[1]
Bruce-Chwatt, L. Three hundred and fifty years of the Peruvian fever bark. Br. Med. J., 1988, 296, 1486-1487.
[2]
Mates, M.; Nesher, G.; Zevin, S. Quinines-past and present. Harefuah, 2007, 146, 560-562.
[4]
Kumar, H.M.S.; Herrmann, L.; Tsogoeva, S.B. Structural Hybridization as a Facile Approach to New Drug Candidates. Bioorg. Med. Chem. Lett., 2020, 30, 127514.
[5]
Agarwal, D.; Gupta, R.D.; Awasthi, S.K. Are Antimalarial Hybrid Molecules a Close Reality or a Distant Dream? Antimicrob. Agents Chemother., 2017, 61, 1-12.
[9]
Mishra, M.; Mishra, V.K.; Kashaw, V.; Iyer, A.K.; Kashaw, S.K. Comprehensive Review on Various Strategies for Antimalarial Drug Discovery. Eur. J. Med. Chem., 2017, 125, 1300-1320.
[11]
França, T.C.C.; Dos Santos, M.G.; Figueroa-Villar, J.D. Malária: Aspectos Históricos e Quimioterapia. Quim. Nova, 2008, 31, 1271-1278.
[12]
Cunico, W.; Carvalho, S. A.; B Gomes, C. R.; Marques, G. H.; Oswaldo Cruz, F. Fármacos Antimalariais-História e Perspectivas Antimalarials Drugs-History and New Approaches. Rev. Bras. Farm., 2008, 89, 49-55.
[13]
Oliveira, K.R.H.M.; dos Anjos, L.M.; Araújo, A.P.S.; Luz, W.L.; Kauffmann, N.; Braga, D.V.; da Conceição Fonseca Passos, A.; de Moraes, S.A.S.; de Jesus Oliveira Batista, E.; Herculano, A.M. Ascorbic Acid Prevents Chloroquine-Induced Toxicity in Inner Glial Cells. Toxicol. Vitr., 2019, 56, 150-155.
[14]
Delépine, M. Joseph Pelletier and Joseph Caventou. J. Chem. Educ., 1951, 28, 454-461.
[15]
Foley, M.; Tilley, L. Quinoline Antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79, 55-87.
[16]
Coatney, G.R. Pitfalls in a Discovery: The Chronicle of Chloroquine. Am. J. Trop. Med. Hyg., 1963, 12, 121-128.
[17]
Gachelin, G.; Opinel, A. Malaria epidemics in Europe after the First World War: the early stages of an international approach to the control of the disease. Hist. Cienc. Saude Manguinhos, 2011, 18, 431-470.
[18]
Pinheiro, L.C.S.; Feitosa, L.M.; da Silveira, F.F.; Boechat, N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An. Acad. Bras. Cienc., 2018, 90, 1251-1271.
[19]
Andersag, H.; Breitner, S.; Jung, H. Quinoline Compound and Process of Making the Same. U.S. Patent US2233970A, March 4, 1941.
[20]
Pou, S.; Winter, R.W.; Nilsen, A.; Kelly, J.X.; Li, Y.; Doggett, J.S.; Riscoe, E.W.; Wegmann, K.W.; Hinrichs, D.J.; Riscoe, M.K. Sontochin as a Guide to the Development of Drugs against Chloroquine-Resistant Malaria. Antimicrob. Agents Chemother., 2012, 56, 3475-3480.
[21]
Haberkorn, A. 50 years of Resochin - the eventful history of an antimalarial drug. Drugs Made Ger., 1988, 31, 57-59.
[22]
Loeb, R.F.; Mccoy, O.R.; Clark, W.M.; Coatney, G.R.; Coggeshall, L.T.; Dieuaide, F.R.; Dochez, A.R.; Hakansson, E.G.; Marshall, E.K.; Marvel, C.S.; Sapero, J.J.; Sebrell, W.H.; Shannon, J.A.; Carden, G.A. Activity of a new antimalarial agent, chloroquine (sn 7618): statement approved by the board for coordination of malarial studies. J. Am. Med. Assoc., 1946, 130, 1069-1070.
[23]
Andersag, H. Antimalariamittel aus der Gruppe halogensubstituierter Chinolinverbindungen. Chem. Ber., 1948, 81, 499-507.
[24]
Kublin, J.; Cortese, J.; Njunju, E.; Mukadam, R.; Wirima, J.; Kazembe, P.; Djimde, A.; Kouriba, B.; Taylor, T.; Plowe, C. Reemergence of chloroquin-sensitive Plasmodium falciparum malaria after cessation of chloroquin use in Malawi. J. Infect. Dis., 2001, 187, 1870-1875.
[25]
Wellems, T.; Plowe, C. Chloroquine-resistent malaria. J. Infect. Dis., 2001, 184, 770-776.
[27]
Robert, A.; Benoit-Vical, F.; Dechy-Cabaret, O.; Meunier, B. From Classical Antimalarial Drugs to New Compounds Based on the Mechanism of Action of Artemisinin. Pure Appl. Chem., 2001, 73, 1173-1188.
[28]
Payne, D. Spread of chloroquine resistance in Plasmodium Falciparum. Parasitol. Today, 1987, 3, 241-246.
[29]
Tu, Y. The Discovery of Artemisinin (Qinghaosu) and Gifts from Chinese Medicine. Nat. Med., 2011, 17, 1217-1220.
[30]
Liu, C. Discovery and Development of Artemisinin and Related Compounds. Chin. Herb. Med., 2017, 9, 101-114.
[31]
Miller, L.H.; Su, X. Artemisinin: Discovery from the Chinese Herbal Garden. Cell, 2011, 146, 855-858.
[32]
Rawe, S.L. Chapter 4 - Artemisinin and Artemisinin-Related Agents. In: Antimalarial Agents; Elsevier Ltd, 2015; pp. 99-132.
[33]
Tibon, N.S.; Ng, C.H.; Cheong, S.L. Current Progress in Antimalarial Pharmacotherapy and Multi-Target Drug Discovery. Eur. J. Med. Chem., 2020, 188, 111983.
[34]
Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Microwave assisted synthesis of pyrimidines in ionic liquid and their potency as non-classical malarial antifolates. Arch. Pharm. (Weinheim), 2016, 791-800.
[35]
Yuthavong, Y. Basis for antifolate action and resistance in malaria. Microbes Infect., 2002, 4, 175-182.
[36]
da Silva, T.H.A.; de Oliveira, M.T.; dos Santos, H.F.; de Oliveira, A.B.; de Almeida, W.B. Estudo de modelagem molecular de complexos ferriprotoporfirina IX e quinolinocarbinolaminas antimaláricas: proposta de um farmacóforo. Quim. Nova, 2005, 28, 244-249.
[37]
Sullivan, D.J.; Matile, H.; Ridley, R.G.; Goldberg, D.E. A Common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem., 1998, 273, 31103-31107.
[38]
Touret, F.; de Lamballerie, X. Of Chloroquine and COVID-19. Antiviral Res., 2020, 177, 104762.
[39]
World Health Organization. Guidelines for the Treatment of Malaria, Third Edition.; Trans. R. Soc. Trop. Med. Hyg, 2015, p. 85.
[40]
Kano, S. Artemisinin-Based Combination Therapies and Their Introduction in Japan. J. Infect. Chemother., 2010, 16, 375-382.
[42]
Bray, P.; Park, B.; Asadollaly, E.; Biagini, G.; Jeyadevan, J.; Berry, N.; Ward, S.; O’ Neill, P. A Medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr. Top. Med. Chem., 2006, 6, 479-507.
[43]
Coombs, K.; Mann, E.; Edwards, J.; Brown, D.T. Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus. J. Virol., 1981, 37, 1060-1065.
[44]
Farias, K.J.S.; Machado, P.R.L.; Muniz, J.A.P.C.; Imbeloni, A.A.; da Fonseca, B.A.L. Antiviral Activity of Chloroquine Against Dengue Virus Type 2 Replication in Aotus Monkeys. Viral Immunol., 2015, 28, 161-169.
[45]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323, 264-268.
[46]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole Derivatives and Their Antiplasmodial and Antimalarial Activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[47]
Dos Santos, B.M.; Gonzaga, D.T.G.; da Silva, F.C.; Ferreira, V.F.; Garcia, C.R.S. Plasmodium Falciparum Knockout for the Gpcr-like Pfsr25 Receptor Displays Greater Susceptibility to 1,2,3-Triazole Compounds That Block Malaria Parasite Development. Biomolecules, 2020, 10, 1-14.
[48]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[49]
Decker, M. Design of hybrid molecules for drug development, 1st ed; Elsevier, 2017.
[50]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14, 1829-1852.
[51]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23, 5098-5119.
[52]
Nqoro, X.; Tobeka, N.; Aderibigbe, B.A. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules, 2017, 22, 2268.
[53]
Chu, X-M.; Wang, C.; Liu, W.; Liang, L-L.; Gong, K-K.; Zhao, C-Y.; Sun, K-L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[54]
Pinheiro, L.C.S.; Boechat, N.; Ferreira, M.L.G.; Júnior, C.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Souza, N.B.; Krettli, A.U. Anti-Plasmodium falciparum activity of quinoline-sulfonamide hybrids. Bioorg. Med. Chem., 23, 5979-5984.
[55]
Verma, S.; Pandey, S.; Agarwal, P.; Verma, P.; Deshpande, S.; Saxena, J.K.; Srivastava, K.; Chauhan, P.M.; Prabhakar, Y.S.N. -(7-Chloroquinolinyl-4-aminoalkyl) arylsulfonamides as antimalarial agents: Rationale for the activity with reference to inhibition of hemozoin formation. RSC Advances, 2016, 6, 25584-25593.
[56]
Biot, C.; Glorian, G.; Maciejewski, L.A.; Brocard, J.S. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocenechloroquine analogue. J. Med. Chem., 1997, 40, 3715-3718.
[57]
Wells, T.N.; van Huijsduijnen, R.H. Ferroquine: welcome to the next generation of antimalarials. Lancet Infect. Dis., 2015, 15, 1365-1366.
[58]
Wani, W.A.; Jameel, E.; Baig, U.; Mumtazuddin, S.; Hun, L.T. Ferroquine and its derivatives: New generation of antimalarial agents. Eur. J. Med. Chem., 2015, 101, 534-551.
[59]
Held, J.; Supan, C.; Salazar, C.L.O.; Tinto, H.; Bonkian, L.N.; Nahum, A.; Moulero, B.; Sié, A.; Coulibaly, B.; Sirima, S.B.; Siribie, M.; Otsyula, N.; Otieno, L.; Abdallah, A.M.; Kimutai, R.; Bouyou-Akotet, M.; Kombila, M.; Koiwai, K.; Cantalloube, C.; Din-Bell, C.; Djeriou, E.; Waitumbi, J.; Mordmüller, B.; Ter-Minassian, D.; Lell, B.; Kremsner, P.G. Ferroquine and artesunate in African adults and children with Plasmodium falciparum malaria: a phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect. Dis., 2015, 15, 1409-1419.
[60]
Kondratskyi, A.; Kondratska, K.; Abeele, F.V.; Gordienko, D.; Dubois, C.; Toillon, R-A.; Slomianny, C.; Lemière, S.; Delcourt, P.; Dewailly, E.; Skryma, R.; Biot, C.; Prevarskaya, N. Ferroquine, the next generation antimalarial drug Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci. Rep., 2017, 7, 15896.
[61]
Soares, R.R.; da Silva, J.M.F.; Carlos, B.C.; da Fonseca, C.C.; de Souza, L.S.A.; Lopes, F.V.; Dias, R.M.P.; Moreira, P.O.L.; Abramo, C.; Viana, G.H.R.; Varotti, F.P.; da Silva, A.D.; Scopel, K.K.G. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2015, 25, 2308-2313.
[62]
Kashyap, A.; Chetia, D.; Rudrapal, M. Synthesis, Antimalarial Activity Evaluation and Drug likeness Study of Some New Quinoline-Lawsone Hybrids. Indian J. Pharm. Sci., 2017, 78, 801-809.
[63]
Thakur, A.; Khan, S.I.; Rawat, D.S. Synthesis of piperazine tethered 4-aminoquinoline-pyrimidine hybrids as potent antimalarial agents. RSC Advances, 2014, 4, 20729-20736.
[64]
Kaur, H.; Balzarini, J.; de Kock, C.; Smith, P.J.; Chibale, K.; Singh, K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur. J. Med. Chem., 2015, 101, 52-62.
[65]
Joshi, M.C.; Wicht, K.J.; Taylor, D.; Hunter, R.; Smith, P.J.; Egan, T.J. In vitro antimalarial activity, β-haematin inhibition and structure-activity relationships in a series of quinoline triazoles. Eur. J. Med. Chem., 2013, 69, 338-347.
[66]
Singh, N.; Barnes, S.J.; Kennedy, S.; Adams, J.H. Experimental Evaluation of Cryopreservative Solutions to Maintain in Vitro & in Vivo Infectivity of P. Berghei Sporozoites. PLoS One, 2017, 12, 1-14.
[67]
Stefani, H.A. Introdução a Quimica de Compostos Heterociclicos, 1st ed.; Guanabara Koogan: Rio de Janeiro. 2009.
[68]
Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. The Chemistry of Heterocycles: Nomenclature and Chemistry of Three-to-Five Membered Heterocycles; Elsevier, 2019.
[69]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry : A Recent Overview. Bioorg. Med. Chem., 2019, 27, 3511-3531.
[70]
Thiel, O. Heterocyclic Chemistry in Drug Discovery; Edited by Jie Jack Li; John Wiley and Sons: Hoboken, 2013.
[71]
Melo, J.O.F.; Donnici, C.L.; Augusti, R.; Ferreira, V.F.; De Souza, M.C.B.V.; Ferreira, M.L.G.; Cunha, A.C. Heterociclos 1,2,3-Triazólicos: Histórico, Métodos de Preparação, Aplicações e Atividades Farmacológicas. Quim. Nova, 2006, 29, 569-579.
[72]
Yan, Z-Y.; Niu, Y-N.; Wei, H-L.; Wu, L-Y.; Zhao, Y-B.; Liang, Y-M. Combining proline and ‘click chemistry’: a class of versatile organocatalysts for the highly diastereo- and enantioselective Michael addition in water. Tetrahedron Asymmetry, 2006, 17, 3288-3293.
[73]
Chandrasekhar, S.; Kumar, T.P.; Haribabu, K.; Reddy, C.R. Synthesis of hybrid 1,2,3-triazolo-δ-lactams/lactones using Huisgen [3+2] cycloaddition ‘click-chemistry’ in water. Tetrahedron Asymmetry, 2010, 21, 352-355.
[74]
Zhao, Y-B.; Zhang, L-W.; Wu, L-Y.; Zhong, X.; Li, R.; Ma, J-T. Silica-supported pyrrolidine-triazole, an insoluble, recyclable organocatalyst for the enantioselective Michael addition of ketones to nitroalkenes. Tetrahedron Asymmetry, 2008, 19, 1352-1355.
[75]
Zammit, C.M.; Wills, M. Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer. Tetrahedron Asymmetry, 2013, 24, 844-852.
[76]
Yoshida, Y.; Takizawa, S.; Sasai, H. Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron Asymmetry, 2012, 23, 843-851.
[77]
Ben Nejma, A.; Znati, M.; Daich, A.; Othman, M.; Lawson, A.M.; Ben Jannet, H. Design and Semisynthesis of New Herbicide as 1,2,3-Triazole Derivatives of the Natural Maslinic Acid. Steroids, 2018, 138, 102-107.
[78]
Rosado-Solano, D.N.; Barón-Rodríguez, M.A.; Sanabria Florez, P.L.; Luna-Parada, L.K.; Puerto-Galvis, C.E.; Zorro-González, A.F.; Kouznetsov, V.V.; Vargas-Méndez, L.Y. Synthesis, biological evaluation and in silico computational studies of 7-chloro-4-(1H-1,2,3-triazol-1-Yl)quinoline derivatives: search for new controlling agents against spodoptera Frugiperda (lepidoptera: noctuidae) larvae. J. Agric. Food Chem., 2019, 67, 9210-9219.
[79]
Phillips, O.A.; Udo, E.E.; Abdel-Hamid, M.E.; Varghese, R. Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole)methyl oxazolidinones. Eur. J. Med. Chem., 2009, 44, 3217-3227.
[80]
Ferreira, V.F.; da Rocha, D.R.; da Silva, F.C.; Ferreira, P.G.; Boechat, N.A.; Magalhães, J.L. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011). Expert Opin. Ther. Pat., 2013, 23, 319-331.
[81]
Mandal, S.K.; Saha, D.; Jain, V.K.; Jain, B. Sythesis and antitubercular activity of some triazole derivatives of propyl gallate. Int. J. Pharm. Sci. Res., 2010, 1, 465-472.
[82]
Rachakonda, V.; Kotapalli, S.S.; Ummanni, R.; Alla, M. Ring functionalization and molecular hybridization of quinolinyl pyrazole: design, synthesis and antimycobacterial activity. ChemistrySelect, 2017, 2, 6529-6534.
[83]
Tan, S.L. Pause. A.; Shi, V.; Sonenberg, N. Hepatitis C Therapeutics: Current status and emerging Strategies. Nat. Rev. Drug Discov., 2002, 1, 867-881.
[84]
Padmaja, R.D.; Chanda, K. A Short review on synthetic advances toward the synthesis of rufinamide, an antiepileptic drug. Org. Process Res. Dev., 2018, 22, 457-466.
[85]
Prusiner, P.; Sundaralingam, M. The crystal and molecular structures of two polymorphic crystalline forms of virazole (1-[beta]-D-ribofuranosyl-1,2,4-triazole-3-carboxamide). A new synthetic broad sprectrum antiviral agent. Acta Crystallogr., 1976, B32, 419.
[86]
Wang, R.; Cui, M.; Yang, Q.; Kuang, C. A Facile Total Synthesis of Mubritinib. Synth., 2021, 53, 978-982.
[87]
Prusiner, P.; Sundaralingam, M. A New Class of Synthetic Nucleoside Analogues with Broad-spectrum Antiviral Properties. Nature New Biology. Nat. New Biol., 1973, 244, 116-118.
[88]
Smith, R.A.; Knight, V.; Smith, J.A.D. Clinical Applications of Ribavirin; Academic Press: New York, 1984.
[89]
Sidwell, R.W.; Revankar, G.R.; Robins, R.K. Ribavirin: review of a broad-spectrum antiviral agent. Viral Chemotherapy, 1985, 2, 49-108.
[90]
Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-Triazoles: Current Developments. Bioorg. Chem., 2017, 71, 30-54.
[91]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22, 1572-1581.
[92]
Wu, G.; Gao, Y.; Kang, D.; Huang, B.; Huo, Z.; Liu, H.; Poongavanam, V.; Zhan, P.; Liu, X. Design, Synthesis and Biological Evaluation of Tacrine-1,2,3-Triazole Derivatives as Potent Cholinesterase Inhibitors. MedChemComm, 2018, 9, 149-159.
[93]
Brandão, G.C.; Rocha Missias, F.C.; Arantes, L.M.; Soares, L.F.; Roy, K.K.; Doerksen, R.J.; Braga de Oliveira, A.; Pereira, G.R. Antimalarial Naphthoquinones. Synthesis via Click Chemistry, in Vitro Activity, Docking to PfDHODH and SAR of Lapachol-Based Compounds. Eur. J. Med. Chem., 2018, 145, 191-205.
[94]
Tarawneh, A.H.; Al-Momani, L.A.; León, F.; Jain, S.K.; Gadetskaya, A.V.; Abu-Orabi, S.T.; Tekwani, B.L.; Cutler, S.J. Evaluation of Triazole and Isoxazole Derivatives as Potential Anti-Infective Agents. Med. Chem. Res., 2018, 27, 1269-1275.
[95]
Mabasa, T.F.; Awe, B.; Laming, D.; Kinfe, H.H. Design, synthesis and antiplasmodial evaluation of sulfoximine-triazole hybrids as potential antimalarial prototypes. Med. Chem., 2019, 15, 685-692.
[96]
Kaushik, C.P.; Pahwa, A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Med. Chem. Res., 2018, 27, 458-469.
[97]
Batra, N.; Rajendran, V.; Agarwal, D.; Wadi, I.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis and antimalarial evaluation of [1,2,3]-triazole-tethered sulfonamide-berberine hybrids. ChemistrySelect, 2018, 3, 9790-9793.
[98]
D’Souza, V.T.; Nayak, J.; D’Mello, D.E.; Dayananda, P. Synthesis and characterization of biologically important quinoline incorporated triazole derivatives. J. Mol. Struct., 2020, 1229, 129503.
[99]
Hegde, H.; Gaonkar, S.L.; Badiger, N.P.; Shetty, N.S. Synthesis, antioxidant and anticancer activity of new quinoline- [1, 2, 4]-triazole hybrids. Rasayan J. Chem., 2020, 13, 1744-1749.
[100]
Ramprasad, J.; Kumar Sthalam, V.; Linga Murthy Thampunuri, R.; Bhukya, S.; Ummanni, R.; Balasubramanian, S.; Pabbaraja, S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2019, 29, 126671.
[101]
Aboelnaga, A.; El-Sayed, T.H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev., 2018, 11, 254-263.
[102]
Patel, R.V.; Park, S.W. Access to a new class of biologically Active quinoline based 1,2,4-triazoles. Eur. J. Med. Chem., 2014, 71, 24-30.
[103]
Behalo, M.S.; Aly, A.A.; Wasfy, A.F.; Rizk, M.M. Synthesis of some novel 1,2,4-triazole derivatives as potential antimicrobial agents. Eur. J. Chem., 2013, 4, 92-97.
[104]
Boechat, N.; Ferreira, M.L.G.; Pinheiro, L.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Junior, C.C.S.; Aguiar, A.C.C.; de Andrade, I.M.; Krettli, A.U. New compounds hybrids 1H-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84, 325-332.
[105]
Sharma, B.; Kaur, S.; Legac, J.; Rosenthal, P.J.; Kumar, V. Synthesis, anti-plasmodial and cytotoxic evaluation of 1H-1,2,3-triazole/Acyl hydrazide integrated tetrahydro-β-carboline-4-aminoquinoline conjugates. Bioorg. Med. Chem. Lett., 2020, 30, 126810.
[106]
da Silva, R.M.R.J.; Gandi, M.O.; Mendonça, J.S.; Carvalho, A.S.; Coutinho, J.P.; Aguiar, A.C.C.; Krettli, A.U.; Boechat, N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg. Med. Chem., 2019, 27, 1002-1008.
[107]
Ishmail, F.Z.; Melis, D.R.; Mbaba, M.; Smith, G.S. Diversification of quinoline-triazole scaffolds with CORMs: synthesis, in vitro and in silico biological evaluation against Plasmodium Falciparum. J. Inorg. Biochem., 2021, 215, 111328.
[108]
Awolade, P.; Cele, N.; Kerru, N.; Singh, P. Synthesis, antimicrobial evaluation, and in silico studies of quinoline-1H-1,2,3-triazole molecular hybrids. Mol. Divers., 2020. In Press