopharmacol., 2017, 197, 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073] [PMID: 27473605]
[5]
Kamesh, V.; Sumathi, T. Antihypercholesterolemic effect of Bacopa monniera linn. on high cholesterol diet induced hypercholesterolemia in rats. Asian Pac. J. Trop. Med., 2012, 5(12), 949-955.
[http://dx.doi.org/10.1016/S1995-7645(12)60180-1] [PMID: 23199712]
[6]
Sivaramakrishna, C.; Rao, C.V.; Trimurtulu, G.; Vanisree, M.; Subbaraju, G.V. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry, 2005, 66(23), 2719-2728.
[http://dx.doi.org/10.1016/j.phytochem.2005.09.016] [PMID: 16293276]
[7]
Saini, N.; Singh, D.; Sandhir, R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem. Res., 2012, 37(9), 1928-1937.
[http://dx.doi.org/10.1007/s11064-012-0811-4] [PMID: 22700087]
[8]
Chaudhari, K.S.; Tiwari, N.R.; Tiwari, R.R.; Sharma, R.S. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann. Neurosci., 2017, 24(2), 111-122.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[9]
Peth-Nui, T.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Piyavhatkul, N.; Rangseekajee, P.; Ingkaninan, K.; Vittaya-Areekul, S. Effects of 12-week Bacopa monnieri consumption on attention, cognitive processing, working memory, and functions of both cholinergic and monoaminergic systems in healthy elderly volunteers. Evid. Based Complement. Alternat. Med., 2012, 2012, 606424.
[http://dx.doi.org/10.1155/2012/606424] [PMID: 23320031]
[10]
Stough, C.; Downey, L.A.; Lloyd, J.; Silber, B.; Redman, S.; Hutchison, C.; Wesnes, K.; Nathan, P.J. Examining the nootropic effects of a special extract of Bacopa monniera on human cognitive functioning: 90 day double-blind placebo-controlled randomized trial. Phytother. Res., 2008, 22(12), 1629-1634.
[http://dx.doi.org/10.1002/ptr.2537] [PMID: 18683852]
[11]
Calabrese, C.; Gregory, W.L.; Leo, M.; Kraemer, D.; Bone, K.; Oken, B. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J. Altern. Complement. Med., 2008, 14(6), 707-713.
[http://dx.doi.org/10.1089/acm.2008.0018] [PMID: 18611150]
[12]
Hou, C.C.; Lin, S.J.; Cheng, J.T.; Hsu, F.L. Bacopaside III, bacopasaponin G, and bacopasides A, B, and C from Bacopa monniera. J. Nat. Prod., 2002, 65(12), 1759-1763.
[http://dx.doi.org/10.1021/np020238w] [PMID: 12502309]
[13]
Dey, C.D.; Bose, S.; Mitra, S. Effect of some centrally active phyto products on maze-learning of albino rats. Indian J. Physiol. Allied Sci., 1976, 30(3), 88-97.
[14]
Aguiar, S.; Borowski, T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res., 2013, 16(4), 313-326.
[http://dx.doi.org/10.1089/rej.2013.1431] [PMID: 23772955]
[15]
Sekhar, V.C.; Viswanathan, G.; Baby, S. Insights into the molecular aspects of neuroprotective bacoside A and bacopaside I. Curr. Neuropharmacol., 2019, 17(5), 438-446.
[http://dx.doi.org/10.2174/1570159X16666180419123022] [PMID: 29676230]
[16]
Rani, A.; Prasad, S. A special extract of Bacopa monnieri (CDRI-08)-restored memory in CoCl2-hypoxia mimetic mice is associated with upregulation of Fmr-1 gene expression in hippocampus. Evid. Based Complement. Alternat. Med., 2015, 2015, 347978.
[http://dx.doi.org/10.1155/2015/347978] [PMID: 26413121]
[17]
Krishnakumar, A.; Anju, T.R.; Abraham, P.M.; Paulose, C.S. Alteration in 5-HT 2C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri. Neurochem. Res., 2015, 40(1), 216-225.
[http://dx.doi.org/10.1007/s11064-014-1472-2] [PMID: 25503823]
[18]
Ramasamy, S.; Chin, S.P.; Sukumaran, S.D.; Buckle, M.J.C.; Kiew, L.V.; Chung, L.Y. In silico and in vitro analysis of bacoside A aglycones and its derivatives as the constituents responsible for the cognitive effects of Bacopa monnieri. PLoS One, 2015, 10(5), e0126565.
[http://dx.doi.org/10.1371/journal.pone.0126565] [PMID: 25965066]
[19]
Nuengchamnong, N.; Sookying, S.; Ingkaninan, K. LC-ESI-QTOF-MS based screening and identification of isomeric jujubogenin and pseudojujubogenin aglycones in Bacopa monnieri extract. J. Pharm. Biomed. Anal., 2016, 129, 121-134.
[http://dx.doi.org/10.1016/j.jpba.2016.06.052] [PMID: 27423009]
[20]
Product information, safety evaluation and clinical efficacy of CDRI-08: Clinical trails registry, India. Available from: https://benthamscience.com/journal/references.php?journalID=ctmc#ifa [Accessed: January 23, 2021].
[21]
Baidyanath, M.; Sujan, G.; Shariq, A. Bitterless bacopa monnieri extract composition for memory improvement and a method of synthesizing the same. WO patent WO2017103831A1, 2017.
[22]
Saini, N.; Mathur, R.; Agrawal, S.S. Qualitative and quantitative assessment of four marketed formulations of Brahmi. Indian J. Pharm. Sci., 2012, 74(1), 24-28.
[http://dx.doi.org/10.4103/0250-474X.102539] [PMID: 23204618]
[23]
Habbu, P.; Madagundi, S.; Kulkarni, R.; Jadav, S.; Vanakudri, R.; Kulkarni, V. Preparation and evaluation of Bacopa-phospholipid complex for antiamnesic activity in rodents. Drug Invent. Today, 2013, 5(1), 13-21.
[http://dx.doi.org/10.1016/j.dit.2013.02.004]
[24]
Saoji, S.D.; Dave, V.S.; Dhore, P.W.; Bobde, Y.S.; Mack, C.; Gupta, D.; Raut, N.A. The role of phospholipid as a solubility- and permeability-enhancing excipient for the improved delivery of the bioactive phytoconstituents of Bacopa monnieri. Eur. J. Pharm. Sci., 2017, 108, 23-35.
[http://dx.doi.org/10.1016/j.ejps.2016.08.056] [PMID: 27590125]
[25]
Tirumanyam, M.; Nadella, R.; Kondammagari, S.; Borelli, D.P.R.; Nannepaga, J.S. Bacopa phospholipid complex retrieves aluminum maltolate complex-induced oxidative stress and apoptotic alterations in the brain regions of albino rat. Environ. Sci. Pollut. Res. Int., 2019, 26(12), 12071-12079.
[http://dx.doi.org/10.1007/s11356-019-04624-1] [PMID: 30827024]
[26]
Gnananath, K.; Sri Nataraj, K.; Ganga Rao, B. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull., 2017, 7(1), 35-42.
[http://dx.doi.org/10.15171/apb.2017.005] [PMID: 28507935]
[27]
Zhou, Y.; Dong, W.; Ye, J.; Hao, H.; Zhou, J.; Wang, R.; Liu, Y. A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations. Drug Deliv., 2017, 24(1), 720-728.
[http://dx.doi.org/10.1080/10717544.2017.1311968] [PMID: 28436702]
[28]
Xia, H.J.; Zhang, Z.H.; Jin, X.; Hu, Q.; Chen, X.Y.; Jia, X.B. A novel drug-phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo. Int. J. Nanomedicine, 2013, 8, 545-554.
[http://dx.doi.org/10.2147/IJN.S39526] [PMID: 23431115]
[29]
Fan, J.; Dai, Y.; Shen, H.; Ju, J.; Zhao, Z. Application of soluplus to improve the flowability and dissolution of baicalein phospholipid complex. Molecules, 2017, 22(5), 776.
[http://dx.doi.org/10.3390/molecules22050776] [PMID: 28492487]
[30]
Zhang, Z.; Chen, Y.; Deng, J.; Jia, X.; Zhou, J.; Lv, H. Solid dispersion of berberine-phospholipid complex/TPGS 1000/SiO₂: preparation, characterization and in vivo studies. Int. J. Pharm., 2014, 465(1-2), 306-316.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.023] [PMID: 24456672]
[31]
Li, Y.; Wu, H.; Jia, M.; Cui, F.; Lin, J.; Yang, X.; Wang, Y.; Dai, L.; Hou, Z. Therapeutic effect of folate-targeted and PEGylated phytosomes loaded with a mitomycin C-soybean phosphatidyhlcholine complex. Mol. Pharm., 2014, 11(9), 3017-3026.
[http://dx.doi.org/10.1021/mp5001873] [PMID: 25054963]
[32]
Wang, D.; Li, H.; Gu, J.; Guo, T.; Yang, S.; Guo, Z.; Zhang, X.; Zhu, W.; Zhang, J. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions. J. Pharm. Biomed. Anal., 2013, 83, 141-148.
[http://dx.doi.org/10.1016/j.jpba.2013.05.001] [PMID: 23732534]
[33]
Mirza, M.A. Future of humic substances as pharmaceutical excipient. Pharma Sci. Anal. Res. J., 2018, 1, 180004.
[34]
Gnananath, K.; Nataraj, K.S.; Rao, B.G.; Kumar, K.P.; Mahnashi, M.H.; Anwer, M.K.; Umar, A.; Iqbal, Z.; Mirza, M.A. Exploration of fulvic acid as a functional excipient in line with the regulatory requirement. Environ. Res., 2020, 187(187), 109642.
[http://dx.doi.org/10.1016/j.envres.2020.109642] [PMID: 32445947]
[35]
Kahol, A.P.; Singh, T.; Tandon, S.; Gupta, M.M.; Khanuja, S.P.S. Council of Scientific and Industrial Research (CSIR). Process for the preparation of a extract rich in bacosides from the herb Bacopa monniera. US Patent 6,833,143, 2004.
[36]
Pal, R.; Sarin, J.P. Quantitative determination of bacosides by UV-spectrophotometry. Indian J. Pharm. Sci., 1992, 54(1), 17-18.
[37]
ICH. I. Q2 (R1). Validation of analytical procedures: text and methodology. In: International Conference on Harmonization; Geneva, 2005.
[38]
Liu, C.; Desai, K.G.H.; Tang, X.; Chen, X. Solubility of rofecoxib in the presence of aqueous solutions of glycerol, propylene glycol, ethanol, Span 20, Tween 80, and sodium lauryl sulfate at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data, 2005, 50(6), 2061-2064.
[http://dx.doi.org/10.1021/je050276s]
[39]
Levina, M.; Vuong, H.; Rajabi-Siahboomi, A.R. The influence of hydro-alcoholic media on hypromellose matrix systems. Drug Dev. Ind. Pharm., 2007, 33(10), 1125-1134.
[http://dx.doi.org/10.1080/03639040701377862] [PMID: 17963114]
[40]
Phillips, D.J.; Pygall, S.R.; Cooper, V.B.; Mann, J.C. Toward biorelevant dissolution: application of a biphasic dissolution model as a discriminating tool for HPMC matrices containing a model BCS class II drug. Dissolut. Technol., 2012, 19(1), 25-34.
[http://dx.doi.org/10.14227/DT190112P25]
[41]
Ochi, M.M.; Amoabediny, G.; Rezayat, S.M.; Akbarzadeh, A.; Ebrahimi, B. In vitro co-delivery evaluation of novel pegylated nano-liposomal herbal drugs of silibinin and glycyrrhizic acid (nano-phytosome) to hepatocellular carcinoma cells. Cell J., 2016, 18(2), 135-148.
[PMID: 27540518]
[42]
D’Hooge, R.; De Deyn, P.P. Applications of the Morris water maze in the study of learning and memory. Brain Res. Brain Res. Rev., 2001, 36(1), 60-90.
[http://dx.doi.org/10.1016/S0165-0173(01)00067-4] [PMID: 11516773]
[43]
Pattanashetti, L.A.; Taranalli, A.D.; Parvatrao, V.; Malabade, R.H.; Kumar, D. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Indian J. Pharmacol., 2017, 49(1), 60-64.
[PMID: 28458424]
[44]
Kokate, C.K.; Purohit, A.P.; Gokhale, S.B. Practical book of pharmacognosy. EDN, 2008, 6, 107-113.
[45]
Mirza, M.A.; Agarwal, S.P.; Iqbal, Z. Effect of fulvic acid on oral delivery of Carbamazepine. Sci. Adv. Mater., 2011, 3(2), 223-232.
[http://dx.doi.org/10.1166/sam.2011.1149]
[46]
Agarwal, S.P.; Anwer, M.K.; Aqil, M. Complexation of furosemide with fulvic acid extracted from shilajit: a novel approach. Drug Dev. Ind. Pharm., 2008, 34(5), 506-511.
[http://dx.doi.org/10.1080/03639040701744053] [PMID: 18473233]
[47]
Gautam, A.; Wadhwa, R.; Thakur, M.K. Assessment of cholinergic properties of ashwagandha leaf-extract in the amnesic mouse brain. Ann. Neurosci., 2016, 23(2), 68-75.
[http://dx.doi.org/10.1159/000443573] [PMID: 27647956]
[48]
Jain, S.; Sangma, T.; Shukla, S.K.; Mediratta, P.K. Effect of Cinnamomum zeylanicum extract on scopolamine-induced cognitive impairment and oxidative stress in rats. Nutr. Neurosci., 2015, 18(5), 210-216.
[http://dx.doi.org/10.1179/1476830514Y.0000000113] [PMID: 24559058]
[49]
Reynolds, A.; Laurie, C.; Mosley, R.L.; Gendelman, H.E. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int. Rev. Neurobiol., 2007, 82, 297-325.
[http://dx.doi.org/10.1016/S0074-7742(07)82016-2] [PMID: 17678968]
[50]
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy