Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

1,2,3-Triazole- and Quinoline-based Hybrids with Potent Antiplasmodial Activity

Author(s): Isabela A. Graciano, Alcione S. de Carvalho, Fernando de Carvalho da Silva and Vitor F. Ferreira*

Volume 18, Issue 5, 2022

Published on: 10 January, 2022

Page: [521 - 535] Pages: 15

DOI: 10.2174/1573406418666211110143041

Price: $65

Abstract

Background: Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities.

Objective: This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei.

Methods: We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity.

Results: The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs.

Conclusion: Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.

Keywords: Malaria, Plasmodium, quinoline, 1, 2, 3-triazol, hybridization, antimalarial drug.

Next »
Graphical Abstract

[1]
Bruce-Chwatt, L. Three hundred and fifty years of the Peruvian fever bark. Br. Med. J., 1988, 296, 1486-1487.
[2]
Mates, M.; Nesher, G.; Zevin, S. Quinines-past and present. Harefuah, 2007, 146, 560-562.
[3]
World Health Organization. World malaria report 2019. https://www.who.int/publications/i/item/9789241565721 (Accessed Nov 17, 2020).
[4]
Kumar, H.M.S.; Herrmann, L.; Tsogoeva, S.B. Structural Hybridization as a Facile Approach to New Drug Candidates. Bioorg. Med. Chem. Lett., 2020, 30, 127514.
[5]
Agarwal, D.; Gupta, R.D.; Awasthi, S.K. Are Antimalarial Hybrid Molecules a Close Reality or a Distant Dream? Antimicrob. Agents Chemother., 2017, 61, 1-12.
[6]
Medecins Sans Frontieres. Combate à Malária | Médicos Sem Fronteiras. https://www.msf.org.br/o-que-fazemos/atividades-medicas/malaria (Accessed Nov 17, 2020).
[7]
Ministério da Saúde. Malária: o que é, causas, sintomas, tratamento, diagnóstico e prevenção. http://antigo.saude.gov.br/saude-de-a-z/malaria (Accessed Nov 18, 2020).
[8]
OMS. WHO | Estratégia Técnica Mundial para o Paludismo 2016–2030. https://www.who.int/malaria/publications/atoz/global-technical-strategy-portuguese/en/ (Accessed Nov 18, 2020).
[9]
Mishra, M.; Mishra, V.K.; Kashaw, V.; Iyer, A.K.; Kashaw, S.K. Comprehensive Review on Various Strategies for Antimalarial Drug Discovery. Eur. J. Med. Chem., 2017, 125, 1300-1320.
[10]
Fiocruz, P. Malária Portal Fiocruz. https://portal.fiocruz.br/taxonomia-geral-7-doencas-relacionadas/malaria (Accessed Nov 17, 2020).
[11]
França, T.C.C.; Dos Santos, M.G.; Figueroa-Villar, J.D. Malária: Aspectos Históricos e Quimioterapia. Quim. Nova, 2008, 31, 1271-1278.
[12]
Cunico, W.; Carvalho, S. A.; B Gomes, C. R.; Marques, G. H.; Oswaldo Cruz, F. Fármacos Antimalariais-História e Perspectivas Antimalarials Drugs-History and New Approaches. Rev. Bras. Farm., 2008, 89, 49-55.
[13]
Oliveira, K.R.H.M.; dos Anjos, L.M.; Araújo, A.P.S.; Luz, W.L.; Kauffmann, N.; Braga, D.V.; da Conceição Fonseca Passos, A.; de Moraes, S.A.S.; de Jesus Oliveira Batista, E.; Herculano, A.M. Ascorbic Acid Prevents Chloroquine-Induced Toxicity in Inner Glial Cells. Toxicol. Vitr., 2019, 56, 150-155.
[14]
Delépine, M. Joseph Pelletier and Joseph Caventou. J. Chem. Educ., 1951, 28, 454-461.
[15]
Foley, M.; Tilley, L. Quinoline Antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79, 55-87.
[16]
Coatney, G.R. Pitfalls in a Discovery: The Chronicle of Chloroquine. Am. J. Trop. Med. Hyg., 1963, 12, 121-128.
[17]
Gachelin, G.; Opinel, A. Malaria epidemics in Europe after the First World War: the early stages of an international approach to the control of the disease. Hist. Cienc. Saude Manguinhos, 2011, 18, 431-470.
[18]
Pinheiro, L.C.S.; Feitosa, L.M.; da Silveira, F.F.; Boechat, N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An. Acad. Bras. Cienc., 2018, 90, 1251-1271.
[19]
Andersag, H.; Breitner, S.; Jung, H. Quinoline Compound and Process of Making the Same. U.S. Patent US2233970A, March 4, 1941.
[20]
Pou, S.; Winter, R.W.; Nilsen, A.; Kelly, J.X.; Li, Y.; Doggett, J.S.; Riscoe, E.W.; Wegmann, K.W.; Hinrichs, D.J.; Riscoe, M.K. Sontochin as a Guide to the Development of Drugs against Chloroquine-Resistant Malaria. Antimicrob. Agents Chemother., 2012, 56, 3475-3480.
[21]
Haberkorn, A. 50 years of Resochin - the eventful history of an antimalarial drug. Drugs Made Ger., 1988, 31, 57-59.
[22]
Loeb, R.F.; Mccoy, O.R.; Clark, W.M.; Coatney, G.R.; Coggeshall, L.T.; Dieuaide, F.R.; Dochez, A.R.; Hakansson, E.G.; Marshall, E.K.; Marvel, C.S.; Sapero, J.J.; Sebrell, W.H.; Shannon, J.A.; Carden, G.A. Activity of a new antimalarial agent, chloroquine (sn 7618): statement approved by the board for coordination of malarial studies. J. Am. Med. Assoc., 1946, 130, 1069-1070.
[23]
Andersag, H. Antimalariamittel aus der Gruppe halogensubstituierter Chinolinverbindungen. Chem. Ber., 1948, 81, 499-507.
[24]
Kublin, J.; Cortese, J.; Njunju, E.; Mukadam, R.; Wirima, J.; Kazembe, P.; Djimde, A.; Kouriba, B.; Taylor, T.; Plowe, C. Reemergence of chloroquin-sensitive Plasmodium falciparum malaria after cessation of chloroquin use in Malawi. J. Infect. Dis., 2001, 187, 1870-1875.
[25]
Wellems, T.; Plowe, C. Chloroquine-resistent malaria. J. Infect. Dis., 2001, 184, 770-776.
[26]
World Health Organization. Fact sheet about Malaria, 2020. Available in: https://www.who.int/news-room/fact-sheets/detail/malaria Access in 30/03/2021.
[27]
Robert, A.; Benoit-Vical, F.; Dechy-Cabaret, O.; Meunier, B. From Classical Antimalarial Drugs to New Compounds Based on the Mechanism of Action of Artemisinin. Pure Appl. Chem., 2001, 73, 1173-1188.
[28]
Payne, D. Spread of chloroquine resistance in Plasmodium Falciparum. Parasitol. Today, 1987, 3, 241-246.
[29]
Tu, Y. The Discovery of Artemisinin (Qinghaosu) and Gifts from Chinese Medicine. Nat. Med., 2011, 17, 1217-1220.
[30]
Liu, C. Discovery and Development of Artemisinin and Related Compounds. Chin. Herb. Med., 2017, 9, 101-114.
[31]
Miller, L.H.; Su, X. Artemisinin: Discovery from the Chinese Herbal Garden. Cell, 2011, 146, 855-858.
[32]
Rawe, S.L. Chapter 4 - Artemisinin and Artemisinin-Related Agents. In: Antimalarial Agents; Elsevier Ltd, 2015; pp. 99-132.
[33]
Tibon, N.S.; Ng, C.H.; Cheong, S.L. Current Progress in Antimalarial Pharmacotherapy and Multi-Target Drug Discovery. Eur. J. Med. Chem., 2020, 188, 111983.
[34]
Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Microwave assisted synthesis of pyrimidines in ionic liquid and their potency as non-classical malarial antifolates. Arch. Pharm. (Weinheim), 2016, 791-800.
[35]
Yuthavong, Y. Basis for antifolate action and resistance in malaria. Microbes Infect., 2002, 4, 175-182.
[36]
da Silva, T.H.A.; de Oliveira, M.T.; dos Santos, H.F.; de Oliveira, A.B.; de Almeida, W.B. Estudo de modelagem molecular de complexos ferriprotoporfirina IX e quinolinocarbinolaminas antimaláricas: proposta de um farmacóforo. Quim. Nova, 2005, 28, 244-249.
[37]
Sullivan, D.J.; Matile, H.; Ridley, R.G.; Goldberg, D.E. A Common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem., 1998, 273, 31103-31107.
[38]
Touret, F.; de Lamballerie, X. Of Chloroquine and COVID-19. Antiviral Res., 2020, 177, 104762.
[39]
World Health Organization. Guidelines for the Treatment of Malaria, Third Edition.; Trans. R. Soc. Trop. Med. Hyg, 2015, p. 85.
[40]
Kano, S. Artemisinin-Based Combination Therapies and Their Introduction in Japan. J. Infect. Chemother., 2010, 16, 375-382.
[41]
WHO World Health Organization. Treating malaria. https://www.who.int/activities/treating-malaria (Accessed Nov 17, 2020).
[42]
Bray, P.; Park, B.; Asadollaly, E.; Biagini, G.; Jeyadevan, J.; Berry, N.; Ward, S.; O’ Neill, P. A Medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr. Top. Med. Chem., 2006, 6, 479-507.
[43]
Coombs, K.; Mann, E.; Edwards, J.; Brown, D.T. Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus. J. Virol., 1981, 37, 1060-1065.
[44]
Farias, K.J.S.; Machado, P.R.L.; Muniz, J.A.P.C.; Imbeloni, A.A.; da Fonseca, B.A.L. Antiviral Activity of Chloroquine Against Dengue Virus Type 2 Replication in Aotus Monkeys. Viral Immunol., 2015, 28, 161-169.
[45]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323, 264-268.
[46]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole Derivatives and Their Antiplasmodial and Antimalarial Activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[47]
Dos Santos, B.M.; Gonzaga, D.T.G.; da Silva, F.C.; Ferreira, V.F.; Garcia, C.R.S. Plasmodium Falciparum Knockout for the Gpcr-like Pfsr25 Receptor Displays Greater Susceptibility to 1,2,3-Triazole Compounds That Block Malaria Parasite Development. Biomolecules, 2020, 10, 1-14.
[48]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[49]
Decker, M. Design of hybrid molecules for drug development, 1st ed; Elsevier, 2017.
[50]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14, 1829-1852.
[51]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23, 5098-5119.
[52]
Nqoro, X.; Tobeka, N.; Aderibigbe, B.A. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules, 2017, 22, 2268.
[53]
Chu, X-M.; Wang, C.; Liu, W.; Liang, L-L.; Gong, K-K.; Zhao, C-Y.; Sun, K-L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[54]
Pinheiro, L.C.S.; Boechat, N.; Ferreira, M.L.G.; Júnior, C.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Souza, N.B.; Krettli, A.U. Anti-Plasmodium falciparum activity of quinoline-sulfonamide hybrids. Bioorg. Med. Chem., 23, 5979-5984.
[55]
Verma, S.; Pandey, S.; Agarwal, P.; Verma, P.; Deshpande, S.; Saxena, J.K.; Srivastava, K.; Chauhan, P.M.; Prabhakar, Y.S.N. -(7-Chloroquinolinyl-4-aminoalkyl) arylsulfonamides as antimalarial agents: Rationale for the activity with reference to inhibition of hemozoin formation. RSC Advances, 2016, 6, 25584-25593.
[56]
Biot, C.; Glorian, G.; Maciejewski, L.A.; Brocard, J.S. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocenechloroquine analogue. J. Med. Chem., 1997, 40, 3715-3718.
[57]
Wells, T.N.; van Huijsduijnen, R.H. Ferroquine: welcome to the next generation of antimalarials. Lancet Infect. Dis., 2015, 15, 1365-1366.
[58]
Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem., 2015, 101, 534-551.
[59]
Held, J.; Supan, C.; Salazar, C.L.O.; Tinto, H.; Bonkian, L.N.; Nahum, A.; Moulero, B.; Sié, A.; Coulibaly, B.; Sirima, S.B.; Siribie, M.; Otsyula, N.; Otieno, L.; Abdallah, A.M.; Kimutai, R.; Bouyou-Akotet, M.; Kombila, M.; Koiwai, K.; Cantalloube, C.; Din-Bell, C.; Djeriou, E.; Waitumbi, J.; Mordmüller, B.; Ter-Minassian, D.; Lell, B.; Kremsner, P.G. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: a phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis., 2015, 15, 1409-1419.
[60]
Kondratskyi, A.; Kondratska, K.; Abeele, F.V.; Gordienko, D.; Dubois, C.; Toillon, R-A.; Slomianny, C.; Lemière, S.; Delcourt, P.; Dewailly, E.; Skryma, R.; Biot, C.; Prevarskaya, N. Ferroquine, the next generation antimalarial drug Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci. Rep., 2017, 7, 15896.
[61]
Soares, R.R.; da Silva, J.M.F.; Carlos, B.C.; da Fonseca, C.C.; de Souza, L.S.A.; Lopes, F.V.; Dias, R.M.P.; Moreira, P.O.L.; Abramo, C.; Viana, G.H.R.; Varotti, F.P.; da Silva, A.D.; Scopel, K.K.G. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2015, 25, 2308-2313.
[62]
Kashyap, A.; Chetia, D.; Rudrapal, M. Synthesis, Antimalarial Activity Evaluation and Drug likeness Study of Some New Quinoline-Lawsone Hybrids. Indian J. Pharm. Sci., 2017, 78, 801-809.
[63]
Thakur, A.; Khan, S.I.; Rawat, D.S. Synthesis of piperazine tethered 4-aminoquinoline-pyrimidine hybrids as potent antimalarial agents. RSC Advances, 2014, 4, 20729-20736.
[64]
Kaur, H.; Balzarini, J.; de Kock, C.; Smith, P.J.; Chibale, K.; Singh, K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur. J. Med. Chem., 2015, 101, 52-62.
[65]
Joshi, M.C.; Wicht, K.J.; Taylor, D.; Hunter, R.; Smith, P.J.; Egan, T.J. In vitro antimalarial activity, β-haematin inhibition and structure-activity relationships in a series of quinoline triazoles. Eur. J. Med. Chem., 2013, 69, 338-347.
[66]
Singh, N.; Barnes, S.J.; Kennedy, S.; Adams, J.H. Experimental Evaluation of Cryopreservative Solutions to Maintain in Vitro & in Vivo Infectivity of P. Berghei Sporozoites. PLoS One, 2017, 12, 1-14.
[67]
Stefani, H.A. Introdução a Quimica de Compostos Heterociclicos, 1st ed.; Guanabara Koogan: Rio de Janeiro. 2009.
[68]
Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three-to-Five Membered Heterocycles; Elsevier, 2019.
[69]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry : A Recent Overview. Bioorg. Med. Chem., 2019, 27, 3511-3531.
[70]
Thiel, O. Heterocyclic Chemistry in Drug Discovery; Edited by Jie Jack Li; John Wiley and Sons: Hoboken, 2013.
[71]
Melo, J.O.F.; Donnici, C.L.; Augusti, R.; Ferreira, V.F.; De Souza, M.C.B.V.; Ferreira, M.L.G.; Cunha, A.C. Heterociclos 1,2,3-Triazólicos: Histórico, Métodos de Preparação, Aplicações e Atividades Farmacológicas. Quim. Nova, 2006, 29, 569-579.
[72]
Yan, Z-Y.; Niu, Y-N.; Wei, H-L.; Wu, L-Y.; Zhao, Y-B.; Liang, Y-M. Combining proline and ‘click chemistry’: a class of versatile organocatalysts for the highly diastereo- and enantioselective Michael addition in water. Tetrahedron Asymmetry, 2006, 17, 3288-3293.
[73]
Chandrasekhar, S.; Kumar, T.P.; Haribabu, K.; Reddy, C.R. Synthesis of hybrid 1,2,3-triazolo-δ-lactams/lactones using Huisgen [3+2] cycloaddition ‘click-chemistry’ in water. Tetrahedron Asymmetry, 2010, 21, 352-355.
[74]
Zhao, Y-B.; Zhang, L-W.; Wu, L-Y.; Zhong, X.; Li, R.; Ma, J-T. Silica-supported pyrrolidine-triazole, an insoluble, recyclable organocatalyst for the enantioselective Michael addition of ketones to nitroalkenes. Tetrahedron Asymmetry, 2008, 19, 1352-1355.
[75]
Zammit, C.M.; Wills, M. Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer. Tetrahedron Asymmetry, 2013, 24, 844-852.
[76]
Yoshida, Y.; Takizawa, S.; Sasai, H. Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Asymmetry, 2012, 23, 843-851.
[77]
Ben Nejma, A.; Znati, M.; Daich, A.; Othman, M.; Lawson, A.M.; Ben Jannet, H. Design and Semisynthesis of New Herbicide as 1,2,3-Triazole Derivatives of the Natural Maslinic Acid. Steroids, 2018, 138, 102-107.
[78]
Rosado-Solano, D.N.; Barón-Rodríguez, M.A.; Sanabria Florez, P.L.; Luna-Parada, L.K.; Puerto-Galvis, C.E.; Zorro-González, A.F.; Kouznetsov, V.V.; Vargas-Méndez, L.Y. Synthesis, biological evaluation and in silico computational studies of 7-chloro-4-(1H-1,2,3-triazol-1-Yl)quinoline derivatives: search for new controlling agents against spodoptera Frugiperda (lepidoptera: noctuidae) larvae. J. Agric. Food Chem., 2019, 67, 9210-9219.
[79]
Phillips, O.A.; Udo, E.E.; Abdel-Hamid, M.E.; Varghese, R. Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole)methyl oxazolidinones. Eur. J. Med. Chem., 2009, 44, 3217-3227.
[80]
Ferreira, V.F.; da Rocha, D.R.; da Silva, F.C.; Ferreira, P.G.; Boechat, N.A.; Magalhães, J.L. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011). Expert Opin. Ther. Pat., 2013, 23, 319-331.
[81]
Mandal, S.K.; Saha, D.; Jain, V.K.; Jain, B. Sythesis and antitubercular activity of some triazole derivatives of propyl gallate. Int. J. Pharm. Sci. Res., 2010, 1, 465-472.
[82]
Rachakonda, V.; Kotapalli, S.S.; Ummanni, R.; Alla, M. Ring functionalization and molecular hybridization of quinolinyl pyrazole: design, synthesis and antimycobacterial activity. ChemistrySelect, 2017, 2, 6529-6534.
[83]
Tan, S.L. Pause. A.; Shi, V.; Sonenberg, N. Hepatitis C Therapeutics: Current status and emerging Strategies. Nat. Rev. Drug Discov., 2002, 1, 867-881.
[84]
Padmaja, R.D.; Chanda, K. A Short review on synthetic advances toward the synthesis of rufinamide, an antiepileptic drug. Org. Process Res. Dev., 2018, 22, 457-466.
[85]
Prusiner, P.; Sundaralingam, M. The crystal and molecular structures of two polymorphic crystalline forms of virazole (1-[beta]-D-ribofuranosyl-1,2,4-triazole-3-carboxamide). A new synthetic broad sprectrum antiviral agent. Acta Crystallogr., 1976, B32, 419.
[86]
Wang, R.; Cui, M.; Yang, Q.; Kuang, C. A Facile Total Synthesis of Mubritinib. Synth., 2021, 53, 978-982.
[87]
Prusiner, P.; Sundaralingam, M. A New Class of Synthetic Nucleoside Analogues with Broad-spectrum Antiviral Properties. Nature New Biology. Nat. New Biol., 1973, 244, 116-118.
[88]
Smith, R.A.; Knight, V.; Smith, J.A.D. Clinical Applications of Ribavirin; Academic Press: New York, 1984.
[89]
Sidwell, R.W.; Revankar, G.R.; Robins, R.K. Ribavirin: review of a broad-spectrum antiviral agent. Viral Chemotherapy, 1985, 2, 49-108.
[90]
Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-Triazoles: Current Developments. Bioorg. Chem., 2017, 71, 30-54.
[91]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22, 1572-1581.
[92]
Wu, G.; Gao, Y.; Kang, D.; Huang, B.; Huo, Z.; Liu, H.; Poongavanam, V.; Zhan, P.; Liu, X. Design, Synthesis and Biological Evaluation of Tacrine-1,2,3-Triazole Derivatives as Potent Cholinesterase Inhibitors. MedChemComm, 2018, 9, 149-159.
[93]
Brandão, G.C.; Rocha Missias, F.C.; Arantes, L.M.; Soares, L.F.; Roy, K.K.; Doerksen, R.J.; Braga de Oliveira, A.; Pereira, G.R. Antimalarial Naphthoquinones. Synthesis via Click Chemistry, in Vitro Activity, Docking to PfDHODH and SAR of Lapachol-Based Compounds. Eur. J. Med. Chem., 2018, 145, 191-205.
[94]
Tarawneh, A.H.; Al-Momani, L.A.; León, F.; Jain, S.K.; Gadetskaya, A.V.; Abu-Orabi, S.T.; Tekwani, B.L.; Cutler, S.J. Evaluation of Triazole and Isoxazole Derivatives as Potential Anti-Infective Agents. Med. Chem. Res., 2018, 27, 1269-1275.
[95]
Mabasa, T.F.; Awe, B.; Laming, D.; Kinfe, H.H. Design, synthesis and antiplasmodial evaluation of sulfoximine-triazole hybrids as potential antimalarial prototypes. Med. Chem., 2019, 15, 685-692.
[96]
Kaushik, C.P.; Pahwa, A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Med. Chem. Res., 2018, 27, 458-469.
[97]
Batra, N.; Rajendran, V.; Agarwal, D.; Wadi, I.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis and antimalarial evaluation of [1,2,3]-triazole-tethered sulfonamide-berberine hybrids. ChemistrySelect, 2018, 3, 9790-9793.
[98]
D’Souza, V.T.; Nayak, J.; D’Mello, D.E.; Dayananda, P. Synthesis and characterization of biologically important quinoline incorporated triazole derivatives. J. Mol. Struct., 2020, 1229, 129503.
[99]
Hegde, H.; Gaonkar, S.L.; Badiger, N.P.; Shetty, N.S. Synthesis, antioxidant and anticancer activity of new quinoline- [1, 2, 4]-triazole hybrids. Rasayan J. Chem., 2020, 13, 1744-1749.
[100]
Ramprasad, J.; Kumar Sthalam, V.; Linga Murthy Thampunuri, R.; Bhukya, S.; Ummanni, R.; Balasubramanian, S.; Pabbaraja, S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2019, 29, 126671.
[101]
Aboelnaga, A.; El-Sayed, T.H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev., 2018, 11, 254-263.
[102]
Patel, R.V.; Park, S.W. Access to a new class of biologically Active quinoline based 1,2,4-triazoles. Eur. J. Med. Chem., 2014, 71, 24-30.
[103]
Behalo, M.S.; Aly, A.A.; Wasfy, A.F.; Rizk, M.M. Synthesis of some novel 1,2,4-triazole derivatives as potential antimicrobial agents. Eur. J. Chem., 2013, 4, 92-97.
[104]
Boechat, N.; Ferreira, M.L.G.; Pinheiro, L.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Junior, C.C.S.; Aguiar, A.C.C.; de Andrade, I.M.; Krettli, A.U. New compounds hybrids 1H-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84, 325-332.
[105]
Sharma, B.; Kaur, S.; Legac, J.; Rosenthal, P.J.; Kumar, V. Synthesis, anti-plasmodial and cytotoxic evaluation of 1H-1,2,3-triazole/Acyl hydrazide integrated tetrahydro-β-carboline-4-aminoquinoline conjugates. Bioorg. Med. Chem. Lett., 2020, 30, 126810.
[106]
da Silva, R.M.R.J.; Gandi, M.O.; Mendonça, J.S.; Carvalho, A.S.; Coutinho, J.P.; Aguiar, A.C.C.; Krettli, A.U.; Boechat, N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg. Med. Chem., 2019, 27, 1002-1008.
[107]
Ishmail, F.Z.; Melis, D.R.; Mbaba, M.; Smith, G.S. Diversification of quinoline-triazole scaffolds with CORMs: synthesis, in vitro and in silico biological evaluation against Plasmodium Falciparum. J. Inorg. Biochem., 2021, 215, 111328.
[108]
Awolade, P.; Cele, N.; Kerru, N.; Singh, P. Synthesis, antimicrobial evaluation, and in silico studies of quinoline-1H-1,2,3-triazole molecular hybrids. Mol. Divers., 2020. In Press

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy